Текст книги "Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?"
Автор книги: авторов Коллектив
сообщить о нарушении
Текущая страница: 7 (всего у книги 10 страниц)
Космические лучи
Космические лучи – это заряженные частицы, попадающие на Землю из космоса. В большинстве своем это протоны, которые попадают на Землю с поверхности Солнца. До изобретения ускорителей изучить столкновения частиц высоких энергий можно было только с помощью космических лучей. Когда протон, движущийся к Земле с космическими лучами, сталкивается с ядром атома в верхних слоях атмосферы, возникает цепная реакция, в результате которой образуется большое число частиц. Пример подобной реакции представлен на рисунке.
Появление нацизма
В конце января 1933 года Гитлер был провозглашен рейхсканцлером Германии, то есть главой правительства. Он получил все полномочия, позволявшие управлять страной в обход конституции, и немедленно принял особый закон о правительственных чиновниках, который подразумевал снятие со всех государственных должностей евреев, социалистов, коммунистов и противников режима. В результате последовавших увольнений и отставок университеты потеряли 15 % профессуры, а некоторые научные центры, в частности Гёттингенский университет, практически опустели.
Эйнштейн нашел убежище в США и заявил, что не вернется в Германию, пока в ней будут править нацисты. Он ушел в отставку со всех постов и заявил, что отказывается от членства в Прусской академии наук:
«Первейшая задача всякой академии заключается в поддержке и защите научной жизни страны. Однако члены научного общества Германии, насколько мне известно, стали молчаливыми свидетелями того, как немецких ученых, студентов и преподавателей лишили возможности трудиться и зарабатывать средства к существованию. У меня нет ни малейшего желания принадлежать к научному обществу, которое способно, даже под давлением извне, вести себя подобным образом».
Некоторые ученые вступили в нацистскую партию или открыто симпатизировали ей – например, соавтор матричной механики Паскуаль Йордан, а также два лауреата Нобелевской премии по физике: Филипп фон Ленард, получивший премию в 1905 году за работы о фотоэффекте, и Йоханнес Штарк, удостоенный премии в 1919 году за открытие удвоения лучей спектра в электрическом поле. Штарк вступил в ряды нацистской партии в 1930 году и в течение нескольких лет оказывал большое влияние на научную жизнь страны; Йордан примкнул к нацистам в мае 1933 года.
Большинство ученых, как и многие в Германии, считали, что в условиях экономического и социального кризиса необходима новая политическая сила, поэтому идеи Гитлера они восприняли с надеждой. Люди верили, что перегибы нового режима вскоре будут устранены и ситуация улучшится. Примерно так же считал и Гейзенберг. В частности, он попытался убедить Борна, уволенного из института за то, что его деды были евреями, не покидать Германию. В июне Гейзенберг писал:
«Я знаю, что среди ответственных за сложившуюся политическую ситуацию есть люди, ради которых стоит набраться терпения. Разумеется, пройдет некоторое время, и прекрасное будет отделено от ужасного».
Ученый считал, что радикальные законы коснутся лишь немногих незначительных лиц, и «политическая революция пройдет без ущерба для гёттингенской физики». Вероятно, Гейзенберга на этот счет обнадеживал и фон Вайцзеккер, отец которого занимал высокий пост и в итоге стал членом правительства. К счастью для себя и своей семьи, Борн не внял советам Гейзенберга и покинул страну. Шрёдингер стал одним из немногих, кто покинул Германию добровольно, из-за несогласия со сложившейся политической ситуацией. Гейзенберг не понял этого поступка, заметив: «Он не был евреем, и ему ничего не угрожало».
Ученые, как могли, выражали протест режиму. Макс Планк и Макс фон Лауэ, используя весь свой авторитет, пытались не допустить того, чтобы немецкая наука попала под влияние политики. Планк в свои 75 лет добился приема у Гитлера, чтобы рассказать лидеру нации об огромном ущербе, который был нанесен немецким университетам из-за антисемитизма, однако в ответ услышал лишь о том, что и сам он может разделить судьбу своих протеже и попасть в концентрационный лагерь. Гейзенберг, в котором Планк видел будущее немецкой физики, никогда не выступал против нацистского режима в открытую, однако присоединился к этим двум видным ученым, чтобы защитить немецкую науку от нападок нацистов.
Макс Борн
Макс Борн (1882-1970) по образованию был математиком. Он учился в университетах Бреслау (ныне – Вроцлав, Польша), Гейдельберга и Цюриха. Докторскую степень (1906) и хабилитацию (1909) получил в Гёттингенском университете.
Там же он сменил профиль деятельности и посвятил себя теоретической физике. Некоторое время Борн был профессором в университетах Берлина и Франкфурта, а в 1921 году вернулся в Гёттинген, где возглавил кафедру теоретической физики. Среди докторантов ученого были такие известные в последующем физики, как Виктор Фредерик Вайскопф, Роберт Оппенгеймер, Мария Гёпперт-Майер и Макс Дельбрюк. В 1933 году Борн, еврей по происхождению, покинул нацистскую Германию. Он работал в Кембриджском университете, затем возглавил кафедру математической физики в Эдинбурге. Несмотря на всю важность его открытий, имя Борна не всегда упоминается в числе создателей квантовой механики. Некоторые считают, что ученый должен был вместе с Гейзенбергом получить Нобелевскую премию 1932 года. Признание пришло позднее, в 1954 году, когда Борн был удостоен Нобелевской премии по физике «за фундаментальные исследования по квантовой механике, особенно за статистическую интерпретацию волновой функции».
В ноябре 1933 года члены Лиги преподавателей подписали письмо в поддержку решения правительства Германии выйти из Лиги Наций. Гейзенберг отказался ставить свою подпись, и глава Лиги преподавателей, которым был не кто иной, как Йоханнес Штарк, попытался настроить против ученого студентов. Впрочем, эти усилия были напрасными. Несколько месяцев спустя Штарк предложил, чтобы все немецкие лауреаты Нобелевской премии отправили Гитлеру телеграмму со словами поддержки. Планк, Лауэ, Нернст и Гейзенберг отказались, мотивируя свое решение тем, что даже если бы они лично были согласны с текстом телеграммы, ученым не следует высказывать мнение о политических вопросах. Штарк с негодованием ответил, что они уже занимались политикой, когда преподавали теорию относительности и говорили об Эйнштейне.
В 1935 году в рядах государственных служащих прошла вторая чистка. Многие лейпцигские профессора, в числе которых был и Гейзенберг, выразили на ученом совете несогласие, за что получили строгий выговор. Ректор университета попытался убедить Гейзенберга записаться в резерв немецкой армии, чтобы доказать свою верность режиму, что тот и сделал несколько месяцев спустя. Гейзенберг считал уход из университета единственной политической и моральной альтернативой и решил посоветоваться с Планком. Как рассказывал физик много лет спустя, Планк считал, что отставка, не имеющая никакого практического воздействия, не станет решением. Он говорил: «Теперь все мы должны смотреть в будущее». Следовало поступить так же, как и во время Первой мировой войны: отделить немецкую культуру от политической конъюнктуры, провести различие между словами и истинными намерениями и сохранить свои посты. Гейзенберг сделал вывод: нужно терпеть, пока не случится худшее, и формировать в неблагоприятной политической среде островки стабильности, где можно сохранить отстаиваемые ценности.
Нобелевские лауреаты по физике 1932 и 1933 годов
В декабре 1933 года были присуждены очередные Нобелевские премии по физике. Гейзенберг был удостоен премии в 1932 году, однако ее вручение было отложено. Нобелевскую премию 1933 года разделили Шрёдингер и Дирак. Когда Борн узнал о присуждении Гейзенбергу Нобелевской премии, он отправил коллеге поздравительное письмо. В ответ Гейзенберг написал:
«Уважаемый господин Борн,
я не писал вам все это время и не поблагодарил вас за поздравления отчасти потому, что мне не давали покоя угрызения совести. Тот факт, что я один получил Нобелевскую премию за работу, которую вы, Йордан и я совместно провели в Гёттингене, угнетает меня, и я не знаю, что написать вам. Разумеется, я рад, что теперь наши общие усилия оценены по достоинству, и с наслаждением вспоминаю о нашем сотрудничестве. Я также верю, что всякий хороший физик знает, сколь важным был ваш вклад и вклад Йордана в создание квантовой механики, и никакое ошибочное решение, принятое извне, не изменит этого. Мне остается лишь вновь поблагодарить вас за совместный труд и опять испытать чувство легкого стыда.
С горячим приветом,
Вернер Гейзенберг»
О своих чувствах Гейзенберг написал и Бору:
«Если говорить о Нобелевской премии, я чувствую угрызения совести по отношению к Шрёдингеру, Дираку и Борну. Шрёдингер и Дирак заслуживают полной премии, по меньшей мере как и я, а я должен был разделить премию с Борном, с которым мы работали вместе».
Гейзенберг упоминал об этой неоднозначной ситуации в конце 1947 года, когда написал бумагу в защиту осужденного на Нюрнбергском процессе Эрнста фон Вайцзеккера, который был отцом его товарища. Некоторые свои идеи Гейзенберг прояснил и в рукописи, опубликованной уже после его смерти. Он писал, что немцы нееврейского происхождения, выступавшие против нацизма, должны были сделать выбор между двумя видами оппозиции – активной и пассивной. Пассивная оппозиция означала эмиграцию или отказ от всякой ответственности. Оба этих варианта были для ученого равносильны дезертирству. Активная оппозиция означала прямое противодействие, в том числе вооруженное сопротивление. Однако подобные действия также были обречены на провал. Выбором Гейзенберга стало получение определенного влияния: «Важно прояснить, что это, по сути, был единственный путь, который позволял что-то по– настоящему изменить». Жизнь ученого превратилась в череду ежедневных этических конфликтов и компромиссов с режимом, направленных на то, чтобы «что-то по-настоящему изменить». Для многих его коллег и друзей за границей действия Гейзенберга были равнозначны открытому сотрудничеству с нацистами.
В защиту теоретической физики
В 1920-е годы Филипп фон Ленард и Йоханнес Штарк начали кампанию против евреев в науке. Их основной мишенью стали Эйнштейн и теория относительности. Напомним, что для крайне правых сил Германии перемирие 1918 года было предательством со стороны политических элит, в частности евреев. Эйнштейн же был не только евреем, но и пацифистом, который отказался подписать манифест 1914 года. Кроме того, он публично выступал с критикой нацизма. Когда в 1933 году антисемитизм стал официальной идеологией, Ленард и Штарк захотели установить в Германии немецкую физику, свободную от какого бы то ни было еврейского влияния. Большинство ученых не последовало за ними, так как считало, что любые дискуссии физиков должны проходить исключительно в научной сфере, однако публично выступить против Ленарда и Штарка осмеливались немногие.
Ленард даже написал книгу под названием Deutsche Physik («Немецкая физика»). Работа была посвящена общей физике, однако ее длинное предисловие описывало различия между «немецкой физикой» и «еврейской физикой». В нем, в частности, говорилось: истинная наука реалистична, построена на основе экспериментов, обладает причинно-следственными связями и интуитивно понятна, строится по индукции, целью ее является познание природы и поиск истины, и, кроме того, она имеет чисто нордическое происхождение. Еврейская наука, напротив, носит теоретический и формальный характер, имеет вероятностную природу, неинтуитивна, изобилует математическими выкладками, не относится к природе и к реальности и притворяется интернациональной. Разделение между классической и современной физикой – это происки еврейской физики, так как «евреи стремятся повсюду создать противоречия и разрушить связи, чтобы бедные немцы, которые попадают в их ловушки, утратили любую возможность понять, где же они находятся».
Проявлением неприязни Штарка к Гейзенбергу стали события после отставки Зоммерфельда. Летом 1935 года руководство Мюнхенского университета предложило единственного кандидата на вакантную должность, и этим кандидатом стал Гейзенберг. В обычной ситуации он получил бы должность, однако Штарку удалось помешать его назначению. Кроме того, на публичном обсуждении он заявил, что от Эйнштейна удалось избавиться, однако в университетах остались его друзья и союзники. К ним Штарк причислил Планка, Лауэ и «действующего в духе Эйнштейна теоретика-формалиста Гейзенберга, который теперь хочет заполучить себе кафедру». С этого момента фраза «он действует в духе Эйнштейна» стала равносильна обвинению в сопротивлении режиму.
В конце 1936 года в официальной газете нацистской партии появилась статья «Немецкая физика и еврейская физика», где приводились те же аргументы, что и в предисловии к книге Ленарда: он отвергал теорию относительности Эйнштейна за туманность и формализм, а также выступал против матричной механики Гейзенберга и волновой механики Шрёдингера. Статья завершалась требованием изгнать «еврейскую физику» из университетов. В июне 1937 года в официальной газете СС была опубликована статья «Белые евреи в науке». Так были названы немцы по крови, которые, однако, распространяют дух еврейства, а потому вдвойне опасны. Основным представителем «духа Эйнштейна в новой Германии» был назван Гейзенберг. Позже в прессе появились письма с требованиями заключить Гейзенберга, предателя расы и государства, в концентрационный лагерь. Все эти нападки представляли серьезную угрозу для ученого, и он решил написать главе СС Гиммлеру. В письме Гейзенберг выразил готовность оставить университет, если статья отражала официальное мнение СС, либо требовал прекратить травлю. Мать ученого была с детства знакома с матерью Гиммлера, через нее он и передал письмо, чтобы быть уверенным, что оно дойдет до адресата. По прошествии нескольких месяцев Гиммлер попросил Гейзенберга подготовить подробный доклад о теоретической физике и одновременно приказал начать расследование, которое должно было подтвердить политическую благонадежность ученого. Расследование продолжалось восемь месяцев, в течение которых Гейзенберга вызывали на допросы в СС.
Вы уже знаете, что отъезд из Германии стал бы для меня очень болезненным. Я уеду лишь в случае абсолютной необходимости.
Гейзенберг в письме к Зоммерфельду, апрель 1938 года
По результатам расследования Гейзенберга сочли типичным аполитичным профессором, всегда готовым встать на защиту Германии – он доказал это в 1919 году, когда участвовал в подавлении Баварской Советской Республики, и в 1935-м, когда записался в резервисты. В деле указывалось, что он получил образование по «еврейской методологии», однако постепенно «приблизился к интуитивному арийскому образу мыслей» и теперь «утверждает, что физическая теория есть не более чем гипотеза, позволяющая физикам-экспериментаторам исследовать природу».
В июле 1938 года Гиммлер приказал прекратить кампанию против Гейзенберга, однако предупредил его в письме: «[…] Будет лучше, если далее вы в своих выступлениях будете различать для себя результаты научных исследований и личную и политическую деятельность их авторов». Иными словами, Гейзенберг мог говорить о теории относительности, но не об Эйнштейне.
Вскоре после получения письма Гейзенберг был мобилизован на несколько месяцев и отправлен в Чехословакию на время так называемого Судетского кризиса, который завершился аннексией части Чехословакии. Однако полностью Гейзенберг был реабилитирован в глазах правительства только в 1942 году, когда он принял участие в немецкой ядерной программе. Незадолго до этого состоялось собрание сторонников и противников «арийской физики», на котором было принято компромиссное решение: преподавание теоретической физики и теории относительности было разрешено, однако упоминать имя «еврея Эйнштейна» по-прежнему запрещалось.
Гейзенберг всеми силами старался избегать идеологических дискуссий. В своих статьях и докладах, в выступлениях перед промышленниками, инженерами, военными и государственными чиновниками он всегда настаивал на том, что теоретическая физика высокого уровня (к ней относится и современная физика) играет крайне важную роль в образовании будущих поколений физиков и способствует продуктивному сотрудничеству науки и техники.
Глава 5 Деление ядра и ядерное оружие
В двух мировых войнах, определивших лицо XX века, широко использовались достижения науки и техники, что стало причиной неутихающих споров о моральной ответственности ученых. Во время Второй мировой войны Германия стала первой страной, где были начаты работы по ядерной программе, одну из ключевых ролей в которой сыграл Вернер Гейзенберг.
Этот период стал наиболее противоречивым в его жизни, что особенно ярко проявилось во время визита ученого в Копенгаген в 1941 году.
Весной и летом 1939 года ученые Германии, Великобритании и США уведомили политических и военных руководителей своих стран о возможности создания взрывного устройства, которое будет в миллион раз мощнее любого из известных на тот момент. Этот шаг был продиктован ощущением неизбежности войны, которая действительно началась 1 сентября, в день вторжения Германии в Польшу. Вторая мировая война стала примером беспрецедентного сотрудничества фундаментальной и прикладной науки и техники. В результате на свет появились радар, крылатые ракеты «Фау-1» и «Фау-2», а также атомная бомба. Спустя несколько недель после начала войны Гейзенберг был мобилизован для участия в немецкой ядерной программе.
От нейтрона – к ядерной физике
Открытие нейтрона в 1932 году сыграло ключевую роль в понимании структуры атомных ядер. Итальянский физик Энрико Ферми (1901-1954) сразу же заметил, что нейтрон, не имеющий электрического заряда, может легко проникать внутрь атомных ядер. Он провел систематическое исследование, облучив ядра всех элементов периодической таблицы пучками нейтронов.
Лиза Мейтнер
Лиза Мейтнер (1878-1968) получила докторскую степень в Венском университете в 1905 году, став в Австрии второй женщиной – доктором физических наук. В 1907 году она переехала в Берлин, чтобы учиться у Макса Планка. Почти сразу же после приезда началось ее плодотворное сотрудничество с Отто Ганом, кульминацией которого стало открытие протактиния в 1917 году, за что Мейтнер и Ган неоднократно выдвигались на Нобелевскую премию. В 1926 году Мейтнер стала профессором Берлинского университета и первой женщиной в Германии, получившей столь высокое научное звание. В 1930-е годы она совместно с Ганом начала эксперименты, которые привели к открытию деления атомного ядра. С аннексией Австрии в 1938 году Мейтнер стала гражданкой Германии и подверглась преследованиям ввиду еврейского происхождения. Она вовремя покинула Германию – всего через несколько дней в берлинское Общество кайзера Вильгельма пришло письмо из министерства, в котором стоял вопрос о «доле еврейской крови» профессора Мейтнер. Пробыв некоторое время в Голландии, Мейтнер получила работу в Швеции. Жалование было более чем скромным, оборудования не хватало. Она отказалась принимать участие в Манхэттенском проекте, сказав: «Я никогда не сделаю ничего для создания бомбы». В 1947 году, к 70-летию Лизы Мейтнер, Стокгольмский университет присвоил ей звание профессора.
Как и ожидалось, Ферми получил новые радиоактивные изотопы. В ходе изучения урана, самого тяжелого химического элемента в природе, ученый посчитал, что получил новые химические элементы с Z = 93 и 94 (для урана Z = 92), то есть трансурановые элементы. Однако группа Ферми не располагала необходимым оборудованием и должным опытом для того, чтобы однозначно определить присутствие подобных элементов. В Берлине условия для проведения подобных экспериментов были более подходящими. Работы австрийского физика Лизы Мейтнер и немецкого ученого Отто Гана очень высоко ценились с момента открытия ими протактиния в 1917 году. Теперь, по инициативе Мейтнер, они занялись поисками трансурановых элементов. Мейтнер готовила опыты по облучению урана нейтронами, Ган выделял продукты облучения с помощью химических методов, после чего Мейтнер описывала излучение элементов, полученных в ходе опытов. Однако вскоре произошло нечто неожиданное.
В конце 1938 года Ган и его юный коллега Фриц Штрассман обнаружили среди продуктов химической реакции барий. Это было неожиданно, ведь барий с атомным числом 56 не был трансурановым элементом. К этому времени Мейтнер уже покинула Германию с ее новыми нацистскими законами, однако из Швеции поддерживала переписку с Ганом, который сообщил коллеге о полученных результатах: «Наш «радиоактивный изотоп» демонстрирует те же свойства, что и барий […] Возможно, вы предложите нам некое фантастическое объяснение этому». По счастливой случайности, это письмо попало к Мейтнер именно тогда, когда ее племянник, Отто Фриш, гостил у нее на новогодних каникулах. Фриш также был физиком (он работал в институте Бора), и тетя с племянником провели праздники за тем, что вновь и вновь пытались объяснить результаты, полученные Ганом. Им удалось предложить удовлетворительное объяснение, взяв за основу недавно созданную модель, в которой атомное ядро уподоблялось капле жидкости.
Взаимное притяжение атомов в капле воды удерживает их рядом, однако их положение не фиксировано, поэтому капля воды меняет форму. Однако чтобы изменить форму капли, то есть увеличить площадь ее поверхности, нужно затратить некоторую энергию, определяемую поверхностным натяжением. Нечто подобное происходит и с атомными ядрами: нуклоны – протоны и нейтроны – удерживаются внутри ядра, которое может деформироваться подобно капле жидкости. Кроме того, следует учесть силу отталкивания протонов. Представим себе ядро урана (Z = 92) как ядро бария (Z = 56), соединенное с ядром криптона (Z = 36). Оно не распадается потому, что сохраняется равновесие между силами притяжения, удерживающими вместе ядра бария и криптона, и силами отталкивания. Однако это равновесие можно нарушить, добавив к ядру еще один нейтрон. При этом исходное ядро начнет совершать колебания и в итоге распадется на два ядра со значениями Z, меньшими, чем исходное, – именно такой эффект наблюдали Ган и Штрассман. Мейтнер и Фриш назвали этот процесс делением ядра и оценили величину энергии, выделяемую при реакции. Она была просто огромной.
Вернувшись в Копенгаген, Фриш сообщил о полученных результатах Бору в тот самый момент, когда тот отправлялся в поездку по США. В конце января 1939 года новость об открытии деления ядра распространилась по всему миру, и физики в различных лабораториях начали проводить многочисленные эксперименты, стремясь подтвердить последние результаты. Стало понятно, что при каждом делении ядра выделяется разное число нейтронов (в среднем 2,4), которые, в свою очередь, могут спровоцировать деление новых ядер урана. Этот процесс может вызвать цепную реакцию, способную высвободить за очень короткое время огромную энергию. Так, при полном делении килограмма урана выделяется столько же энергии, что и при взрыве примерно 10 000 тонн тротила. В свете грядущей войны открытие приобрело огромную важность.
Важнейшие теоретические особенности этого явления изучил Бор совместно с американским физиком Джоном Уилером. Статья с результатами была опубликована в июне. Исследование шло очень быстро, и это соответствовало всеобщему интересу к новому явлению. Попытаемся описать суть вопроса. Деление изотопа U238, который встречается чаще всего (он составляет 99,3 % от всего урана в природе), происходит только при бомбардировке нейтронами с очень большой энергией. С большей вероятностью в результате облучения образуется изотоп U239. Однако деление более редкого изотопа, U235, можно вызвать даже более медленными нейтронами. Так как нейтроны, испускаемые при делении ядра, обладают разной энергией, если мы представим, что они вызывают деление соседнего атома U235, наиболее быстрые нейтроны нужно будет «затормозить», чтобы они не были поглощены атомами U238.
Пути деления ядер
Когда к ядру атома U235 присоединяется нейтрон, образуется нестабильный изотоп U236, который совершает колебания, пока не распадается на два более мелких ядра и несколько нейтронов. Число возможных способов деления ядра исчисляется сотнями. При наиболее вероятном варианте развития событий (примерно в 85% случаев) в результате деления образуются пары изотопов бария (Z = 56) и криптона (Z = 36), цезия (Z = 55) и рубидия (Z = 37), ксенона (Z = 54) и стронция (Z = 38), йода (Z = 53) и иттербия (Z = 39), теллура (Z = 52) и циркония (Z = 40). Каждой паре изотопов, в свою очередь, соответствуют несколько десятков возможных вариантов в зависимости от распределения нейтронов между ними. Практически все полученные ядра будут нестабильными ввиду избытка нейтронов и начнут распадаться. При распаде они испускают альфа– или бета-излучение, а также гамма-лучи, с которыми также высвобождается излишек энергии.
Для этого необходим замедлитель – некое вещество, которое будет замедлять нейтроны, не поглощая их. Замедлитель позволяет контролировать цепную реакцию и использовать высвобождаемую энергию – именно это происходит в ядерных реакторах. Однако если обогатить уран, то есть повысить содержание изотопов U235, то произойдет деление большего числа ядер. При делении чистого урана U235 замедлитель не потребуется вовсе, так как все высвобожденные нейтроны будут участвовать в делении новых и новых ядер. Кроме того, существует минимальная масса U235, называемая критической массой, при которой начинается самоподдерживающаяся цепная реакция. Критическая масса указывает, какое количество U235 необходимо для изготовления бомбы. В 1939 году ее значение было неизвестно, а оценки варьировались от нескольких килограммов до нескольких тонн. Так как выделение U235 – сложный и дорогостоящий процесс, который нельзя провести с помощью химических реакций, многие физики считали, что атомную бомбу создать на практике невозможно.
Урановый проект
Летом 1939 года Гейзенберг посетил США, где обсудил с коллегами и последнюю новость – открытие деления ядра. Вероятность создания новой бомбы волновала всех. Друзья Гейзенберга уговаривали его остаться в США, воспользовавшись приглашением от одного из университетов, однако ученый ответил, что его место в Германии. Некоторые поняли это как желание сотрудничать с нацистским режимом.
К началу войны Германия была единственной страной, где велись исследования, посвященные возможности использовать ядерную энергию в военных целях. В начале сентября 1939 года была запущена программа, получившая неформальное название «Урановый проект». Ее целью был анализ практических возможностей использования деления атомного ядра для изготовления бомбы и двигателя для флота. Как это ни удивительно, в немецкой программе отсутствовал какой-либо общий план действий. Десять-двенадцать лабораторий, работавших над проектом, подчинялись разным организациям, их деятельность плохо координировалась, лабораториям приходилось соперничать за ресурсы. Вероятно, немецкие военные рассматривали атомную бомбу как побочный проект и надеялись, что победу им принесет концепция блицкрига, то есть молниеносной войны.
В конце сентября Гейзенберг был направлен на «Урановый проект», где встретился с Гейгером, Боте, Дебаем, Хартеком, Ганом и Вайцзеккером. Его первым заданием стала подготовка доклада о делении ядра и возможностях его практического использования. Документ состоял из двух частей, которые были закончены в декабре 1939 и феврале 1940 года соответственно, и содержал теоретические основы немецкой ядерной программы. Гейзенберг писал об «урановой машине», имея в виду как ядерный реактор, так и атомную бомбу. Создание реактора было необходимым шагом – это позволило бы убедиться в возможности цепной реакции, провести необходимые исследования и начать подготовку ядерного оружия.