355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Размышления о думающих машинах. Тьюринг. Компьютерное исчисление » Текст книги (страница 1)
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
  • Текст добавлен: 12 апреля 2017, 19:30

Текст книги "Размышления о думающих машинах. Тьюринг. Компьютерное исчисление"


Автор книги: авторов Коллектив


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 1 (всего у книги 7 страниц)

Annotation

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

Rafael Lahoz-Beltra

Введение

Глава 1

Глава 2

Глава 3

Глава 4

Глава 5

Список рекомендуемой литературы

Указатель



Rafael Lahoz-Beltra

Наука. Величайшие теории. Выпуск 15: Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Наука. Величайшие теории Выпуск № 15, 2015 Еженедельное издание

Пер. с йен. – М.: Де Агостини, 2015. – 152 с.

ISSN 2409-0069

© Rafael Lahoz-Beltra, 2012 (текст)

© RBA Collecionables S.A., 2012

© ООО «Де Агостини», 2014-2015

Введение

Несмотря на короткую жизнь, Алан Тьюринг – одна из самых влиятельных личностей XX века. Вот всего несколько вех его профессионального пути. Ученый разработал гипотетическую машину, получившую название машины Тьюринга, с помощью которой создал теоретические основы для реализации первых компьютеров, он стал автором одного из самых быстрых компьютеров той эпохи – Pilot АСЕ. Основным успехом Тьюринга как криптографа стала расшифровка кода «Энигмы» – шифровальной машины, которую немцы использовали во время Второй мировой войны. Кроме того, он стал первопроходцем, заложив основы исследований искусственного интеллекта и математической биологии.

Задача нашей книги – объяснить, не отступая от истины и при этом в доступной форме, сущность его фундаментального вклада в развитие современного мира.

Выполняя эту задачу, мы объединили в книге элементы развлекательной науки, а также биографические детали, показав, каким образом некоторые важнейшие открытия Алана Тьюринга стали частью нашей повседневной жизни. В числе вопросов, на которые наша книга дает ответ, – что такое компьютер? почему компьютеры зависают? в какой стране был изобретен компьютер? все ли виды задач могут решить компьютеры? что такое ката? что такое система оптического распознавания образов (OCR)? могут ли существовать разумные машины? как работает квантовый компьютер?

Разносторонний характер исследований Алана Тьюринга подчеркивает его гениальность. Способность ученого находить новые объекты для исследования, видеть связи между явлениями и вопросами, которые, на первый взгляд, могут показаться совершенно разными, позволяет его сравнить разве что с Джоном фон Нейманом. Именно с этими двумя именами связано появление в 1940-х годах понятия «междисциплинарный исследователь», то есть ученый, способный с использованием математики и компьютеров выделить общие элементы в биологии, экономике, социологии, физике с целью унификации, казалось бы, различных, но сходных но сути проблем.

Личность Тьюринга, его жизнь и работа никого не могут оставить безразличными. Его научная судьба представляет собой настоящую интеллектуальную авантюру со множеством приключений и открытий. Личная жизнь ученого наполнена необыкновенными эпизодами, которые говорят о нем как о человеке, далеком от стереотипов. Проблемы с законом вызвали у Тьюринга глубокую депрессию, которая и привела его к самоубийству: ученый принял цианид. При этом тайна, окутывающая его смерть, вызвала к жизни многочисленные измышления и догадки, в числе которых есть даже версия об убийстве.

Эта книга, раскрывающая Тьюринга как личность и как ученого, состоит из пяти глав. В главе 1, после описания его детства и юности до окончания учебы в Кембридже, подробно рассматривается одно из важнейших открытий – различные варианты машины Тьюринга, разработанные как самим британским гением, так и другими учеными, а также описываются попытки создания с помощью программного обеспечения машины Тьюринга или ее аналога. В конце главы мы остановимся на некоторых отдельных вопросах, среди которых – проблема остановки, объясняющая в том числе и почему компьютер «зависает».

Глава 2 описывает, как атаки немцев в годы Второй мировой войны привели британцев к созданию Блетчли-парка, в котором криптографы, включая Тьюринга, смогли расшифровать перехваченные сообщения Третьего рейха. В эти годы талант ученого полностью раскрылся, и он, как и многие его коллеги, получил достойные награды в конце войны. Именно в Блетчли-парке появился на свет Colossus («Колосс»), который считается первым в мире компьютером. Во Второй мировой войне люди гибли без счета, но также бессчетны и достижения человеческого разума в этот период. Напряженная работа, ставшая бесценным опытом, подготовила ученого к решающему шагу от абстрактного мира машины, носящей его имя, к созданию реального компьютера Pilot АСЕ («Туз»).

В главе 3 рассматривается вопрос, споры по которому не утихают по сей день: кто изобрел компьютер – британцы или американцы? Согласно принятой версии, ученые Соединенного Королевства благодаря разработке Colossus обеспечили своей стране первенство в создании компьютеров. Но почему же США сегодня занимают лидирующие позиции в этой индустрии?

После описания характеристик Pilot АСЕ и ответов на вышеупомянутые вопросы мы углубимся в архитектуру фон Неймана, то есть принцип, согласно которому компоненты компьютера работают на логическом и функциональном уровне, а закончим рассказом о том периоде, когда Алан Тьюринг посвятил себя программированию компьютеров в Манчестерском университете.

Уже в конце жизни Тьюринг увенчал свои исследования, возможно, самым амбициозным проектом и подготовил теоретическую базу для того, что сегодня называется искусственным интеллектом. Ученый продолжал работу в Манчестерском университете, задавшись глобальным вопросом: возможно ли существование разумной машины? Именно об этом рассказывается в главе 4. Тьюринг создал цепь искусственных нейронов и разработал тест, до сих применяемый для определения того, разумно ли ведет себя машина, например компьютер, когда играет в шахматы, переводит текст или выполняет другие задачи, для решения которых человек использовал бы свой разум.

Последний этап жизни ученого был так же плодотворен с научной точки зрения, как и первый. Именно в последние годы жизни он впервые использовал компьютер для изучения и моделирования биологических проблем, разработал математические модели роста и формирования живых организмов, пытаясь найти ответ на вопрос, как формируются полоски на шкуре зебры. В результате этих исследований возникла новая дисциплина – математическая биология. Весной 1954 года, в возрасте 41 года, Алан Тьюринг покончил с собой, съев отравленное яблоко.

В главе 5 детально рассматривается научное наследие Тьюринга. По очевидным причинам мы не говорим о современных компьютерах или суперкомпьютерах – ни о десктопах, ноутбуках, нетбуках или планшетах, ни об аппаратах, в основе которых лежит компьютер, таких как мобильный телефон, электронная записная книжка и другие. Все эти устройства являются результатом естественной эволюции теоретической машины Тьюринга и первых компьютеров – Colossus, ENIAC, Pilot АСЕ, EDSAC: все их версии можно перечислять бесконечно. В наследие Тьюринга можно включить не только сто вклад в развитие науки, гениальные находки и работы но информатике, но и все то, что было оставлено без завершения в его бумагах и вдохновило следующие поколения исследователей. Так, на стадии разработки находились квантовый компьютер, модели искусственных нейронных сетей и их использование в интеллектуальных системах в повседневной жизни, изучение молекулы ДНК с помощью компьютеров (структура ДНК была открыта Уотсоном и Криком за год до смерти Тьюринга).

Маршрут, по которому прошел в XX веке один из самых интересных и гениальных умов, осмысливший разумные машины, захватывает, а интерес к личности этого ученого и через пол века после его смерти продолжает расти.

1912 23 июня в Лондоне родился Алан Мэтисон Тьюринг, второй сын Юлиуса Мэтисона Тьюринга и Этель Сары Стони.

1926 После успешной сдачи вступительного экзамена его принимают в частную школу Шерборна.

1931 Поступает в Королевский колледж Кембриджа, где изучает математику.

1935 Получает двухлетнюю стипендию для работы в Королевском колледже.

1936 Поступает в аспирантуру в Принстонском университете в США, заканчивает ее в 1938 году. Отвергает предложение фон Неймана о работе в Принстоне и возвращается в Королевский колледж. Вводит понятие машины Тьюринга, одного из двух ключевых концептов компьютерного моделирования.

1939 В качестве криптографа начинает сотрудничество с Блетчлн-парком. Придумывает Bombe – машину, позволившую британцам успешно расшифровывать код «Энигмы».

1945 Получает орден Британской империи за вклад в победу британцев во Второй мировой войне. Переезжает в Национальную физическую лабораторию в Лондоне, где берет на себя задачу по созданию компьютера Pilot АСЕ, схему которого он представил в лаборатории в 1946 году.

1948 Начинает работу в Манчестерском университете, где вместе с Максом Ньюманом организует лабораторию по разработке и конструированию компьютеров для научного использования.

1950 Публикует статью «Компьютерное оборудование и интеллект», где вводит тест Тьюринга. Речь идет о фундаментальном испытании для оценки поведения компьютера, программы или машины. Программирует компьютер MADAM Манчестерского университета и для этого пишет ему любовные письма.

1952 Представляет уравнения реакции – диффузии, ставшие первой работой по математической биологии, изучению морфогенеза. В этом же году его арестовывают и назначают ему принудительную гормональную терапию.

1954 В возрасте 41 года Тьюринг совершает самоубийство, съев яблоко, отравленное цианидом.

Глава 1

Что такое компьютер

Уже в XVII веке Блез Паскаль и Готфрид Лейбниц придумали машины, с помощью которых стало возможным совершать элементарные арифметические операции. Однако мечтой Лейбница было создание машины, способной мыслить. Этой мечте суждено было исполниться лишь в XX веке, когда Алан Тьюринг разработал теоретические основы, позволившие создать первые компьютеры.

Алан Мэтисон Тьюринг родился 2 июня 1912 года в Лондоне. За год до этого его родители, Юлиус Мэтисон Тьюринг и Этель Сара Стони, жили в индийском городе Чхатрапуре, отец работал в Индийской гражданской службе. Однако, ожидая появления на свет ребенка, Тьюринги решили, что это событие должно произойти в Соединенном Королевстве, поэтому переехали в Лондон, где и родился Алан, второй и последний их сын. После рождения Алана его отец подумал, что Индия – не самое лучшее место для новорожденного, так что Этель Сара и дети остались в Англии, а сам Юлиус отправился на службу в Чхатрапур. Семью он навещал время от времени. Когда Алану исполнился один год, его мать также уехала в Индию, чтобы жить вместе с отцом. Детей она оставила на попечении знакомых в Гилдфорде, и ближайшие несколько лет сыновья Тьюрингов видели родителей лишь изредка.

Тьюринги принадлежали к верхушке среднего класса, в котором чтили традиции и ценности британского образования. Сам Алан был от этих ценностей весьма далек, и это трагически повлияло на его судьбу. Ни по материнской, ни по отцовской линии в числе его родственников не было великих ученых и других знаменитостей. Единственным Тьюрингом, добившимся некоторой славы, был Харви Дория Тьюринг, дядя Алана, – он прекрасно ловил рыбу на муху. Однако, несмотря на отсутствие в семье интеллектуальной традиции, Алан еще в раннем возрасте начал демонстрировать высокие интеллектуальные способности. Рассказывают, что в детстве он очень интересовался числами, буквами и головоломками и на прогулках часто останавливался около фонарей, чтобы рассмотреть их серийные номера. В возрасте шести лет маленький Алан решил, что для сбора меда хорошо бы нарисовать маршрут, которым летают пчелы, и таким образом узнать точку пересечения их путей – именно в этом месте нужно ставить ульи. Также известна история о том, как он понял, что велосипедная цепь падает со звездочки через определенное количество оборотов – для этого мальчика гораздо интереснее было попробовать решить такую задачу, чем просто купить новую цепь.

Детское увлечение Алана Тьюринга наукой начало развиваться в школьные годы. В шесть лет мать записала его в государственную школу святого Михаила, в которой особая роль придавалась изучению латыни. Вообще встреча с английской образовательной системой имела для Алана как положительные, так и отрицательные последствия: с одной стороны, она стала для него источником знаний и сформировала его интеллект, с другой – Алан не мог не войти в конфликт с приверженностью этой системы непоколебимым классическим ценностям и опорой на Англиканскую церковь и британское величие. В атмосфере традиционной английской школы сформировалась такая характерная черта личности Алана, как уважение к нормам. В этом смысле показателен следующий эпизод: однажды мать читала Алану «Путешествие Пилигрима» (The piligrim’sprogress; 1678) – классическое сочинение английской литературы, написанное Джоном Баньяном (1628– 1688), – и пропустила часть текста, так как посчитала, что религиозное содержание отрывка может быть слишком скучным для ребенка. Однако Алан объяснил матери, что пропущенная часть – самая главная в книге и без нее вся история теряет смысл.

После окончания школы святого Михаила Алан пошел по тому же пути, что и его старший брат Джон. Сначала он поступил в центр Хейзелхёрст, а затем был записан в частную школу Мальборо. Как и многие его сверстники, Алан ставил элементарные химические опыты и увлекался популярной в то время книгой «Чудеса природы, о которых должен знать каждый ребенок»(Natural Wonders every child should know) Эдвина Тенни Брюстера (1866-1960). Благодаря этому сочинению юноша смог познакомиться с научным взглядом на природу.

Кроме того, молодой Тьюринг впервые читал книгу, связанную с биологией, в которой использовалось слово «машина»: на ее страницах было сказано, что человеческое тело – «сложная машина», основной целью которой является поддержание жизни.

За идеей цифровых компьютеров стоит мысль о том, что эти машины предназначены для выполнения любой операции,

которая по силам команде людей.

Алан Тьюринг, «Вычислительные машины и разум»

Алана привлекали математика, химия и, как ни странно, французский. Мать записала его в подготовительную школу Хейзелхёрст, где он делал успехи, но при этом не слишком выделялся – был обычным хорошим учеником. Но позже родителям пришлось забрать сына из Хейзелхёрста, по всей видимости из-за конфликтов с другими учениками. Тьюринг уже в те годы славился атлетическим телосложением, которое поддерживал в течение всей жизни. В Англии того периода атлетические данные были не менее важны, чем академические успехи, и все это, принимая во внимание интеллектуальное развитие мальчика, делало его априори хорошим учеником. И все же мать сомневалась в способности Алана соответствовать суровым требованиям престижной частной школы, а для нее было так важно, чтобы сына туда приняли, ведь это входило в число обязательных признаков социального класса, к которому принадлежала семья Тьюрингов. В 1926 году, несмотря на все страхи матери, Алан успешно сдал вступительный экзамен в частную школу (Common Entrance Examination) и был принят в школу Шерборна.

Год обучения в ней решительным образом повлиял на формирование личности Тьюринга. Там проявился его интерес к разрешению задач, которые он сам перед собой ставил, и эти задачи далеко не всегда были связаны с темами, о которых рассказывали преподаватели. Как это часто происходит и сегодня, школьная система той эпохи не слишком поощряла одаренных учеников. Алан выигрывал школьные конкурсы по математике, изучил теорию относительности Эйнштейна, благодаря известной книге Артура Эддингтона «Природа физического мира» ( The nature of the physical world) познакомился с квантовой механикой. Тьюринг настолько выделялся среди остальных, что однажды директор школы сказал о нем:

«Если он намеревается остаться в частной школе, то должен стремиться к получению образования. Если же он собирается быть исключительно научным специалистом, то частная школа для него – пустая трата времени».

Среди связанных с Аланом необычных историй, доказывающих его упорство и целеустремленность, часто вспоминают случай, произошедший, когда Тьюрингу было 14 лет. В 1926 году в Соединенном Королевстве была объявлена всеобщая забастовка, и Алану, чтобы попасть на занятия, пришлось проехать 100 километров на велосипеде из дома в Саутгемптоне до школы с ночевкой в пансионе.

В Шерборне Тьюринг учился с 1926 по 1931 год. По всей вероятности, жесткие требования и правила школы стали причиной его стеснительности и замкнутости. На занятиях по греческому, латыни и английскому Алан не блистал, а вот на уроках по математике его талант полностью раскрылся. Он смог получить бесконечную последовательность тригонометрической функции, в частности обратной функции тангенса:

arctgx = х – x3/3 + x5/5 – x7/7...

В 1928 году, в возрасте 16 лет, Алан смог понять труды по теории относительности Эйштейна, а в 1929-м он с большим интересом читал работы Шрёдингера по квантовой механике. Именно в это время он подружился с Кристофером Моркомом, который учился классом старше. Через два года этот крайне одаренный мальчик неожиданно умер от туберкулеза, но в течение этого короткого срока Кристофер и Алан стали лучшими друзьями и много говорили о науке. Впервые Тьюринг встретил сверстника, разделявшего его интересы. Благодаря этой дружбе изменились и личные качества Алана, который стал гораздо общительнее. Друзья вместе отправились в Тринити-колледж, в Кембридж, чтобы просить о двух стипендиях, которые позволили бы им учиться в этом престижном заведении. И здесь мы вновь сталкиваемся с упорством Алана, которому для получения стипендии Кембриджского университета пришлось сдавать экзамены дважды: вначале, неудачно, в 1929 году и во второй раз в 1930-м. Однако со смертью Кристофера все его юношеские мечты о дружбе, все общие надежды рухнули. Это событие очень повлияло на Алана, который погрузился в глубокий душевный кризис и разочаровался в религии. Любопытно, что в течение практически трех лет (это видно из писем Тьюринга к матери Моркома) он был занят вопросом, как человеческий разум, в том числе и разум его друга, помещается в материи, то есть человеческом теле. Несмотря на зарождающийся атеизм Алан уверовал в бессмертие разума и заинтересовался, как именно происходит его отделение от тела после смерти. Прочитав труд Эддингтона, он предположил, что этот вопрос может быть связан с квантовой механикой. Учитывая возраст Тьюринга на тот момент, это доказывает его дарование и талант, ведь данная гипотеза, а именно роль квантовой механики в проблеме отношения разума и материи, лежала в основе исследований многих ученых середины XX века.

Наука – это дифференциальное уравнение.

Религия – граничные условия.

Алан Тьюринг в письме английскому математику Робину Гэнди

В 1931 году Алан Тьюринг стал студентом математики Королевского колледжа Кембриджского университета. С этих пор он отдалился от старшего брата Джона, который занялся адвокатской практикой в Лондоне. К счастью для Алана, университет был для него более подходящим местом, чем школы, в которых он успел поучиться: в Кембридже он попал в интеллектуальную среду, необходимую для развития его способностей. Свободное время Тьюринг посвящал занятиям спортом – бегу и гребле. Что касается его академических интересов, то после прочтения работы Джона фон Неймана о логических основах квантовой механики внимание Алана привлекла математическая логика. Известно, что он также прочел книгу Бертрана Рассела (1872-1970) «Введение в философию математики» (Introduction to mathematical philosophy, 1919) и знаменитый трехтомник «Принципы математики» (Principia mathematical 1910-1913), написанный Расселом совместно с Альфредом Нортом Уайтхедом (1861-1947). Без сомнения, эти работы повлияли на интеллектуальное созревание личности будущего ученого.

Алан Тьюринг в 1928 году в возрасте 16 лет.

Здесь родился Алан Тьюринг, 1912-1954, криптограф, пионер информатики. Надпись на одной из пяти синих табличек, размещенных на разных зданиях Соединенного Королевства, где жил Тьюринг.

Королевский колледж Кембриджского университета.

Однако наибольшее влияние на Тьюринга оказал Курт Гёдель (1906-1978), особенно его знаменитая статья, опубликованная в 1931 году и посвященная теоремам о неполноте. Эта работа подтолкнула молодого человека к изобретению машины Тьюринга, которая могла определять, какие математические функции могут быть вычислены, а какие нет. Если функцию возможно вычислить, машина через определенный промежуток времени, который, по словам другого великого математика, Давида Гильберта (1863-1943), должен быть конечным, выдаст результат. Напротив, если функция невычислима, машина будет производить операции без остановки. По мнению Ходжеса, Тьюринг был более философом, чем математиком, что и объясняет его интерес к проблемам математической логики. Ученый, возможно, сам не осознавая этого, внес большой вклад в создание теоретических основ информатики, причем сделал это задолго до того момента, когда компьютер стал реальностью.

В 1933 году к власти в Германии пришел Адольф Гитлер, и это событие стало предвестником новой мировой схватки. Алан Тьюринг, озабоченный политической и социальной ситуацией в Соединенном Королевстве и Европе, примкнул к антивоенному движению, хотя, в отличие от многих других его участников, он не принадлежал ни к марксистам, ни к пацифистам. Несколько лет спустя ученый, как и миллионы других людей, будет вовлечен в войну и в качестве криптографа станет приближать победу над нацистской Германией.


А-МАШИНА ТЬЮРИНГА

В 1934 году Тьюринг закончил обучение в университете, получив диплом математика. В следующем году ему предоставили двухгодичную стипендию Королевского колледжа, входящего в Кембриджский университет. В этот период можно наблюдать первые вспышки его гениальности. В 1936 году Тьюринг получил премию Смита (в Кембридже ее присуждают молодым исследователям по теоретической физике, математике или прикладной математике) за работу по теории вероятностей под названием «О функции ошибок Гаусса» (On the Gaussian error function) – она не была опубликована. Любопытно, что в этом исследовании была заново открыта знаменитая центральная предельная теорема, одна из основных теорем статистики. В том же году Тьюринг написал научную статью, озаглавленную «О вычислимых числах, с приложением к проблеме разрешимости» (On computable numbers with an application to the Entscheidungsproblem), в которой описано его важнейшее научное достижение – машина Тьюринга. Эти труды обеспечили академическое будущее ученого и стали его первыми шагами к блестящей карьере.

Весной 1935 года Тьюринг посещал в кампусе Кембриджского университета, стипендиатом которого он был, курс Макса Ньюмана (1897-1984), знаменитого тополога, и у них завязалась долгая дружба. Топология – раздел математики, изучающий свойства объектов, которые остаются неизменными при непрерывных трансформациях. Тьюринг общался с Ньюманом в течение всей своей жизни, и это было чрезвычайно полезным для обоих с научной точки зрения. Во время Второй мировой войны они вместе работали в Блетчли-парке над расшифровкой перехваченных немецких сообщений, а позже в Манчестерском университете создавали программы для Baby, одного из первых послевоенных компьютеров.

В Кембридже Тьюринг смог принять участие в одном из самых интригующих этапов развития науки. Британский философ и математик Бертран Рассел утверждал, что логика является основополагающей при установлении математической истины. Эта идея была ключевой в его книге Principia mathematica, написанной незадолго до этого совместно с философом Уайтхедом. Если математика могла быть интерпретирована с точки зрения логики, в таком случае ничто не препятствовало ее сведению к основам логики. Одновременно, в начале 1930-х годов, другой философ и математик, Курт Гедель, уроженец Брно (этот город сегодня входит в состав Чехии, а в то время был частью Австро-Венгерской империи), установил в математике знаменитый философский принцип. Он ввел теорему о неполноте, которую можно представить как идею о том, что существуют неразрешимые математические выражения, или утверждения, которые не могут быть ни доказаны, ни опровергнуты. В общем случае эти утверждения могут быть истинными или ложными. Например, если кто-нибудь скажет, что «2 + 3 = 5», мы заметим, что это утверждение истинно. На математическом языке мы бы выразили это так:

А = [2+3=5] => [А истинно]

С другой стороны, если кто-то предложит утверждение «2∙3 = 8», мы скажем, что это утверждение ложно:

В = [2∙3=8]=> [В ложно]

Однако существуют утверждения, при установлении истинности или ложности которых мы сталкиваемся с парадоксом: утверждение начинает противоречить самому себе. Например, великий философ Сократ, говоря: «Я знаю, что ничего не знаю», противоречил сам себе, так как если Сократ знает, что «ничего не знает», значит, он «уже что-то знает». Классический пример, переводящий ситуацию из математической области в лингвистическую, называется парадоксом лжеца.

Гедель перенес этот парадокс из языка в математику, в частности в сферу логики, доказав в 1931 году теорему о неполноте, описывающую неполные системы, истинность или ложность утверждений которых мы не можем установить. Невероятно захватывающим представляется вопрос о том, как эти философские рассуждения, па первый взгляд далекие от реального мира, заставили поколебаться основы математики.


ПАРАДОКС ЛЖЕЦА

Представьте, что мы выражаем на математическом языке следующее утверждение G:

G = [это утверждение не истинно].

Если мы установим, что утверждение G истинно, мы подтвердим, что оно ложно. И наоборот, если мы решим, что G ложно, это будет означать, что G истинно. Этот парадокс имеет место в самореферентных системах, к которым принадлежит и фраза в описанном примере, и такой ее вариант, как «Я лгу». В результате мы получаем странную петлю. Независимо от того, как мы будем рассуждать, мы всегда приходим в ту же точку, откуда начали. Другими примерами самореферентности являются рука, рисующая руку, на знаменитой картине Эшера, синтез белков и ДНК клетки или «микрофон, слушающий колонку», представленный в книге Дугласа Хофштадтера «Я странная петля»(I am a strange loop).

«Рисующие руки» (1948), Мауриц Корнелис Эшер.

В тот период некоторые ученые сформулировали следующий вопрос: может ли математическая интуиция быть кодифицирована в свод правил, или (па современном языке) в компьютерную программу? Необходимо было понять, возможно ли создание механического разума, сегодня именуемого компьютером, с помощью которого мы сможем автоматически исследовать или доказать без вмешательства человека истинность или ложность какого-либо математического доказательства или утверждения. Например, для того, что мы сегодня называем искусственнглм интеллектом, не существует системы правил для вычисления или вывода, которая позволила бы определить с помощью программы свойства натуральных чисел. Натуральные числа N = [1, 2, 3, 4, ...], которые мы используем для счета элементов целой величины, например количества яблок, имеют определенные свойства.

Пусть a, b и с будут числом яблок, равным 2, 3 и 5 соответственно. Свойство ассоциативности устанавливает, что (а + 6) + с = а + (b + с), в то время как согласно свойству дистрибутивности а • (b + с) = а • b + а • с. Если мы представим эти два свойства натуральных чисел в виде утверждений, назвав ассоциативность утверждением H, а дистрибутивность – утверждением /, и заменим а, b и с их числовыми выражениями

Н = [(2 + 3) + 5 = 2 +(3 + 5)] => [Н является...],

I = [2 • (3 + 5) = 2 *3 + 2 • 5] => [I является...],

станет очевидно, что не существует программы для компьютера или какой-либо другой машины, которая могла бы автоматически доказать или опровергнуть этот тип утверждений. Как это ни удивительно, но написать программу для компьютера, которая доказала бы то, что очевидно даже ребенку школьного возраста, а именно (2 + 3) + 5 = 2 + (3 + 5), невозможно, поэтому в математике существуют «истинные утверждения» о числах, которые не могут быть доказаны с помощью правил дедукции. Как можно себе представить, теорема Геделя заставила пошатнуться казавшиеся непоколебимыми идеи Бертрана Рассела и сами столпы формальной математической науки, которыми так гордятся ученые.

Один из самых влиятельных математиков XIX – начала XX века, немец Давид Гильберт сказал, что вся эта дискуссия сводится к проблеме определения, то есть возможности установить последовательность или непоследовательность формальной системы. Это означает, что до сих пор математики делали свою науку, используя правила вывода и аксиомы, то есть идеи или утверждения, считающиеся очевидными и не требующие доказательств. В этой ситуации Гильберт поставил перед научным сообществом задачу создать механический процесс (на современном языке – «информатизированный процесс»), с помощью которого можно было бы принять решение об истинности или ложности математического утверждения. Необходимо было оставить теоретическую дискуссию, начатую Геделем, и найти реальное решение проблемы, так как на кону стояла честь математики как науки. Алан Тьюринг принял этот вызов и начал работать над решением проблемы, поставленной Гильбертом и ставшей, в свою очередь, ответом на теорему Геделя. Так Тьюринг создал абстрактный исполнитель, не имеющий реального прототипа, – а-машину (automatic machine). Это устройство, известное нам как машина Тьюринга, обязано своим происхождением дискуссии между философами и математиками на самом высоком уровне. Сегодня считается, что это теоретическая модель первого в истории науки компьютера. Однако, несмотря на гениальность идей, возникших у Тьюринга в 1937 году, они не могли получить материального воплощения. К сожалению, потребовался глобальный военный конфликт (Вторая мировая война) для того, чтобы математики и инженеры объединили свои усилия для разработки и создания удивительной машины – компьютера.


    Ваша оценка произведения:

Популярные книги за неделю