Текст книги "Революция в микромире. Планк. Квантовая теория"
Автор книги: авторов Коллектив
сообщить о нарушении
Текущая страница: 3 (всего у книги 9 страниц)
Глава 2
Рождение кванта энергии
Обладая обширными знаниями по электродинамике и термодинамике и находясь в поисках более глубокого толкования второго начала, Планк приступил к изучению темы, которая стала фундаментальной в его карьере, – излучение черного тела. Исследования приведут его к формулировке квантовой гипотезы, о гигантском значении которой он и сам не догадывался.
Давайте представим, что мы прогуливаемся по парку теплым весенним вечером. На улице свежо, и мы садимся на освещенную солнцем скамейку. Лучи согревают нас, и постепенно нам становится очень хорошо. Проходит какое-то время, и ощущение комфорта нас не покидает: мы достигли состояния равновесия, когда наше тело больше не нагревается, но мы не чувствуем и холода. В этот момент вся энергия излучения, достигающая нас от Солнца, отражается нами, таким образом мы не поглощаем и не излучаем чистую энергию.
Теперь представим полость, стенки которой имеют фиксированную температуру, то есть находятся в термическом равновесии. Внутри она заполнена электромагнитным излучением, и на каждый участок внутренней поверхности воздействует определенное количество излучаемой энергии за единицу времени. Обозначим буквой К количество энергии, которое воздействует в секунду на квадратный метр поверхности. Из этого количества часть будет поглощена – обозначим эту часть буквой а (а – коэффициент поглощения). Для поддержания температуры стенка должна излучать энергию так же интенсивно, как поглощает ее. Если мы обозначим через Е энергию, излучаемую в секунду на квадратный метр поверхности, получим следующее равенство:
аК = Е.
Это означает: поверхность поглощает то же количество энергии, что и излучает. То есть мы видим такой же баланс энергии, как в ситуации, когда мы сидим на солнце.
Интенсивность излучения К в полости по определению находится в состоянии равновесия, поэтому не зависит от материала поверхности. Приведенное выше выражение можно записать в виде:
Κ= E/a,
что подводит нас к закону, открытому Густавом Кирхгофом примерно в 1860 году: частное от деления энергии, излучаемой телом, на коэффициент поглощения представляет собой величину, не зависящую от материала, но на которую влияет температура тела.
Согласно закону Кирхгофа тело тем лучше излучает энергию, чем лучше поглощает ее. Опыт, приведенный на схеме, лучше объяснит этот феномен. Наполним резервуар горячей водой. Часть его внешней боковой поверхности предварительно зачерняем, используя копоть от пламени свечи. Внешнюю поверхность с другой стороны резервуара покрываем отражающим материалом, например алюминиевой фольгой. Если мы поместим два термометра (один – рядом с затемненной поверхностью, другой – рядом с фольгированной), то сможем наблюдать, что термометр рядом с затемненной поверхностью покажет большую температуру.
Закон Кирхгофа гласит, что чем лучше тело поглощает излучение,тем лучше испускает его. Для доказательства достаточно простого опыта: затемненная часть испускает больше тепла, чем покрытая фольгой, хотя они имеют одну температуру.
Герр профессор Планк
Обычный рабочий день Макса Планка выглядел примерно так: по утрам ученый писал, затем проводил занятия, после следовал завтрак и небольшой отдых, далее – музицирование, прогулки, переписка. Среди увлечений Планка был и альпинизм: в 79 лет он мог подняться на пик Гроссвенедигер высотой 3674 м. С 1890 по 1927 год, в котором ученому исполнилось 72 года, он преподавал в Берлинском университете. У Планка было четыре лекции в неделю, также он вел семинары. Планк читал трехгодичный цикл лекций, включавший механику, гидродинамику, электродинамику, оптику, термодинамику и кинетическую теорию. Каждая из дисциплин занимала семестр. Как видите, Планк владел всеми разделами физики, известными в его время.
Планк читает в своем кабинете в 1908 году. В это время он преподавал в Берлинском университете.
«Чрезвычайная ясность»
Индийский физик Шатьендранат Бозе (1894-1974), о котором мы поговорим позже, посетив занятия Планка в Берлине, заметил: «Побывав на лекциях Планка, я понял, что значит физика как единое целое, в котором развитие науки происходите общей позиции с необходимым минимумом предположений». Занятия Планка посещала и Лиза Мейтнер, более того, она вошла в круг его близких знакомых и смогла узнать ученого как приветливого и гостеприимного человека: «Вначале лекции Планка показались мне, несмотря на чрезвычайную ясность, несколько безликими, почти скучными. Но очень скоро я поняла, какое это заблуждение и как мало это вяжется с личностью Планка». Педагогическая деятельность ученого не ограничивалась занятиями: его «Лекции о термодинамике» до сих пор используются во многих вузах, также он писал очерки и статьи для широкой публики.
Вывод очевиден: хотя обе поверхности имеют равную температуру, близкую к температуре горячей воды, черная поверхность испускает больше тепла, чем покрытая фольгой. Но есть еще кое-что – то, что физики называют принципом детального равновесия: для каждой частоты или длины волны количество поглощенной и излученной энергии равно. То есть тело излучает и поглощает энергию одинаково на всех частотах. Если мы обозначим через К интенсивность излучения на данной частоте, через Еv – испускаемое на этой частоте излучение на единицу поверхности за единицу времени, через αν – соответствующий коэффициент поглощения, то получим следующее выражение:
ανKv = Εν.
Так как Кv – интенсивность излучения в полости, по уже упомянутым причинам она не может зависеть от свойств материала стенок полости. Соответственно, мы приходим к заключению, что коэффициент
Kv = Ev/αν
представляет собой величину, зависящую только от температуры полости и частоты излучения.
Это заключение имеет первостепенную важность в нашей истории. Поскольку функция Кv не связана со свойствами вещества, из которого сделаны стенки полости, то она является универсальной и зависит только от природы теплового излучения. Об этом факте Макс Планк в своей речи на вручении Нобелевской премии в июне 1920 года сказал следующее:
«С тех пор как Густаф Кирхгоф показал, что свойства теплового излучения, которое образуется в пустом пространстве, ограниченном любыми равномерно нагретыми поглощающими и излучающими телами, вполне независимы от природы этих тел, было доказано существование некоторой универсальной функции, зависящей только от температуры и длины волны, но никоим образом не от особенных свойств какого-либо вещества; и отыскание этой замечательной функции сулило более глубокое проникновение в сущность связи между энергией и температурой, связи, которая является главной проблемой термодинамики, а следовательно, и всей молекулярной физики»[1 Перевод с немецкого Вл. Семенченко.].
Но как измерить эту функцию? Если мы рассмотрим предыдущее выражение, интенсивность излучения Еv испускаемого телом с соответствующим αν = 1, совпадает с интенсивностью излучения в равновесии с ним Кv. Но это как раз и есть модель абсолютно черного тела, о котором мы говорили в первой главе, то есть тела, поглощающего все излучение на всех частотах. Абсолютно черного тела в природе не существует, однако сам Кирхгоф предположил, что излучение, испускаемое очень малым отверстием, сделанным в полости, стенки которой имеют заданную температуру (см. схему), будет схоже с излучением черного тела при той же температуре. Сходство будет тем больше, чем меньше отверстие. Приводя пример из повседневной жизни, мы можем сказать, что Кv – это словно интенсивность света для каждой частоты, которая возникает в печи, когда мы открываем дверцу духовки, чтобы достать готовую пиццу.
Чем больше печь и чем меньше дверца, тем более полученное излучение будет напоминать ситуацию черного тела.
Густаф Кирхгоф предложил в качестве модели черного тела полость, стенки которой имели постоянную температуру. Излучение испускалось из маленького отверстия, сделанного в полости.
Осцилляторы Планка
В 1894 году, уже будучи преподавателем Берлинского университета и после принятия в члены престижной Берлинской академии наук, Планк начал исследовать излучение черного тела. Без сомнения, этому способствовало то, что физики из находящегося по соседству Имперского физико-технологического инстатута могли измерить спектральное распределение излучения черного тела, то есть определить, как интенсивность излучения соотносится с частотой. Планк в своей автобиографии признался, что для него поиски Абсолюта всегда были самой прекрасной задачей исследователя, поэтому он приступил к изучению данного феномена, управляемого, как мы увидели, универсальным законом, с почти религиозным пылом.
Планка привлекал еще один аспект этой проблемы, который нельзя не учитывать. Когда мы поджигаем дрова в печи, тепловое равновесие отсутствует. Стенки печи холодные, и дровам для достижения требуемой температуры необходим приток воздуха. Через некоторое время, достаточно длительное в хороших печах, достигается равновесие, при котором температура внутри остается постоянной с течением времени. Это лучший момент для приготовления пиццы. Тепловое излучение в полости находится в равновесии с ее стенками, которые поглощают столько же электромагнитного излучения, сколько испускают. Развитие ситуации от начального состояния до равновесия является необратимым процессом, как и смешивание воды разной температуры. Так как в данном случае речь идет частично об электродинамическом процессе, а теория Максвелла – это теория поля, согласно которой электромагнитное поле постепенно заполняет всю полость, Планк надеялся, что сможет получить результат, не прибегая к гипотезе о строении атома и статистической интерпретации энтропии. Очевидно, что Планк находился под влиянием антиатомистических тезисов энергетистов и надеялся доказать, что интерпретация Больцмана не нужна.
Первые шаги Планка на этом пути были связаны с изучением процесса излучения и поглощения излучения. Для этого он ввел осцилляторы (или резонаторы), взаимодействующие с излучением. Осцилляторы Планка представляли собой положительный и отрицательный заряды с эластичным соединением в виде пружины. Они могли испускать и поглощать электромагнитное излучение, напоминая поплавок, который показывает рыбакам поклевку. При этом поплавок колеблется, создавая небольшие волны на поверхности воды, а когда волна подходит к поплавку, он начинает двигаться вместе с ней. Таким образом, поплавок может создавать волны или принимать их, поглощая их энергию.
Так как функция Кирхгофа не зависит от природы вещества, с которым взаимодействует излучение, Планк решил, что на стенках полости можно расположить осцилляторы, резонирующие на всех возможных частотах (см. схему), которые должны быть достаточно простыми, чтобы рассчитать их динамику. Если эксперимент удастся, в конце концов специфические характеристики осцилляторов не будут проявляться, останется только их частота.
Количество энергии, излучаемой и поглощаемой осциллятором такого типа, могло быть рассчитано относительно легко благодаря работам Генриха Герца по электромагнетизму, написанным в конце 1880-х. Планк подтвердил, что в состоянии равновесия, когда осциллятор поглощает столько же энергии, сколько получает за единицу времени, средняя энергия uv на единицу объема и единицу частоты электромагнитного поля, находящегося в полости на заданной частоте n, связана со средней механической энергией осциллятора Uv соотношением:
uv = 8πv²/c³∙Uv
где с – скорость света. Под величиной uv понимается плотность энергии на единицу частоты, или спектральная плотность энергии. Энергия, испускаемая полостью Kv, может быть вычислена в лаборатории пропорционально вышеуказанной величине по формуле:
Kv = c/4∙uv.
На стенках полости, которая для Планка стала моделью черного тела, были установлены осцилляторы с электрическим зарядом. Излучение испускалось через маленькое отверстие.
К радости Планка, в отношении между энергией осциллятора и электромагнитного поля физические характеристики осциллятора, а также его заряд или масса не учтены. В уравнении присутствуют только два элемента – частота и скорость света, которая является универсальной константой. В начале 1897 года Планк думал, что излучение его осцилляторов может быть шагом к пониманию электродинамики необратимости.
Волновые опыты Герца
Немецкий ученый Генрих Герц, доказывая справедливость теории Максвелла, создал в своей лаборатории электромагнитные волны, длина которых значительно превышала световую волну, и доказал, что эти волны имеют сходные со светом характеристики: они распространяются при такой же скорости по прямой линии, отражаются и могут поляризоваться, как и свет. Для генерирования волн Герц использовал колебательный контур: два куска провода, на концах которого – проводящие шарики.
Из-за большой разницы потенциалов шариков с помощью генератора или батарейки, соединенных с индукционной катушкой, достигалось короткое замыкание, при котором между концами провода проскакивала искра, а шарики соединялись с помощью электричества. Далее наблюдались колебания заряда, идущего и возвращающегося от одного шарика к другому. Осциллятор генерировал много волн, их линии поля были похожи на поле от электрического осциллятора, как показано на схеме.
Герц для решения уравнений Максвелла создал теоретическую модель, соответствующую осциллятору. С ее помощью он смог рассчитать линии поля, показанные на схеме, и подтвердить их соответствие наблюдениям. Макс Планк в своих исследованиях излучения черного тела использовал выражение энергии, испускаемой осциллятором Герца.
Но в середине 1897 года Больцман представил в Прусской академии наук короткий доклад, в котором критиковал эту линию исследования. В основе его критики лежало заявление, что уравнения Максвелла так же обратимы, как ньютоновские. Все решения этих уравнений одинаковы, независимо от того, в какую сторону движется время. Планку нужно было искать необратимость в другом месте, и Больцман указывает ему, где: для определения вероятного состояния излучения можно воспользоваться теорией газов.
Таким образом, Больцман рекомендовал Планку воспользоваться его молекулярной теорией теплоты и вероятностной интерпретацией второго начала термодинамики.
Планк воспринял критику Больцмана довольно спокойно, тем более что обоснованных возражений у него не было. Он изменил курс исследований и вернулся к энтропии – теме, которой владел прекрасно. Соотношение между энергией осцилляторов и энергией излучения нельзя не учитывать.
Игра стоила бы свеч, если бы было возможным выяснить, как соотносится энергия излучения с его частотой и температурой. Но ни Планк, ни кто-либо другой не знал, как определяется энтропия излучения. Обнаруженное соотношение между энергией осцилляторов и энергией излучения позволяло забыть о последней и сфокусироваться на энтропии осцилляторов. Это стало следующей остановкой на пути Планка, и с 1897 по 1900 год он занимался указанными вопросами, а также глубоко изучал работы Больцмана.
На сцену выходит Вин
Вильгельм Вин (1864-1928) родился в Восточной Пруссии и был немного моложе Планка. Он работал ассистентом Гельмгольца, а потом перешел в Имперский физико-технологический институт, находящийся неподалеку от Берлина. В конце столетия он заинтересовался проблемой излучения черного тела. Вин сделал два открытия, внесшие неоценимый вклад в разрешение проблемы, за что в 1911 году был удостоен Нобелевской премии в области физики.
Во-первых, Вин доказал, что интенсивность излучения, испускаемого черным телом, Kv, зависит не только от частоты или только от температуры, а от комбинации обеих. Это заключение сегодня называется законом смещения Вина. Согласно этому закону по мере увеличения температуры преобладает коротковолновое излучение. Таким образом, Вин дал теоретическое обоснование феномену, который можно наблюдать в обычных условиях: свечение раскаленных тел переходит от красного к другому краю спектра по мере нагревания. В таблице ниже показана длина волны, которая обеспечивает максимальное излучение при разных температурах, от абсолютного нуля до температуры поверхности звезд.
Длина волны, при которой интенсивность излучения максимальна в соответствии с температурой (1 мкм = 1 • 10
-3
мм)
Температура
Длина волны
Характерный феномен
-270 °С
1 мм (микроволны)
Фоновое космическое излучение
100 °С
8 мкм (инфракрасные)
Домашний радиатор
500 °С
3,76 мкм (инфракрасные)
Угли барбекю
1535 °С
1,6 мкм
Плавленое железо
(инфракрасные короткие)
5770 °С
0,48 мкм (желтый)
Температура поверхности Солнца
Закон смещения Вина был доказан экспериментально и служил для Планка руководством в его поисках спектрального распределения излучения черного тела. Вторым важнейшим открытием Вина стало выражение для спектрального разложения, соответствовавшее имевшимся на тот момент экспериментальным данным, хотя удовлетворительное теоретическое обоснование Вин предложить не смог. Согласно этому выражению интенсивность теплового излучения экспоненциально падает в зависимости от частоты, поэтому нередко эту формулу Вина называют экспоненциальным законом.
Накануне 1900 года прогресс в изучении проблемы излучения черного тела выглядел следующим образом.
– Существовала универсальная функция, доказанная Кирхгофом, для формы, в которой интенсивность теплового излучения при заданной температуре зависит от его частоты. Эта функция не зависела от свойств излучающего вещества и соответствовала интенсивности излучения идеального черного тела.
– Планк разработал модель абсолютно черного тела – полость, на стенках которой находились электрические осцилляторы на всех частотах. Эти осцилляторы поглощали и испускали электромагнитные волны согласно законам Максвелла.
– Вин открыл закон смещения: длина волны, на которую приходится максимально интенсивное излучение, обратно пропорциональна температуре черного тела.
– Вин также предложил особую форму для универсального закона Кирхгофа, согласно которой интенсивность излучения экспоненциально падает в зависимости от его частоты. Экспоненциальный закон Вина соответствовал экспериментальным данным, но для него не существовало удовлетворительного теоретического обоснования.
– Планк после больцмановской критики его первых идей об излучении черного тела изучил статистические методы коллеги.
Учитывая все это, мы можем рассмотреть ключевой момент открытия кванта энергии, которое очень символично состоялось на рубеже веков.
Закон смещения Вина
Вин доказал, что спектральное распределение излучения черного тела Kv не зависит от частоты ν и температуры Г, но определяется соотношением:
Κv = ν³F(v/T).
где F – функция, зависящая только от ν/Τ. Для обоснования этого закона Вин использовал аргументы как из теории электромагнетизма, так и из термодинамики. Воспользовавшись опытом изучения газа в термодинамике, он представил закрытый цилиндр, заполненный излучением, с движущимся поршнем внутри.
Цилиндр заполнен тепловым излучением, поверхность поршня полностью отражающая. Объем полости содержит плотность электромагнитной энергии uν(Τ), так что общая содержащаяся электромагнитная энергия – это указанная функция, умноженная на объем цилиндра. Если мы будем перемещать поршень с определенной скоростью ν, с учетом эффекта Допплера частота излучения, отражаемого поршнем, будет отличаться от частоты воздействующего на него излучения. Эффект Допплера состоит в изменении частоты волны, вызванном движением источника. Здесь стоит напомнить, что звук – тоже волна. При приближении поезда мы слышим более пронзительный свист, чем он издает на самом деле, потому что фронт волны сжимается, и количество волн на единицу времени увеличивается, то есть растет частота звука, который мы слышим. Когда поезд удаляется, мы слышим более низкий звук. В случае с поршнем при его движении внутрь частота отраженного излучения будет немного больше, чем частота исходного излучения. Открыть этот закон позволило обнаружение баланса энергии до и после небольшого смещения поршня и использование термодинамического подхода. Можно заключить, что длина волны, на которую приходится максимум излучения λмакс, и температура черного тела связаны уравнением:
λмакс Т = константа = 2,898 мм · К.
Рубенс приходит к Планку
Имперский физико-технологический институт был основан в 1887 году по ходатайству Вернера Сименса, которого можно назвать немецким Эдисоном: он изобретал, получал патенты на электроаппараты и основал компанию, принесшую ему целое состояние. Институт располагался недалеко от Берлина и занимался изучением вопросов физики, имеющих промышленное значение. Конкретной целью создания института указывалась разработка стандартов, что было и остается вопросом чрезвычайной важности для промышленности.
В институте была создана оптическая лаборатория, оснащенная самым современным оборудованием. Руководил ею Отто Люммер (1860-1925), талантливый физик-экспериментатор, ученик Гельмгольца. Люммер работал в институте с момента его создания и занимался разработкой и совершенствованием аппаратов для измерения видимого и инфракрасного излучения.
Немецкая промышленность требовала установления стандарта интенсивности освещения. В этот период началось массовое производство электрических и газовых ламп, и необходимо было ввести стандарт, принятый на международном уровне. На этом основании возник интерес к черному телу: если на излучение черного тела не влияют свойства материала, из которого оно изготовлено, при этом излучение зависит только от температуры, что доказано Кирхгофом, можно ли принять его за стандарт?
Одной из первых разработок Люммера, внесших вклад в разрешение вопроса об излучении черного тела, было создание совместно с Ойгеном Бродхуном (1860-1938) фотометра (или фотометрического кубика) – аппарата для измерения интенсивности излучения. Кубик Люммера – Бродхуна сравнивал интенсивность излучения двух световых потоков: один – от эталонного источника, второй – от измеряемого. Кубик представлял собой две совмещенные стеклянные призмы, на поверхность каждой направлялся свой пучок света. В результате преломления экспериментатор мог наблюдать два смежных световых поля и сравнивать их яркость. Удаляя и приближая эталонный источник света, можно было определить интенсивность излучения от измеряемого источника. Однако возможностей кубика Люммера – Бродхуна было недостаточно для изучения спектрального распределения излучения черного тела, поскольку, как мы уже установили, большая часть теплового излучения испускается в инфракрасной части спектра и потому остается для нас невидимой.
Стандарт интенсивности света
Исследования излучения черного тела в Имперском физико-технологическом институте преследовали практическую цель – установить стандарт интенсивности освещения. В конце XIX – начале XX века существовало несколько стандартов для разных стран и разных видов ламп накаливания. Например, английская свеча представляла собой стандарт интенсивности света одной спермацетовой свечи весом 1/6 фунта, горящей со скоростью 120 гран в час.
Сила света черного тела
Экспериментальные данные и теоретические результаты Планка принесли свои плоды, и в 1948 году, с введением международной единицы – канделы (свечи), – произошел отказ от старых стандартов и переход к новым. Яркость излучения черного тела при температуре затвердевания платины равна 60 канделам на 1 см². Учитывая экспериментальные трудности, с которыми связано создание абсолютно черного тела, а также достижения оптики и радиометрии, в 1979 году появилось новое международное определение канделы: «Кандела – сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540-1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 ватт на стерадиан». На практике получается, что свет свечи примерно равен одной канделе, а лампочка на 40 Вт имеет силу света в несколько десятков кандел.
Вместе с Фердинандом Курльбаумом (1857-1927), который также работал в институте и был учеником Гельмгольца, Люммер в 1892 году разработал усовершенствованный вариант болометра. Этот инструмент концептуально идентичен фотометрическому кубику, но измеряет он интенсивность электромагнитного излучения, независимо от того, является это излучение видимым или нет.
Также в 1895 году Люммер и Вин опубликовали совместную статью, в которой анализировали возможные методы создания абсолютно черного тела. До сих пор физики-экспериментаторы пытались использовать различные зачерненные поверхности, но было очевидно, что их излучение не идентично излучению черного тела, то есть не является одинаковым на всех частотах. Вин и Люммер пришли к выводу, что наилучшая модель черного тела – полость с отверстием. Сам Люммер был удивлен, что эту идею до сих пор никто экспериментально не исследовал, хотя она была предложена Кирхгофом почти 40 лет назад (а чуть позже – и Больцманом).
Первыми вариантами полости с отверстием были фарфоровые сферы с отверстием, внутренняя поверхность которых была зачернена сажей. Сфера погружалась в жидкость с контролируемой температурой. Таким образом были проведены исследования температур от -188 до 1200 градусов Цельсия.
В 1898 году Люммер и Фердинанд Курльбаум разработали и создали черное тело с подведенными электрическими контактами. Электропитание до 100 А позволяло достичь температуры 1500 °С. Используя эту полость и болометр, Люммер и Эрнст Прингсгейм (1859-1917) обнаружили первые отклонения от экспоненциального закона Вина, возникающие в длинноволновой и инфракрасной областях.
Летом 1900 года Курльбаум и Генрих Рубенс (1865-1922), профессор физики Технического университета Берлина, провели более точные измерения спектрального распределения и получили результаты, которые расходились с распределением, предсказанным Вином.
Результаты Рубенса и Курльбаума по интенсивности излучения черного тела до длины волны 51,2 мкм в зависимости от температуры соответствовали закону Рэлея. Закон Вина при этом не выполнялся.
В воскресенье 7 октября 1900 года Рубенс с женой пришли в гости к Планку, и Рубенс рассказал коллеге о своих успехах. Для длинноволновой области закон Вина не выполнялся, но с другой стороны, измерения соответствовали закону, предложенному Рэлеем, о котором мы будем говорить в следующей главе. Когда Рубенсы ушли, Планк направился в свой кабинет. Возможно, именно в тот вечер он открыл закон, подаривший ему мировую славу. Планк не выводил его из первого и второго начал термодинамики, а добавил еще одну производную в выражение, открытое ранее для энтропии системы осцилляторов.
На следующий день Планк отправил Рубенсу открытку с новой формулой:
uv = C ∙ V³/(eav/T – 1).
Через несколько дней Рубенс зашел к Планку и сообщил, что его формула полностью соответствует экспериментальным данным.
Только формальное предположение: ε = hv
Планк немедленно принялся за теоретическое обоснование нового закона. Через два месяца напряженной работы, 14 декабря 1900 года, на заседании Немецкого физического общества был представлен его доклад. Этот день многие считают датой рождения квантовой физики. В докладе Планк сообщил, что обнаружил два альтернативных, хотя и схожих доказательства закона. В обоих вариантах использовалась квантовая гипотеза.
Мы изложим фундаментальные идеи одного из следствий закона Планка об излучении черного тела, которое было опубликовано в Annalen der Physik («Анналы физики») в 1901 году. Отправной точкой является отношение между энергией осциллятора Uv и плотностью энергии электромагнитного поля uv, с которой она находится в равновесии:
uv = 8πv²/c³ ∙ Uv
Теперь необходимо найти энергию Uv осциллятора как функцию частоты и температуры. Для этого Планк воспользовался вероятностной интерпретацией энтропии, предложенной Больцманом, а именно уравнением, связывающим энтропию 5 системы с вероятностью Ω:
S = k ln Ω.
Для расчета Ω необходимо знать, сколько возможных конфигураций имеет система при общей энергии всех осцилляторов. Для того чтобы узнать количество конфигураций, Планк воспользовался предположением, что энергия разделяется на дискретные элементы величиной ε. Чтобы исполнялся закон смещения Вина, Планк был вынужден уточнить, что эти элементы энергии, как он их назвал, должны быть пропорциональны частоте п согласно формуле:
ε = hv.
Эти дискретные элементы позже получили название квантов, а представленное выше выражение было названо квантовой гипотезой. Обозначение h – константа, равная 6,62606957(29) · 10~34Дж/Гц, сейчас называется постоянной Планка.
Второе начало термодинамики позволяет использовать энтропию для расчета соотношения между энергией и температурой. После ряда преобразований Планк получил:
uv = 8πh/c³ ∙ v³/hv/kT.
Это та же формула, которую Планк предложил в октябре, но ее новый вид позволяет получить точные выражения для двух констант, С и а, появляющихся в законе. Их величина – С = 8πh/c³ и а = h/k – связывает эти две константы с другими постоянными, такими как скорость света с и постоянная Больцмана k. Весьма важно появление последней константы, взятой из определения энтропии. В последней главе мы рассмотрим некоторые важнейшие следствия отношений между разными постоянными.
Еще раз рассмотрим концептуальные элементы доказательства Планка.
– Электродинамика позволяет сформулировать отношение между механической энергией осциллятора и электромагнитным полем, с которым энергия находится в равновесии. Это отношение строится на предположении, что осциллятор поглощает столько же энергии, сколько излучает. Как можно было ожидать, отношение не зависит от физических характеристик осциллятора, таких как заряд или масса, но связано с частотой и универсальной константой – скоростью света. Это соответствует закону Кирхгофа, согласно которому спектральное распределение излучения не может зависеть от физических характеристик вещества, из которого изготовлены стенки полости.
– Второе начало термодинамики позволяет получить соотношение между внутренней энергией и температурой из выражения энтропии.
– Наконец, вероятностная интерпретация энтропии Больцмана позволяет рассчитать энтропию системы осцилляторов.
Математический вывод закона Планка
Для расчета энтропии взаимодействующих осцилляторов определенной частоты S = klnΩ необходимо рассчитать количество возможных конфигураций Ω. Это количество зависит от всех доступных способов распределения элементов энергии Р величиной ε между количеством осцилляторов, равным Ν. Обозначим элементы энергии кружками, границы элементов, соответствующих одному осциллятору, – крестиками. Любую конфигурацию можно записать в следующем виде.