Текст книги "Революция в микромире. Планк. Квантовая теория"
Автор книги: авторов Коллектив
сообщить о нарушении
Текущая страница: 7 (всего у книги 9 страниц)
Основное зло, по моему мнению, состоит в приходе демократии. Я действительно считаю всеобщее избирательное право ошибкой.
Макс Планк в письме фон Лауэ
Шлейхер вел с Гитлером переговоры о введении нацистской партии в правительство. В представлениях Шлейхера и немецкой элиты возникла идея о том, что Гитлер – подходящая фигура для сдерживания коммунистов, профсоюзов и социал-демократов. Но в августе 1932 года Гитлер отверг пост вице-канцлера, поскольку хотел всей полноты власти. Осенью 1932 года страна находилась на грани социального взрыва: при растущей безработице началось ожесточенное политическое противостояние. Сам Шлейхер попытался взять ситуацию под контроль и получил пост канцлера в декабре 1932 года. Эрвин Планк сохранил свой пост государственного секретаря и, будучи ближайшим соратником Шлейхера, занимал особое место в его правительстве. Однако короткое правление Шлейхера закончилось провалом, и всего через два месяца на посту канцлера он подал в отставку. Гинденбург уступил давлению, оказываемому на него с разных сторон, и 30 января 1933 года назначил канцлером Гитлера, которого глубоко презирал.
Нацистский режим с самого начала характеризовался насилием и репрессиями. В июне 1934 года Гитлер провел чистку в своей партии и среди старых противников с целью консолидации власти. Фон Шлейхер был убит 30 июня 1934 года, когда прошли массовые казни гражданских руководителей и военных.
Эрвин Планк вместе со своим другом и покровителем оставил правительство и на некоторое время отошел от политики. Начиная с 1936 года он организовал собственную фирму, но ввиду угрозы войны начал контактировать с оппозиционными режиму группами в армии и государственном аппарате. В 1940 году Эрвин вместе с другими представителями оппозиции разработал документ, который должен был использоваться в качестве временной конституции после скорого падения Гитлера. Нет оснований полагать, что Эрвин напрямую участвовал в заговоре 20 июля 1944 года, когда полковник Штауффенберг пытался убить Гитлера, но очевидно, что младший Планк был знаком с большинством заговорщиков и симпатизировал им.
Попытка государственного переворота в июле 1944 года вызвала невиданную для Германии волну репрессий. Были казнены непосредственные участники заговора, а также тысячи людей, даже косвенно не причастных к нему. Зимой того года жизни могло стоить прослушивание иностранного радио или политический анекдот. В этих обстоятельствах арест Эрвина Планка не вызывал удивления. Его отец использовал все свое влияние для того, чтобы спасти сыну жизнь, кажется за него просил даже Гиммлер. Планк получил сообщение 18 января 1945 года, что его сын помилован. Но надежда оказалась напрасной, и через пять дней Эрвин был казнен. Эта смерть погрузила Планка в пучину абсолютного отчаяния.
Личность Эрвина помогает нам лучше понять образ мыслей Макса Планка. Нет сомнений в том, что он знал о политической деятельности сына: они были очень близки и даже состояли в одном клубе любителей науки, где обычно собирались заговорщики. Мы можем понять политические предпочтения Планка, лучше узнав политические идеи его сына, и нужно отметить, что ученый никогда не был демократом. Эрвин входил в правительства фон Папена и Шлейхера, целью которых отнюдь не было укрепление демократического строя в Германии. Заговор в июле 1944 года также не выдвигал своей целью установление демократического режима – планировалось лишь покончить с безумием Гитлера и постараться с честью выйти из войны.
Бозе замыкает круг
В начале 1920-х годов понятие кванта света, который с 1926 года стали называть фотоном, было хорошо изучено. Экспериментальные факты доказали, что при повышении уровня энергии свет взаимодействует с материей, как если бы состоял из частиц с энергией Е = hv и импульсом р = hv/c. Эта уже зрелая концепция позволяла переформулировать квантовые основы закона излучения Планка.
В июне 1924 года Альберт Эйнштейн получил письмо, датированное 4 числом того же месяца и написанное молодым индийцем Шатьендранатом Бозе. В письме автор просил Эйнштейна высказать свое мнение относительно возможности публикации в немецком журнале Zeitschrift fur Physik («Физический журнал») прилагаемой к письму статьи и в случае одобрения просил перевести статью с английского на немецкий – этот труд Бозе не мог взять на себя.
Работа Бозе, которую Эйнштейн сам перевел и отправил в журнал, представляла новый вывод закона Планка о спектральном распределении излучения черного тела. Статья вышла в печать с пометкой Эйнштейна в конце: «По моему мнению, вывод Бозе формулы Планка имеет очень важное следствие. Использованный метод дает квантовую теорию идеального газа, которую я еще разработаю в деталях».
Для того чтобы понять значение нового обоснования Бозе, нужно вспомнить основные этапы доказательства Планка. Во– первых, Планк представил, что на стенках излучающей полости имеются заряженные осцилляторы, поглощающие и испускающие электромагнитную энергию. В тепловом равновесии осцилляторы испускали столько энергии, сколько поглощали, что позволило Планку установить отношение между средней энергией осциллятора Uv и электромагнитного поля uv, которое мы рассматривали ранее:
uv = (8πν²/c³)Uv.
Во-вторых, Планк должен был определить, сколько энергии соответствовало каждому осциллятору в зависимости от частоты и температуры полости. Для этого он воспользовался понятием энтропии, вероятностью Больцмана и квантовой гипотезой. Рэлей и Джинс вывели тот же показатель
8πν²/c³
на основании другого умозаключения. Бозе подчеркивает во введении к своей статье, что Планк и Рэлей использовали классические аргументы. Он же видел противоречие в применении термодинамики для доказательства одной части закона и квантовой гипотезы – для расчета энтропии и завершения термодинамического расчета. Поэтому Бозе предложил квантовый подход:
8πν²/c².
Вспомним, что Эйнштейн уже в своей статье 1905 года доказал: энтропия излучения черного тела для низкой плотности похожа на энтропию газа, состоящего из частиц. Бозе берется за эту идею и доказывает, что излучение в полости ведет себя подобно газу – фотонному газу. Так мы забываем о волнах Рэлея и осцилляторах Планка. Учитывая, сколько механических состояний возможно для частиц, соответствующих квантовой теории и выражению де Бройля, Бозе обнаруживает искомый показатель.
До конца не осознавая этого, Бозе обращается с квантами света как с неотличимыми друг от друга частицами. Это целостная квантовая характеристика, физическое следствие принципа неопределенности.
Квантовое распределение
Бозе и Планк использовали иную форму подсчета состояний, которая отличалась от примененной первоначально Больцманом. В одной из своих статей о статистической интерпретации энтропии Больцман задается вопросом, сколькими способами можно распределить N молекул между разными состояниями энергии. Для Больцмана молекулы были различимы, было важно, имеем мы дело с молекулой 1 с энергией Е1 и молекулой 2 с энергией Е2, или наоборот. В то же время Планк разделяет неразличимые энергетические уровни, равные величине Uv, между числом N различимых осцилляторов. Бозе распределяет неразличимые фотоны в момент Uv/c между вероятными механическими состояниями. Подсчеты молодого индийского ученого и Планка практически идентичны и даже при разной интерпретации приводят к одному результату. Мы сможем понять разницу между способами подсчета, если представим четырех игроков, которым мы раздадим четыре карты, каждому по одной. Для Больцмана четыре карты были бы разными, например четыре туза, и существовало бы (возможность выбрать четыре карты для первого игрока, три – для второго, две – для третьего, одну – для последнего) 4-3-2-1 = 24 способа сдачи, это 24 разные партии. Для Планка и Бозе все четыре карты были бы одинаковыми, и была бы возможна всего одна партия. Планк и Бозе, не осознавая этого, играли с Больцманом в разные игры. Эйнштейн, прочитав статью Бозе, также включился в игру по квантовым правилам. Благодаря этим правилам Эйнштейн открыл законы квантового газа и предсказал явление конденсата Бозе – Эйнштейна – новое состояние материи при сверхнизких температурах, которое было экспериментально доказано в 1995 году и сейчас является важным полем исследований.
Классическая партия
Квантовая партия
Как мы увидели, квантовые частицы не имеют определенной траектории, и когда две идентичные частицы вступают во взаимодействие, например при столкновении, мы не можем проследить за ними или различить их. Корпускулярно-волновой дуализм позволяет интуитивно интерпретировать это свойство: если две частицы отдалены друг от друга и соответствующие им волны не накладываются, мы можем считать частицы отдельными объектами. При взаимодействии волны создают помехи и взаимно накладываются, поэтому невозможно с точностью сказать, где находится одна частица, а где – вторая. После окончания взаимодействия мы можем вновь говорить о двух частицах, хотя и не будем знать, какая из них где. На схеме показана разница между классическим вариантом столкновения частиц, после которого обе частицы различимы, и квантовым понятием интерференции, препятствующим различению.
В статье, написанной в том же году, Эйнштейн обобщил статистику Бозе до случая газа с материальными частицами (вместо фотонов), выводя отсюда законы квантового газа. Статья Бозе положила конец поискам обоснования закона Планка через общие принципы. Эйнштейн, Эренфест и особенно Поль Дирак отшлифовали детали и четче выразили гипотезы Бозе, подразумеваемые в статье. Следствие из закона Планка, сделанное Бозе, можно сегодня увидеть в учебниках по статистической физике, и оно целиком и полностью соответствует квантовой теории.
После квантового столкновения остаются две частицы, но мы не можем их отличить.
Глава 4
Универсальные константы против неопределенности
Гений термодинамики, борец за внедрение в науку актуальнейших принципов теории относительности, ключевая фигура философии науки – роль Планка выходит далеко за пределы квантовой теории. Его страстное увлечение поисками фундаментальных принципов увенчалось выделением новых констант, укрепивших наши представления о Вселенной, его наследие живет в ведущей исследовательской организации, получившей признание во всем мире, – Обществе научных исследований Макса Планка.
Макс Планк стоит в ряду величайших физиков благодаря своим заслугам по введению понятия кванта энергии и связанной с именем ученого постоянной. Но проблема излучения черного тела, которая привела его к квантам, была одной из целого ряда вопросов, с которыми ученый столкнулся за свою карьеру исследователя. Он совершил множество открытий в области термодинамики и считается одним из ее основателей. Также он проявлял большой интерес к специальной теории относительности и вместе со своими современниками внес вклад в ее развитие и консолидацию. Следствием его работы над излучением черного тела стала система «естественных единиц измерения» – планковских единиц, приобретших сегодня такую важность и актуальность, о которых и не думал их создатель. Только за этот вклад в науку Планк достоин занимать почетное место в ряду великих физиков.
Релятивист-энтузиаст
Макс Планк вместе с Паулем Друде руководил изданием журнала Annalen der Physik, когда в 1905 году в нем были напечатаны две основополагающие статьи по теории относительности.
Первая из них вышла в июне под заголовком «К электродинамике движущихся тел». Вторая статья имела название «Зависит ли масса тела от содержащейся в нем энергии?», она умещалась на двух неполных страницах, и в ней выводилось знаменитое уравнение Е = mc². Обе статьи были подписаны именем Альберта Эйнштейна.
Как рассказывает сестра Эйнштейна, Майя, он с нетерпением ждал реакции на свою статью, но в следующих номерах не появилось никаких комментариев, даже критических. Чуть позже Альберт получил письмо из Берлина. Отправитель, Макс Планк, просил сделать уточнения по некоторым пунктам статьи. Письмо наполнило Эйнштейна ликованием – оно означало, что его работа не только не осталась незамеченной, но и получила отзыв одного из величайших физиков эпохи.
Встреча Планка и Эйнштейна состоялась осенью 1905 года на физическом коллоквиуме в Берлинском университете, и началась долгая дружба ученых. Тогда же, в Берлине, им удалось в деталях обсудить работу Эйнштейна и связанные с ней вопросы. Одним из постулатов новой теории был принцип относительности, согласно которому все физические процессы протекают одинаково для двух наблюдателей при относительном движении, поэтому Планк начал использовать термин Relativtheorie (относительная теория). Позже на одной из лекций Планка возник термин Relativitatstheorie (теория относительности). Пауль Эренфест использовал это название в своей статье в 1907 году, и постепенно термин закрепился. Показательно, что имя Планка связано с появлением двух важнейших понятий физики XX века – относительности и кванта.
Интерес Планка к относительности был связан с его поиском абсолюта. В автобиографии ученого мы читаем:
«В начале этой автобиографии я подчеркнул, что самой прекрасной научной задачей мне всегда представлялись поиски абсолютного. Может показаться, что это противоречит моему интересу к теории относительности. Однако такое суждение основано на принципиальной ошибке, так как само относительное предполагает существование чего-то абсолютного, оно только тогда имеет смысл, когда ему противостоит нечто абсолютное. Часто произносимая фраза «Все относительно» также вводит в заблуждение, потому что она бессмысленна. Таким образом, в основе так называемой теории относительности заложено нечто абсолютное; таковым является определение меры пространственно-временного континуума, и как раз особенно привлекательная задача состоит в том, чтобы разыскать то абсолютное, что придает относительному его подлинный смысл».
Этими словами Планк хотел подчеркнуть, что в центре теории, предложенной Эйнштейном, имеется константа, универсальный инвариант, абсолют: скорость света, которая всегда одинакова для всех наблюдателей вне зависимости от их относительного движения.
Вклад Планка в релятивизм
Один текст, написанный Планком в 1906 году, превратил его в первого физика, создавшего статью о теории относительности после самого Эйнштейна. В этой и последующих статьях Планк вывел релятивистское выражение импульса р частицы при известной массе покоя m и скорости v;
Чем больше разница между скоростью объекта v и скоростью света с, тем больше это выражение приближается к аналогичному выражению в классической механике, р = mv. То есть объектам с небольшой скоростью классическая механика предоставляет прекрасную возможность приближения к физической реальности. Планк также вывел, как меняются импульс и энергия частицы при изменении соответствующей системы, и сформулировал принцип наименьшего действия в релятивистской версии. Это принцип классической механики: согласно ему, из всех траекторий, которые может описать частица для перемещения между двумя точками, реальной является та, что делает наименьшей функцию, называемую действием. Планк доказал, что этот принцип применим и для релятивистской механики.
Семинары Планка по теории относительности познакомили с этой дисциплиной его ассистента, Макса фон Лауэ, который также начал работать над разными проблемами относительности и стал одним из основных экспертов своего времени по этой теме. Фон Лауэ написал первый учебник, целиком посвященный специальной теории относительности. Весной 1909 года Планк отправился в Соединенные Штаты, где в Нью– Йорке, в Колумбийском университете, прочитал цикл научных лекций, которые были собраны в книгу «Теоретическая физика: Восемь лекций...». В одной из этих лекций он представил фундаментальные понятия теории относительности и, таким образом, стал первым ученым, начавшим ее распространение.
Во время путешествия Планк был поражен антиалкогольной политикой, царящей в американском обществе, – на нее уже обращал внимание Больцман во время своей поездки в Калифорнийский университет в Беркли в 1906 году. В небольшой книжке «Путешествие одного немецкого профессора в Эльдорадо» Больцман легко и с юмором рассказывает о пребывании в этой стране, демонстрируя замечательные литературные способности. Он описывает проблемы с желудком, которые возникли, по мнению ученого, из-за того, что он вынужден был пить воду во время еды. Больцман пишет, что попытался узнать у американского коллеги, где можно купить вино, но эффект был таким, будто ученого интересовал как минимум дом свиданий, и добавляет:
«Он озабоченно осмотрелся, чтобы нас никто не слышал, внимательно смерил меня взглядом, чтобы проверить, спрашиваю ли я его всерьез, и, наконец, дал мне адрес прекрасного магазина в Окленде, где продавалось калифорнийское вино».
Больцман получил свое вино, но вынужден был пить его тайком после еды. По всей видимости, желудок ученого был ему благодарен. Планк вспоминал о своем путешествии: «За время моего пребывания я не выпил ни капли вина или пива, даже близко не подходил к ликерам, вследствие этого я чувствовал себя необыкновенно хорошо».
Гений термодинамики
В первые годы активной исследовательской деятельности Планк много занимался термодинамикой, применяя второе начало к растворам, газовым смесям, фазовым переходам. Он получил довольно объемную серию результатов, но не знал, что за тысячи километров от Германии великий американский физик Джозайя Уиллард Гиббс уже выявил те же данные в более общей форме. Гиббс опередил не только Планка, но и Эйнштейна с его первыми статьями 1903 года о статистических основах термодинамики. Однако Планк работал с термодинамикой всю свою жизнь, и ему принадлежит одна из формулировок второго начала термодинамики, которая обычно фигурирует в учебниках (о ней мы говорили в первой главе).
В 1900 году, после вывода закона спектрального распределения излучения черного тела, Планк признался своему сыну Эрвину, который тогда был семилетним мальчиком, что сделал открытие «такой же важности, как Коперник». Планк не мог иметь в виду квантовую гипотезу, так как сам не знал о ее основополагающем характере. И хотя Эрвин сказал одному своему другу через несколько лет, что отец говорил об удивительном открытии новой константы, все же он не мог иметь в виду и константу, которую мы сегодня называем постоянной Планка. Почти с полной уверенностью можно утверждать: Планк говорил о константе, которая, что удивительно, вошла в историю под именем его великого современника Больцмана. Мы во второй главе упоминали об этой постоянной, обозначаемой как k, которая появляется и в законе Планка, и в законах идеальных газов. Это было важнейшее открытие в области термодинамики. Закон, связывающий давление, объем и температуру идеальных газов, был известен с начала XIX века благодаря работам Бойля, Мариотта, Гей-Люссака, Шарля и Клапейрона. Людвиг Больцман в одной из своих статей по статистической интерпретации энтропии вывел газовый закон из его уравнения:
S = k lnΩ.
Однако он нигде специально не отметил коэффициент пропорциональности k и не занимался вычислением его значения.
Измерения излучения черного тела позволили выявить две универсальные константы, фигурирующие в законе Планка: h и k. Выявление по отдельности постоянной идеальных газов и новой константы, ky позволило Планку выразить в числовой форме число Авогадро, равное количеству молекул в моле вещества. Из законов электролиза (химическое разложение некоторых веществ с помощью электричества) и числа Авогадро можно было вычислить заряд электрона. Таким образом, уравнение Больцмана для энтропии с коэффициентом пропорциональности, одинаковым для всех физических систем, связывало такие разные феномены, как давление идеальных газов, излучение черного тела и электролиз.
Планк открывает постоянную... Больцмана
Если обозначить через Р давление, действующее на газ, через V – занимаемый им объем, n – количество молей содержащегося вещества, Т – абсолютную температуру и R – газовую постоянную, закон идеальных газов записывается следующим образом:
PV=nRT.
Больцман вывел этот закон из выражения энтропии S системы с вероятностью:
S = k lnΩ.
Современным языком можно сказать, что Ω представляет количество микросостояний, возможных для системы. После вывода газового закона из выражения энтропии с использованием второго начала термодинамики мы видим следующее отношение между константами R и k:
R=NAk,
где NA представляет число Авогадро, то есть количество молекул в одном моле вещества. Константа к может пониматься как константа газовых законов, если мы вместо ее выражения в молях представим ее выражение в молекулах. То есть назвав N – количество молекул газа, мы можем записать газовый закон в виде:
PV=NkT.
Больцман не использовал постоянную к в своей статье о кинетической теории идеального газа, и Планк понял, что если выражение энтропии является настолько общим, оно должно содержать коэффициент пропорциональности, одинаковый для всех систем. Коэффициент не мог быть разным для разных систем, потому что энтропия, например, какого-либо газа в присутствии излучения должна была представлять сумму энтропии газа и энтропии излучения. Когда Планк вывел свой закон распределения из энтропии системы осцилляторов, в нем фигурировала константа k:
uv = (8πhv³/c³)(1/(ehv/kT – 1)).
Подставив в формулу экспериментальные данные, можно было получить величины h и к. Планк смог вычислить число Авогадро от величины R и отношения R = NAk. Получившееся число соответствовало величине, известной на тот момент. Кроме того, из законов электролиза было известно количество электричества в моле одновалентного иона, что позволило Планку вычислить заряд электрона. Итак: на основании закона излучения черного тела можно вычислить число Авогадро и заряд электрона – константы, связанные с разными явлениями.
Здесь имело место глубокое единство природы: константа, связывающая энергию и температуру в электромагнитном излучении, делает это же в молекулах и атомах. Это и есть открытие такой же важности, как и у Коперника: Планк обнаружил связи между электродинамикой и атомной теорией, которые еще раз подтверждали единство физического мира. Сегодня закон Больцмана представлен в учебниках как универсальный, применяемый для любой физической системы. И нас это не удивляет. Но если читатель захочет проникнуть в загадки физики, мы рекомендуем остановиться и восхититься этим чудесным единством, которое Планк обнаружил между термодинамикой, электродинамикой и атомной гипотезой.
Заряд электрона
Значение заряда электрона, рассчитанное Планком из отношений между константами излучения черного тела, газовой постоянной и законов электролиза, было близким к значению, принятому сегодня. На новом витке развития науки этому открытию Планка, которое считалось второстепенным, стали придавать больше значения, чем вначале. Эрнест Резерфорд внимательно прочитал статью, в которой Планк представил свою оценку заряда электрона, вычисленную на основе экспериментальной проверки его закона об излучении черного тела.
Эта величина была похожа на результаты прямого измерения электрона, проведенные Резерфордом и несколько расходившиеся с первой величиной, представленной Дж. Дж. Томпсоном.
Через несколько лет Нильс Бор работал в Манчестере под руководством Резерфорда и дал ему первому прочесть свою еще не опубликованную статью, в которой высказывались идеи о структуре атома. Резерфорд подбодрил Бора, подчеркнув необходимость публиковать статью и продолжать работу, несмотря на то что высказанные идеи не были лишены противоречий и расходились с принципами классической физики. Поддержка со стороны Резерфорда, по его собственному признанию, была связана с тем, что он был изначально уверен в важности идей Планка и чувствовал: так или иначе постоянная h была ключом, открывавшим шкатулку, в которой хранились законы атомного и субатомного мира.
Эрнест Резерфорд.
В других его работах по термодинамике выделяются размышления о значении так называемой теоремы Нернста, которые привели ученого к формулировке третьего начала. В начале века Вальтер Нернст провел серию измерений поглощения и генерирования тепла при различных низкотемпературных химических реакциях. Вследствие этих исследований он сформулировал закон, известный как теорема Нернста: при приближении к абсолютному нулю все процессы развиваются без изменения энтропии. Среди множества других следствий теоремы Нернста можно назвать скрытую в ней невозможность достижения нулевой температуры по шкале Кельвина или абсолютного нуля.
Планк воспользовался квантовой теорией для того, чтобы вывести из теоремы Нернста меру энтропии, и предложил для нее следующую формулировку, сегодня известную как третье начало термодинамики: при абсолютном нуле энтропия химически однородного тела равна нулю.
Единицы измерения вселенной
На излучение черного тела не влияет природа конкретной излучающей полости, оно зависит только от температуры полости. Планк понял, что не только k, но и h – это новые универсальные постоянные. Наряду с известными константами гравитации и скорости света они позволяли построить систему единиц, не зависящую от представлений человека.
Кратко остановимся на том, как образована современная система единиц. Для выражения любой физической величины нам необходимы единицы измерения. Для расстояния в Международной системе измерений (СИ) имеется единица длины – и мы можем сказать, что рост Шакила О’Нила составляет 2,15 метра или что расстояние между Лондоном и Парижем равно 340,55 километра.
Использование метра как единицы измерения длины является условным и принято в результате соглашения, подписанного несколькими странами в мае 1875 года в рамках Метрической конвенции. После этого были изготовлены эталон метра и эталон килограмма, которые вместе с единицей измерения времени – секундой – сформировали так называемую систему единиц МКС (метра, килограмма, секунды). Эту систему используют не все страны. Так, англосаксонские культуры применяют милю, ярд, фут, дюйм в качестве единиц измерения длины, фунт и унцию – для измерения веса (хотя в Англии уже используется килограмм и его кратные в качестве официальной единицы). Любопытен случай США, где используются мили и ярды, хотя это была одна из первых стран, присоединившихся к Метрической конвенции.
Невозможность достигнуть абсолютного нуля
Теорема Нернста и третье начало термодинамики в формулировке Планка подразумевают невозможность достижения абсолютного нуля. Собственно, все три начала термодинамики выражают много разных невозможностей. Согласно первому началу, невозможно создать вечный двигатель первого рода (двигатель, который производит больше работы, чем потребляет энергии). Согласно второму началу, невозможно создать вечный двигатель второго рода (двигатель, превращающий в работу все передаваемое ему тепло). Третье начало, как мы уже сказали, подразумевает невозможность достижения абсолютного нуля. Несмотря на это одним из самых захватывающих научных вызовов XX века было достижение все более низких температур, а конечной целью было приближение к абсолютному нулю. Пионером низкотемпературных исследований стал Хейке Камерлинг-Оннес (1853-1926), который смог дойти до температуры 3 градуса выше абсолютного нуля. Используя свою криогенную технику, Камерлинг-Оннес получил жидкий гелий и открыл сверхпроводимость. На сегодняшний день удалось получить температуру, превышающую абсолютный нуль Кельвина всего на несколько миллионных долей градуса.
В рамках Метрической конвенции были созданы международные органы, в задачу которых входит актуализация и обновление Международной системы единиц. Так, актуальные определения метра и секунды отличаются от первоначальных. Понятие секунды относится к регулярности атомных явлений и представляет собой «интервал времени, равный 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия– 133». Это определение связано с технологией самых точных в мире часов – атомных. В основе определения метра, в свою очередь, лежат факт о скорости света как универсальной постоянной и новое сверхточное определение секунды. Определение метра, принятое в 1983 году на Генеральной конференции по мерам и весам, гласит: метр – это длина пути, проходимого светом в вакууме за время, равное 1/299792458 секунды.
Вернемся к Планку. Постоянная Больцмана k измеряется в кг м²/(с²К), постоянная Планка h – в кг м²/с, универсальная гравитационная постоянная G, открытая Ньютоном, – в м³/кгс², скорость света с – в м/с. В 1899 году Планк представил Берлинской академии сообщение, в котором комбинировал эти константы для получения масштабов расстояния, массы, времени и температуры:
Планк отметил, что величины, рассчитанные с помощью универсальных постоянных, не являются антропометрическими. Таким образом, с учетом этой универсальности при отсутствии пространственно-временных изменений любая другая цивилизация, которая начнет раскрывать тайны физики, получит те же величины. Планк писал:
«Эти величины сохраняют свое естественное значение до тех пор, пока справедливы законы тяготения, распространения света в вакууме и оба начала термодинамики, и, следовательно, их измерение должно давать всегда одни и те же результаты, какими бы учеными и какими бы методами они ни были получены».
Макс Планк удивился бы, узнав, что по прошествии более века его натуральные единицы продолжают вызывать и интерес, и споры среди физиков-теоретиков. Дело в том, что планковские единицы напрямую связаны с главной проблемой физики нового тысячелетия – созданием квантовой теории гравитации. В частности, планковская длина указывает длину, ниже значения которой само понятие пространства не имеет смысла.
Попробуем провести один из мысленных экспериментов, которые так нравились Эйнштейну, Бору и Гейзенбергу. Представим, что мы хотим произвести локализацию некоего объекта и направляем на него луч света, измеряя, сколько времени займет его возвращение (примерно так же действует авиационный радар). Волновая природа света устанавливает для нашего эксперимента одно требование: расстояние не может быть меньше длины волны используемого света λ. В принципе, было бы достаточно уменьшить λ настолько, насколько нам необходимо, но согласно квантовой теории это приведет к тому, что возбужденные волной фотоны будут иметь меньше энергии, так как Е = hv = hc/λ.