![](/files/books/160/no-cover.jpg)
Текст книги "Двустороннее движение электричества. Тесла. Переменный ток"
Автор книги: авторов Коллектив
Жанры:
Газеты и журналы
,сообщить о нарушении
Текущая страница: 2 (всего у книги 9 страниц)
В XVIII веке, поражаясь искрам и треску, производимым лейденской банкой, немало ученых должны были задуматься, не являются ли гром и молнии явлениями того же типа. Определенно именно этот вопрос привел Бенджамина Франклина к знаменитому опыту с воздушным змеем, который лучше не пытаться повторить, так как, по словам самого ученого, самым удачным результатом было то, что ему удалось выжить.
ГРОМООТВОД ФРАНКЛИНА
Во время грозы знаменитый изобретатель Бенджамин Франклин (известный также тем, что стал одним из отцов-основателей США) запустил воздушного змея с проволокой на конце, привязав к нему шелковую нить, – внизу на нити был металлический ключ.
Когда он приближал руку к ключу, от ключа летели искры; это доказывало, что электричество проходит по нити. С помощью такой процедуры он заряжал лейденские банки. Испытывая тот же детский восторг, с каким столетие спустя маленький сербский мальчик Никола Тесла наблюдал статическое электричество на снегу и на шерсти кота, Бенджамин Франклин открыл, что молния и гром являются эффектами от некоего подобия космической лейденской банки, в которой электрически заряженные грозовые облака – один из полюсов, а земля – другой. Так совершился решительный шаг на пути к пониманию электрических явлений, хотя путь этот будет еще долгим.
МЕЧТЫ ОБ ЭЛЕКТРИЧЕСТВЕ
Благодаря неутомимому любопытству и способности к самостоятельному обучению в шесть лет Нико уже знал примитивные основы электрических явлений. Как раз тогда его отца перевели в Госпич, главный город провинции, и вся семья перебралась туда вместе с ним. В школе в Госпиче таланты и интеллект Нико расцвели, особенно его отличали по математике. Поступив в десять лет в реальную гимназию, он смог позволить себе не сдерживать своей природной склонности к физике – благодаря не только поддержке преподавателей, но и наличию хорошо оснащенной лаборатории. (Позже в мемуарах Тесла писал, что мечты об экзотических приключениях были забыты ради таких необыкновенных понятий, как энергия, сила природы, ветер, солнце, вода...) Прочитав про Ниагарский водопад, Нико представил своей семье проект турбины, которая позволила бы воспользоваться природной мощью воды; он утверждал также, что однажды поедет строить эту турбину в Америку. Вряд ли мальчик тогда мог представить, что через 30 лет его «американская мечта» сбудется.
В детстве Нико часто болел. А в дни школьных каникул он тосковал по учебе и с жадностью проглатывал попадавшиеся ему книги вместо того, чтобы дать своему разуму отдохнуть. У него началось странное расстройство зрения: в моменты сильного напряжения или эйфории его посещали видения. Тесла говорил, что видит вспышки, световые контуры и фантастические объекты, при этом видения для него становились частью реального мира. Возможно, гиперчувствительность болезненного мальчика и повышенная мозговая активность, длившаяся до поздней ночи, – одно из объяснений данных эпизодов.
Видения и образы еще долго преследовали его: Никола часто пытался записать то, что видел, но эти записи носят довольно путаный характер, и им сложно дать однозначную оценку.
Также мы не обладаем достоверными медицинскими сведениями, потому что лечившие его в юности врачи не смогли поставить диагноз. Как уже замечалось ранее, некоторые подобные симптомы свойственны синестезии.
Для продолжения учебы в 1870 году родители отправили Теслу в реальное училище Карловаца, за 150 км от дома. Там он жил в доме одной из теток, вышедшей замуж за полковника Бранковича. Учился Тесла прекрасно: решающее влияние на мальчика оказал преподаватель по математике и физике, открыв для него чудесный мир электричества, а также продемонстрировав собственные изобретения. Блестящий ученик Нико закончил четырехлетний курс всего за три года. По его собственным воспоминаниям, тетка кормила его «как канарейку», а когда полковник предлагал ему какое-нибудь изысканное сочное блюдо, она укоряла его: «Нико такой хрупкий». Действительно, Тесла неоднократно болел малярией и не отличался крепким здоровьем. Однако в Карловаце, вдали от родительского влияния, мальчик впервые осознал, что сможет быть счастливым, если получит возможность заниматься экспериментами. Чтобы добиться своего, требовалось заставить отца переменить свою точку зрения.
Эта идея пришла мне в голову как вспышка молнии, истина раскрылась передо мной в одно мгновение.
Никола Тесла
Парадоксально, но союзником на пути к достижению цели стала его болезнь. Вопреки предупреждениям семьи, Нико вернулся домой в разгар эпидемии холеры, бушевавшей в тех местах, и заразился. Он не вставал с постели в течение долгих девяти месяцев, и все это время врачи боялись за его жизнь. Сломленные горем родители постоянно находились рядом.
Тесла воспользовался этой ситуацией и вырвал у них обещание: если он переживет болезнь, то ему позволят учиться инженерному делу. «Если ты поправишься, обещаю отправить тебя в самую лучшую в мире техническую школу», – ответил отец.
Но все было не так просто. В 1874 году, едва оправившись, Никола был призван в армию, и служить он должен был три года. Если в чем-то и совпадали взгляды отца и сына, так это в неприязни к армии. Милутин отправил его пожить в горы в Томингай, постаравшись предпринять все возможное, чтобы Николу освободили от службы по состоянию здоровья. Следуя наставлениям отца, Тесла посвятил свое изгнание, проходившее на фоне буколических пейзажей, физическим тренировкам. Кроме того, в это время у него родились новые идеи. Они представлялись совершенно невозможными, но в них улавливалась некая интуитивная догадка. Никола придумал туннель под Атлантикой для почтовой связи Америки и Европы, и даже более того – гигантское кольцо по экватору Земли, которое должно было вращаться со скоростью нашей планеты и превратиться в гигантскую цепь коммуникационных станций. В таком виде эта идея напоминает современные геостационарные спутники, однако проект Теслы был еще более масштабным: если бы к кольцу была приложена сила, имеющая противоположный знак по отношению к вращению планеты, кольцо было бы зафиксировано, что позволило бы совершать быстрые перемещения. По расчетам юного изобретателя, с помощью такой системы возможно осуществить кругосветное путешествие всего за один день. Кипучее воображение Теслы нельзя было назвать его хорошим союзником.
Спустя несколько месяцев, уже в 1875 году, благодаря стипендии пограничной военной службы Никола Тесла поступил в Технический университет Граца. Ему исполнилось 19 лет, и он оказался за 360 километров от родительского дома: Тесла уезжал все дальше, это было предвосхищением его будущих путешествий. Наконец-то он начал заниматься инженерным делом, получил возможность понять все секреты электричества, прочесть книги великих ученых и исследователей – от Гальвани до Максвелла, не забывая, конечно, о Фарадее. Никола жаждал глубоко изучить не только теорию, но и практическое применение электричества, разобрав собственными руками устройства, занимавшие его деятельный ум: электромагниты, динамо-машины, двигатели...
Батарейка Вольты (Вольтов столб).
Соединение двух разных металлов вызывает поток электронов, перемещающихся между блоками через картон или сукно, смоченные в электролите.
ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА К ЭЛЕКТРИЧЕСКОМУ ТОКУ
Пионеры, посвятившие себя мистическому явлению под названием «электричество», начали его изу-чение со статических проявлений. Однако история электричества была «запущена» еще в 1791 году, когда анатом Луиджи Гальвани (1737-1798) занимался вскрытием лягушки. Итальянец заметил, что мышцы лапок лягушки сокращаются, если к ним одновременно подносить два разных металла, будто их приводит в движение лейденская банка. Гальвани решил, что в мускулах должно содержаться в каком-то виде «электричество», проявляющее свои свойства при контакте с металлом.
Соотечественник Гальвани, физик Алессандро Вольта (1745-1827), не был согласен с такой трактовкой, пребывая в уверенности, что заряд возникает не в мышцах животного, а при соединении двух металлов, и попытался доказать это в 1800 году. Вольта экспериментировал с разными металлами, которые контактировали у него без мышечных волокон, посредством растворов. Он помещал металлы в сосуды с водой, где была высокая концентрация соли, и складывал их один на другой.
Чтобы жидкость не проливалась, он заполнял сосуды чередующимися дисками из меди и цинка, между которыми помещал прокладки из картона или сукна, пропитанные электролитом. Вольта обнаружил, что эти сосуды дают постоянный ток, в отличие от лейденской банки, где заряд накапливается и происходит мгновенная разрядка. Батареи Вольты, как их назвали в честь изобретателя, стали первым устройством в истории для получения электрической энергии. Напряжение батареи измеряется в вольтах (тоже в честь изобретателя).
МАГНИТНОЕ ПОЛЕ
Понятие магнитного поля – одно из основных в физике. Оно возникло в силу необходимости объяснить взаимодействие на расстоянии между телами. Вначале его определяли как пространство, в котором распространяются потенциальные силы, проявляющие себя при особых обстоятельствах. Фарадей предложил эту идею для объяснения действия магнита. Наблюдая за мгновенным распределением железных опилок, рассыпанных вокруг магнита, он подумал, что в пространстве должны существовать невидимые силы, готовые проявиться. После этого данная идея стала применяться ко всем дистанционно действующим силам: Земля образует вокруг себя гравитационное и магнитное поля, электрический заряд образует электрическое поле и так далее.
В середине XIX века английский изобретатель-самоучка Майкл Фарадей (1791-1867) сделал решительный шаг к пониманию электрических явлений. На основе экспериментальных данных, без опоры на математику, он связал электричество с магнетизмом – прежде данные явления изучались отдельно. Фарадей открыл электромагнитную индукцию, позволившую создать генераторы и электрические двигатели, а также законы электролиза. В результате его считают отцом электромагнетизма и электрохимии.
РИС. 3
Эффект Эрстеда, согласно которому при прохождении тока по проводнику рядом с компасом стрелка компаса отклоняется в направлении проводника. Фарадей и Ампер частично основывали свои работы на открытии датского ученого, установившего связь электричества и магнетизма.
Фарадей изучил старый опыт, который до сих пор показывают на уроках физики: если рассыпать железные опилки на бумаге, расположенной над магнитом, то они образуют кривые линии, соединяющие полюсы магнита. Фарадей заявил, что эти силовые магнетические линии – визуальный образ магнитного поля. С другой стороны, Фарадей знал об открытом датским ученым свойстве, которое устанавливало несомненную связь электричества и магнетизма. В 1811 году Ханс Кристиан Эрстед (1777-1851) увидел, что при расположении компаса возле провода, по которому пропускается электрический ток, стрелка отклоняется, занимая перпендикулярное положение к проводу (см. рисунок 3). Фарадей догадался, что электрический ток тоже может образовывать магнитные силовые линии вокруг провода.
Эти догадки смог подтвердить Андре-Мари Ампер (1775– 1836), продолживший исследования Эрстеда. В своих опытах Ампер увидел, что провод, по которому течет электрический ток, ведет себя как магнит: два параллельных провода, по которым ток проходит в одном направлении, взаимно притягиваются, а когда направление тока противоположное, провода взаимно отталкиваются. Французский ученый открыл, что провод, намотанный на катушку, при прохождении по нему электрического тока подобен магниту. Именно он впервые использовал понятие «электромагнетизм».
РИС. 4
В динамо-машине Фарадея кинетическая энергия движения вращающегося медного диска превращается в электричество, так как диск пересекает силовые линии магнита, индуцируя электрический ток.
Таким образом, базовым принципом электромагнетизма является следующее: когда два электрических заряда находятся в движении, между ними возникает магнитная сила (кроме электростатической силы, которая, согласно закону Кулона, имеется между двумя зарядами в состоянии покоя). Все проявления магнитных феноменов могут быть объяснены силой, возникающей между движущимися зарядами.
После этого Фарадей задался вопросом: а может ли все быть наоборот? Способен ли магнит вызывать электрический ток такой же, как от батарейки? Он поставил 29 августа 1831 года решающий эксперимент: ученый вращал намотанный на катушку провод вокруг магнитного сердечника и действительно добился возникновения электрического тока (см. рисунок 4). Исследуя данный феномен, он понял, что ток появляется из-за пересечения проводом магнитных силовых линий. Так он открыл принцип электрической индукции: переменное магнитное поле индуцирует электродвижущую силу. Закон Фарадея гласит, что величина ЭДС пропорциональна скорости изменения магнитного потока. Кроме того, Фарадею удалось создать первый электрический генератор, или динамо-машину (от греческого dinamis – «сила»), в которой электричество возникало от механического движения.
РИС. 5
Вертикальные магниты (С и D) притягивают горизонтальные (А и В), обмотанные медной проволокой. Движение толкает металлические зонды (о-p и q-r) к латунным наконечникам (1-т и s-t) наполненным ртутью и прикрепленным к цинковой и медной пластинам, погруженным в раствор кислоты (F). Ток проходит по обмотке горизонтального электромагнита, заставляя его качаться, притягиваясь поочередно то к С, то к D.
В то же время по другую сторону Атлантики американец Джозеф Генри (1797-1878), также самоучка, независимо и параллельно с Фарадеем открыл электрическую индукцию, следуя шаг за шагом за датчанином Эрстедом. Генри был идеалистом и считал, что должен разделить свои знания со всем миром, что привело его к потере патента на телеграф, который удалось зарегистрировать Сэмюэлю Морзе (1791-1872). В 1831 году, когда Фарадей создавал первый электрогенератор, Генри завершал свои опыты с электромагнитами и разработал устройство, дополняющее то, что придумал его английский коллега: Генри использовал электрический ток с целью заставить поворачиваться колесо. Он изобрел электрический двигатель (см. рисунок 5). Если в динамо-машине ротор – вращающаяся часть устройства – преобразует механическое движение в электричество, то в двигателе ротор трансформирует электричество в механическое движение.
УРАВНЕНИЯ МАКСВЕЛЛА
Джеймс Клерк Максвелл внес значительный вклад в науку, но его главным достижением было описание посредством системы четырех уравнений свойств электромагнитного поля и его взаимодействия стелами, имеющими электрический заряд. Впоследствии было установлено, что уравнения Максвелла – лишь приближение уравнений, составляющих фундаментальные основы квантовой электродинамики. В большинстве случаев расхождения между квантовой электродинамикой и уравнениями Максвелла слишком малы для того, чтобы измерить их, и неактуальны. Но в случаях, когда свет ведет себя как частица, или для очень интенсивных полей они становятся важны. В дифференциальном виде уравнения Максвелла для макроскопического мира выглядят следующим образом.
– Закон Гаусса:
где →D – электрическая индукция, ρ – плотность электрического заряда в вакууме ( перевернутая Δ —дифференциальный оператор). Этот закон описывает электрическое поле, создаваемое зарядом. Электрический заряд создает электрическое поле. Ток электрического поля в закрытом контуре пропорционален заряду контура. На рисунке 1 показано электрическое поле, создаваемое одним зарядом.
– Закон Гаусса для магнитного поля:
где →В – магнитная индукция. Данный закон описывает магнитное поле, создаваемое магнитом. В отличие от электрического поля, не существует понятия «магнитного заряда» и монополярного магнита; магнитное поле возникаете биполярной конфигурацией. Это объясняет, почему силовые линии магнитного поля замкнуты (см. рисунок 2), и магнитный поток, проходящий по контуру, равен нулю.
– Закон Максвелла-Фарадея (сформулированный на основе закона индукции Фарадея):
где →Е – напряженность электрического поля, t – время (перевернутая Δ х – ротор, векторный оператор и ∂/∂t – частная производная от времени). Закон Фарадея описывает, как переменное магнитное поле во времени индуцирует электрическое поле. Это явление применяется для генерирования электричества (см. рисунок 3): при вращении магнита создается электрический ток в ближайшем проводнике.
– Закон Ампера (исправленный Максвеллом):
где →Н – напряженность магнитного поля, a J – плотность электрического тока. В первоначальном законе Ампера описывается, как электрический ток может вызывать появление магнитного поля (см. рисунок 4). Кроме того, магнитные поля могут возникать от переменных электрических полей. Это второе явление, имеющее огромную важность, и есть дополнение Максвелла к закону Ампера. Так Максвелл дал объяснение распространению электромагнитных волн и установил фундаментальную связь между оптикой и электромагнетизмом, осознав, что обе дисциплины изучают виды электромагнитного излучения, такие как радиоволны, рентгеновские лучи, видимый свет и тому подобное.
РИС. 1
РИС. 2
РИС.З
РИС. 4
Двигатель Генри можно было перевозить с достаточной легкостью из-за компактного размера; кроме того, он мог работать с большей скоростью, чем паровая машина Джеймса Ватта (1736-1819). Последней, прежде чем начать работать, требовалось достаточно много времени для создания необходимого давления пара. С другой стороны, двигатель Генри создавал очевидную проблему: электричество для него должно было поступать с генераторной станции. Вопрос снабжения, то есть доставки энергии удобным способом, стал новым вызовом для исследователей электричества.
Таким образом, электричество не выходило на сцену во время первого этапа промышленной революции, но сыграло главную роль во втором этапе. Фарадей не смог математически изложить свои теории о силовых линиях, поэтому его не могли понять до середины 1870-х годов – именно тогда шотландский физик Джеймс Клерк Максвелл (1831-1879) представил их в математическом виде. Максвелл свел все электрические и магнитные явления к четырем уравнениям, осуществив важнейшую в истории физики операцию по синтезу данных.
НИКОЛА ТЕСЛА, ИГРОК
Джеймс Клерк Максвелл опубликовал свои уравнения в 1873 году. В то время молодой Никола Тесла боролся с холерой за свою жизнь. Два года спустя, когда он приехал в Грац, работа шотландского ученого «Трактат об электричестве и магнетизме» еще считалась достаточно свежей, но ее важность уже не так сильно ощущалась. В университете Никола с большим энтузиазмом читал объяснения Максвелла, хотя в это время и был погружен в лихорадочную гонку за знаниями. Полученная им стипендия покрывала только первый год обучения. Зная об этом, Тесла не отрывался от книг и практически не спал – чтобы сдать два курса за один год. На первом курсе он не пропустил ни одного занятия, получил высшие оценки, основал клуб сербской культуры, добавил к своим занятиям физикой и математикой инженерную механику.
Динамо-машина, разработанная Зенобом Граммом: первый электрический генератор для промышленного применения.
На уроках по теоретической и экспериментальной физике Никола исследовал динамомашину, разработанную бельгийским инженером Зенобом Граммом (1826-1901), – первый электрический генератор для промышленного применения, который можно было также использовать как двигатель. Первые динамо-машины, приводимые в действие вручную, вызывали перепады напряжения и неизбежный переменный ток. Но постепенно они эволюционировали: появлялись новые элементы, среди которых – устройство для превращения тока в постоянный. Испытав машину Грамма на занятии, Тесла заметил, что от преобразователя переменного тока в постоянный летят искры, и однажды он даже взорвался. Преподаватель объяснил, что такое неизбежно у данных устройств. Проблемы можно было уменьшить, но использование подобных приспособлений не позволяло окончательно их устранить. Приборы используют постоянный ток, а динамо-машина вырабатывает ток переменный, поэтому преобразователь – неотъемлемая часть устройства. Тесла заявил: это происходит потому, что его действие ограничено используемым током, и работа устройства была бы более эффективной, если бы можно было использовать переменный ток. Согласно большей части биографических исследований, преподаватель ответил, что такую идею мог породить только фантазер: «Господин Тесла, безусловно, сможет совершить великие деяния, но осуществить именно это у него не получится». С тех пор в голове у Теслы поселилась навязчивая идея доказать, что его преподаватель ошибался.
Следующий курс обучения уже не был столь идиллическим. В конце второго года стало понятно, что скудного жалованья священника Милутина Теслы не хватит, чтобы оплатить образование сына. Никола начал играть сначала в шахматы, затем в бильярд, а потом в карты, раскрыв в себе – к собственному удивлению – хорошие способности к игре. В конце третьего года он перестал посещать занятия, а на следующий год оставил учебу. Это было началом периода в его жизни, о котором ему не нравилось вспоминать. Наиболее романтически настроенные биографы Теслы пишут, что он стал игроком, стремясь найти средства к существованию; другие, напротив, указывают на тот факт, что его исключили из университета за распутное поведение, что вызвало гнев отца, вероятно позабывшего о собственном исключении из военной академии за нарушение дисциплины. Сам Тесла признавался Джону О’Ниллу (автору книги Prodigal genius («Блудный гений») и единственному биографу, который был с ним знаком при жизни), что начал играть, желая расслабиться и смягчить давление от той кипучей деятельности, которую он сам себе навязывал.
Как бы то ни было, Никола отдалился от семьи – возможно, из-за стыда. Он перебрался в город Марибор в Словении, где нашел свою первую работу инженером на одном предприятии, а в свободное время продолжал играть в карты и шахматы в местной таверне. Милутин отправился на поиски сына и умолял его вернуться домой, но Никола отказался. Однако довольно скоро словенская полиция депортировала его из-за отсутствия вида на жительство, и Николе пришлось вернуться. Не прошло и месяца, как из-за скоротечной болезни в возрасте 60 лет умер его отец. Неожиданный удар положил конец юношеским метаниям Николы, он бросил игру, а вместе с ней табак, кофе и даже чай, без каких-либо уступок и оговорок (что было ему свойственно).
ВРАЩАЮЩЕЕСЯ МАГНИТНОЕ ПОЛЕ
Для того чтобы объяснить свою идею вращающегося магнитного поля неспециализированной публике, Тесла часто прибегал к аналогии в гидравлике, а именно к движению лопастей мельничного колеса под действием текущей воды: в данном примере эквивалентом воды был электрический ток. Так в его автобиографии появилась глава «Мои изобретения» (1919).
Вращающееся магнитное поле основано на последовательном действии нескольких катушек. Для трехфазного вращающегося магнитного поля (см. рисунок) необходимо расположить три катушки под углом 120° друг к другу. К каждой из них подводится переменный ток со сдвигом по фазе соответственно смещению катушек. Каждая катушка образует в пространстве статическое магнитное поле. Амплитуда этого поля направлена на магнитную ось катушки и изменяется стечением времени по синусоиде. Комбинация пульсирующих полей, производимых тремя токами с разной фазой по времени, циркулирующих по трем катушкам с разной фазой в пространстве, переходит в магнитное поле, распространяющееся в пространстве по синусоиде и вращающееся со скоростью изменения токов во времени.
После смерти отца Никола получил место преподавателя в школе в Госпиче, где учился сам. Эту работу помог ему найти бывший одноклассник, сам теперь преподававший в школе. Тесле нравилось прививать юношам любовь к науке, но он чувствовал, что не сможет долго оставаться в таком качестве. И тогда ему помогли его дяди, Петар и Павел: они дали племяннику денег, чтобы он продолжил свою учебу в Праге.
Никола прибыл в Пражский университет в январе 1880 года, посередине курса, слишком поздно, чтобы быть зачисленным. Однако даже если бы Тесла приехал вовремя, его все равно не приняли бы, потому что он не изучал греческий и не говорил на чешском. Никола начал посещать занятия как вольный слушатель и заниматься в университетской библиотеке. Бывая в Cafe Popular, он лично познакомился с австрийским физиком Эрнстом Махом (1838-1916) и увлекся его работами. (Важнейшие открытия Маха в области термодинамики впоследствии повлияли на другого молодого студента по имени Альберт Эйнштейн.) Тем не менее, несмотря на прикладываемые усилия, Николе Тесле так и не удалось получить никакого академического звания.
ТЕСЛА ИНЖЕНЕР: РАЗОЧАРОВАНИЯ И НАДЕЖДЫ
В 1881 году провидение вновь послало изобретателю помощь в лице его дяди Павла. Тот нашел работу племяннику в Телефонной службе Будапешта – компании, которая занималась установкой первой венгерской телефонной сети. Никола поступил на работу как начальник электриков и подчинялся пионеру телефонной связи Тивадару Пушкашу (1844-1893). Наконец Тесла занимался тем, о чем так долго мечтал, – изобретательством. Он начал совершенствовать имевшееся оборудование, изобрел усилитель голоса, который и не думал патентовать, хотя многие считают это изобретение первым громкоговорителем. В его голове возникали все новые идеи.
Отец Николы, Милутин Тесла, приходской священник в хорватской деревне Смилян.
Мать, Джука Мандич, обладавшая острым умом и имевшая большое влияние на формирование будущего изобретателя.
Дом, где родился Тесла. Сегодня – музей.
Тесла в 1879 году.
В ту эпоху Тесла пережил один из своих кризисов, во время которых сильные шумы и свет вызывали у него особые психосоматические явления, уже описанные нами ранее. Врачи смотрели на него озадаченно, и помощи от них было немного. Только участие доброго друга помогло ему восстановить здоровье. Коллега Теслы, механик Анитал Сигеты, увлекавшийся спортом, смог заставить его тоже заняться физическими упражнениями. Именно тогда в феврале 1882 года, во время оздоровительной прогулки по Варошлигету в сопровождении Анитала, Тесла в уме разрешил проблему двигателя переменного тока с помощью вращающегося магнитного поля.
Никола в течение нескольких беспокойных лет вынашивал эту идею, совершенствуя ее до тех пор, пока она не обрела достаточную ясность для представления ее публике и получения патента. В то же время он продолжал работать в Будапеште, а в свободные часы разрабатывал разные виды двигателей и механизмов на переменном токе. Тесла хотел сам создать интегральную систему для распределения и превращения электричества в механическую энергию. Постоянному току нужны были генераторы через каждые несколько километров, что делало их чрезвычайно дорогими. Система Теслы позволила бы получить более высокое напряжение, а также привести электричество в любую точку планеты. Это было окно в новый мир, но у него не существовало ни малейшей надежды на финансовую поддержку для создания прототипов.
Тесла и Сигеты устроились работать в Континентальную компанию Эдисона, в европейский филиал предприятия, основанного великим американским изобретателем, который только что открыл отделение в Париже. Оба друга с большой радостью перебрались в одну из самых космополитичных столиц планеты, в этот вечно бурлящий город. Тесла был уверен, что смог убедить руководителей компании в неоспоримом преимуществе использования переменного тока. Однако вскоре он понял, что Эдисон был против идеи переменного тока. Тем не менее Тесле пришлось на какое-то время ограничить свои амбиции и заниматься предложенной работой.
В эти годы Никола Тесла трудился под начальством английского инженера Чарльза Бэчлора, близкого друга Эдисона и одного из его ранних сотрудников в лаборатории, открытой несколько лет назад в Ньюарке, Нью-Джерси. Вместе с Бэчлором Тесла работал над значительными проектами, например над системой освещения в Парижской опере, и превратился в доверенного сотрудника, разрешавшего все чрезвычайные ситуации на разных объектах, которыми занимались французские и немецкие отделения компании. В это же время Тесла воспользовался материалами, находившимися в его распоряжении, и сделал первый прототип своего двигателя. Ободренный успехом, он представил план улучшений динамо-машин Эдисона, и данный план был принят. Тесла ожидал заслуженного вознаграждения, но вместо этого его отправили в Страсбург с деликатной миссией. Там во время запуска электростанции, которая должна была служить для освещения немецкой железной дороги, из-за короткого замыкания произошел взрыв и обрушился кусок стены, все это – в присутствии престарелого императора Вильгельма I. Немецкое правительство отзывало заказ, и компания терпела огромные убытки. Как указывается во всех биографиях Теслы, руководство пообещало ему значительное вознаграждение за усовершенствование динамо-машин той станции.
Тесла решил все технические проблемы и, кроме того, благодаря своему беглому немецкому языку получил поддержку местного мэра для поиска инвесторов, заинтересованных в его двигателе. Богатые местные предприниматели присутствовали на демонстрации, но не поняли всех возможностей изобретения. Все, что получил Тесла, – несколько бутылок прекрасного вина. Однако он подумал, что, возможно, у него самого получится собрать необходимые средства для проекта, так как в Париже изобретатель ждал обещанного вознаграждения.
После его возвращения руководство всячески уходило от разговора о вознаграждении до тех пор, пока Тесла не понял, что его обманули и он не получит решительно ничего. Тогда Никола подал в отставку. Чарльз Бэчлор, с первого момента осознавший его гениальность, посоветовал ему поискать счастья в Америке и даже приготовил ему рекомендательное письмо. Для Николы Теслы это был драматичный момент, но наступил он вполне вовремя. Тесла продал все, что у него было, заказал билеты на деньги, взятые в долг у родственников, и собрал чемоданы.
Как и многие обстоятельства в его жизни, это путешествие Теслы к будущему было наполнено странными и неожиданными событиями. Джон О’Нилл в книге Prodigal genius пишет, что на вокзале, за несколько секунд до отправления, у него украли багаж вместе с билетом на поезд и на трансатлантический рейс. Ввиду возможной перспективы не успеть на пересадку Тесла бросился на поезд с тем, что у него было. К счастью, сумма, которую он смог набрать у себя в карманах, оказалась достаточной для оплаты билета на поезд. Так Тесла добрался до порта, и там ему даже удалось отплыть к американским землям. Изобретателю разрешили сесть на корабль, так как он объяснил ситуацию и показал документы, а на момент отплытия никто не занял его место. Длительное плавание оказалось для него неудобным, учитывая, что у Теслы совсем не было сменной одежды. Кроме того, посередине Атлантики на корабле поднялся бунт, и его чуть не выкинули за борт.