355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Артур Уиггинс » Пять нерешенных проблем науки » Текст книги (страница 13)
Пять нерешенных проблем науки
  • Текст добавлен: 8 октября 2016, 10:55

Текст книги "Пять нерешенных проблем науки"


Автор книги: Артур Уиггинс


Соавторы: Чарлз Уинн
сообщить о нарушении

Текущая страница: 13 (всего у книги 18 страниц)

Столкнувшись с неожиданным: ускорение Вселенной

В начале 1990-х годов две разные группы ученых занялись измерением расстояния до сверхновых звезд (см. гл. 3) в надежде определить замедление Вселенной нахождением ее нынешней скорости расширения, которая, по их мнению, должна была падать со временем. Но нашли они не то, что искали: вместо замедления получили ускорение. Ученые были столь удивлены, что, боясь ошибиться, несколько раз перепроверили свои результаты и лишь затем их обнародовали.

Прежде чем приступить к изучению этих данных, посмотрим, что ученые пытались сделать. Ведь, как мы помним, затруднение Хаббла при определении расстояний до удаленных галактик вызывалась тем, что переменные звезды – цефеиды у таких галактик оказывались слишком тусклыми. Поэтому вполне разумно было отыскать более яркие объекты с известной светимостью, после чего вычислить расстояние до них на основе их относительной светимости. При всей яркости сверхновых звезд светимость зависит от их массы. Один вид сверхновых связан со звездой постоянной массы, а поэтому и известной светимости. Подобное происходит, когда белый карлик получает дополнительную массу от звезды – спутника, и этой массы достаточно, чтобы превысить предел для массы белого карлика (в 1,4 раза больше массы Солнца).

Тогда белый карлик взрывается, становясь сверхновой звездой типа Iа. Ввиду своей чрезвычайной светимости сверхновые типа Iа легко различимы в отдаленных галактиках. Такие сверхновые взрываются с одной и той же светимостью, так что расстояние до них можно вычислить, измеряя их видимый блеск: чем он слабее, тем она дальше. Трудность данного подхода связана с тем, что сверхновые типа Iа сохраняют свою максимальную яркость лишь в течение нескольких недель.

В 1998 году в рамках проекта космологии сверхновых звезд Калифорнийского технологического института и Международного консорциума по поиску сверхновых с большой Z [27]27
  Относительное изменение длины волны линий в спектре излучения небесные тел Z равно отношению разности лабораторной длины волны линии спектра и длины волны смещенной линии к лабораторной длине волны линии спектра.


[Закрыть]
[величиной красного смещения] исследовались различные сверхновые типа Iа вблизи максимума их яркости и определялись их расстояния. С помощью метода доплеровского сдвига, впервые предложенного Весто Слайфером, они определили красные сдвиги галактик, где находились сверхновые, и сравнили полученные величины со значениями, получаемыми с применением зависимости Хаббла. Измерения показали, что эти отдаленные сверхновые обладают значительно меньшим блеском, чем указывает зависимость Хаббла. А поскольку свету от вспыхнувших сверхновых пришлось добираться к нам 4–8 млрд. лет, измерения свидетельствовали, что сегодня Вселенная расширяется значительно быстрее прежнего. Иначе говоря, ее расширение идет с ускорением.

На следующий год обнаружили еще более удаленную сверхновую. Оказалось, что это самая далекая из когда – либо наблюдавшихся звезд, и свет от нее шел 11 млрд. лет. Блеск ее оказался выше расчетного. Получалось, что 11 млрд. лет назад происходило замедление ранней Вселенной из-за сил тяготения. Но 4–8 млрд. лет назад она стала ускоренно расширяться, а галактики – разбегаться со всевозрастающей скоростью.

Из этого измерения следовал неумолимый вывод: какова бы ни была причина нынешнего ускоренного расширения Вселенной, оно было менее заметным или даже вовсе отсутствовало на ранней стадии ее эволюции. Оно стало заметным, когда Вселенная миновала пик своей эволюции, и с той поры возраст определяет ее поведение. Такое положение вещей сродни ситуации, когда водитель замедляет скорость при виде красного света светофора, чтобы при появлении зеленого света нажать на газ.

В темноте рассуждать о темной энергии

Что это за штука, вызывающая подобное космологическое ускорение? Мы не знаем, но уже дали ей название. Недостающую массу (энергию) никогда не видели, поэтому она темная. А раз она противодействует тяготению, то не может обладать привычной для нас массой. Астрофизик из Чикагского университета Майкл Тернер окрестил ее в 1999 году темной энергией.

Благодаря ряду различных опытов у нас есть оценка величины этой неведомой темной энергии, пусть даже мы и не знаем, что она собой представляет. Несколько опытов ставилось с целью выяснить общие геометрические свойства пространства и определить, открытая, плоская или замкнутая наша Вселенная. Фоновое микроволновое излучение, заполняющее ее всю, осталось от начального «большого взрыва». В течение первых 400 тыс. лет после этого взрыва Вселенная была еще столь горячей, что представлялась непроницаемой для электромагнитного излучения. Затем, остыв, она стала испускать электромагнитные волны. На протяжении 400 тыс. лет эти волны способны были преодолевать лишь ограниченное расстояние, так что все флуктуации в излучении были ограничены по величине. Но с тех пор флуктуации исказились ввиду искривления пространства. Измерение величины минимальных температурных флуктуаций в самом излучении дает возможность определить общую кривизну пространства. Для измерения этих флуктуаций были задействованы высотные воздушные шары и датчик наверху метеорологической станции на Южном полюсе. В рамках экспериментов «Бумеранг», «Максима» и «Дейси» удалось изучить эти флуктуации и определить, что пространство Вселенной – плоское (евклидово): Ω = 1 ± 4 % (рис. 6.13).

У плоской Вселенной Ω = 1, так что плотность в точности должна совпадать с критическим значением. Поскольку обычное вещество и темная материя вместе составляют 27 % критической плотности массы (энергии), для обеспечения плоского характера геометрии Вселенной оставшиеся 73 % должны приходиться на темную энергию. Данная теория оставляет смешанное чувство: мы можем оценить количество темной энергии, блуждая в потемках по поводу ее природы.

Вот какую картину рисуют эти данные: после первоначального резкого раздувания (инфляции) Вселенная перешла к расширению, и скорость уменьшилась под действием материи (обычной и темной). На ранних стадиях эволюции темная энергия почти не проявляла себя, так как была столь равномерно распределена по Вселенной, что не вмешивалась в формирование галактик и туманностей. Спустя несколько миллиардов лет верховенство перешло к темной энергии, и она стала своим отрицательным давлением противодействовать силе тяготения, ускоряя тем самым расширение Вселенной. В настоящее время темная энергия слегка пересиливает тяготение, но с увеличением расширения Вселенной все большие расстояния будут способствовать дальнейшему ослаблению тяготения. Преобладание темной энергии будет становиться все более заметным, вызывая еще более ускоренное расширение Вселенной.

Рис. 6.13. Флуктуации фонового микроволнового излучения, определяющие общую кривизну пространства.

На верхнем снимке представлены опытные данные; нижние снимки представляют собой три возможных распределения флуктуаций с двухмерными изображениями пространственно-временной кривизны. Слева направо представлены случаи замкнутой, плоской и открытой Вселенной. Данные более всего согласуются со случаем плоской Вселенной

Решение головоломки: где, когда, как и кто?

С точки зрения теории существует несколько возможностей учета темной энергии:

♦  Возвращение космологической постоянной Эйнштейна.Будет забавно, если окажется невозможным обойтись без «самой крупной ошибки» Эйнштейна. Ведь правильно подобранная космологическая постоянная отразит противодействие тяготению в виде отрицательного давления, вызывающего ускоренное расширение Вселенной в согласии с опытными данными. Но если космологическая постоянная представляет собой энергию нулевых колебаний вакуума (представление квантовой механики, связанное с принципом неопределенности Гейзенберга), она получается на 120 порядков выше, и надо ее каким – то образом уменьшать.

♦  Добавление зависящего от времени члена к эйнштейновским уравнениям поля.Если бы некоторая величина в уравнениях Эйнштейна менялась во времени, она могла бы объяснить незначительное влияние темной энергии для ранней Вселенной и последующее усиление ее роли. Хотя теоретики предпочитают простые уравнения по возможности с малым числом регулируемых параметров, надо рассмотреть и такой, менее изящный выход из положения.

♦  Допущение изменения во времени фундаментальных величин, ранее считавшихся постоянными.Возможно, скорость света или постоянная тяготения менялись со временем. Исследования в этом направлении продвигаются с трудом и дают противоречивые результаты.

♦  Добавление пятого, еще не выявленного взаимодействия.Данное взаимодействие получило название «квинтэссенция» и представляет собой еще не выявленное поле отрицательной энергии, пронизывающей все пространство. Схожее представление связано со спиновым полем, именуемым спинтэссенцией.

♦  Допущение гипотетических частиц под названием аксионы.Если аксионы существуют, то фотоны могут генерировать аксионы, а затем опять становиться фотонами, вызывая изменения в светимости звезд. Другая возможность состоит в том, что аксионы каким – то образом связывают друг с другом темную материю и темную энергию. Аксионы – необычные частицы, возможно, имеющие отношение к вопросу о происхождении массы элементарных частиц Вселенной (см. гл. 2).

♦  Допущение возможности существования множественных вселенных.Возможно, квантовая пена породила много вселенных, и мы обитаем в одной из них. Другие вселенные вполне могут обладать иной величиной сил взаимодействия, иными постоянными или даже совершенно иными физическими законами. Наша приютила жизнь, благодаря чему мы можем рассуждать о ее природе.

♦  Взаимодействие мембраны, содержащей нашу Вселенную, с мембранами, содержащими иные вселенные.В случае истинности одной из теорий относительно источника массы у частиц (см. гл. 2), включающих недоступные ощущениям многочисленные размерности, возможно, мембрана, на которой пребывает наша Вселенная, взаимодействует с другими мембранами посредством тяготения. Тогда мембраны могли бы сталкиваться, что заставило бы нас пересмотреть все прежние теории относительно эволюции Вселенной.

Где, когда и как.

Помимо теоретических разработок планируется проведение ряда опытов по выяснению природы и величины темной энергии и темной материи.

♦  Космический телескоп Джеймса Уэбба.В 2010 году намечено заменить космический телескоп Хаббла другим, более мощным. Если вспомнить, сколькими успехами мы обязаны телескопу Хаббла, от его преемника следует ожидать еще более ощутимых результатов.

♦  Спутник Планка.Европейское управление космических исследований готовит запуск спутника для проведения более точных по сравнению с сегодняшними измерений флуктуаций реликтового излучения. Запуск намечен на начало 2007 года.

♦  Слоуновский цифровой обзор неба.В рамках этого грандиозного проекта, уже претворяемого в жизнь, с помощью 2,5 – метрового телескопа [обсерватории Апачи-Пойнт, [28]28
  Обсерватория в штате Нью-Мексико (США), находящаяся в собственности и эксплуатируемая сообществом университетов (Университетом штата Нью-Мексико, Вашингтонским, Чикагским, Принстонским университетами и Университетом штата Вашингтон). Основной инструмент – 3,5-метровыш альтазимутальным телескоп для наблюдений в оптическом и инфракрасном диапазонах. Главное зеркало имеет сотовую структуру и изготовлено методом вращательного литья, что делает его в 5 раз легче сплошного зеркала того же размера. В 1997 году для работы по проекту «Цифровой обзор неба» введены в строй 2,5-метровый телескоп и телескоп поддержки с зеркалом диаметром 0,6 м. Цель проекта состоит в том, чтобы собрать изображения и спектроскопические данные о сотнях миллионов астрономических объектов, в том числе слабые галактик. Имеется также телескоп с зеркалом диаметром 1 м, принадлежащий Университету штата Нью-Мексико. Обсерватория начала работу в конце 1990 года.


[Закрыть]
штат Нью-Мексико] проводится нанесение координат галактик одной четверти видимого неба. Будет охвачено более 100 млн. галактик.

♦  SNAP (SuperNova/Acceleration Probe).В рамках данного проекта намечен запуск космического телескопа, который на протяжении трех лет смог бы регистрировать до 2 тыс. сверхновых типа 1а в год. Заработать он должен не позднее 2006 года.

♦  Обзор красных смещений галактик,расположенных в телесном угле размером 2°. Данный обзор осуществляется с помощью англо – австралийского 3,9 – метрового телескопа в обсерватории Сайдинг-Спринг австралийского штата Новый Южный Уэльс. Им будет охвачено более 250 тыс. галактик. Наблюдение уже ведется, и свежие данные размещаются на узле www. aao. gov. au/2df.

Кто.

В марте 2000 года Национальная академия наук США создала Комитет по физике Вселенной, перед которым поставлена задача – обеспечить взаимодействие астрономии и физики с целью преодоления привычных представлений и изучения новых возможностей на стыке обеих отраслей знаний. В своем отчете комитет подчеркивает «глубокую связь… между кварками и космосом» и предлагает «стать посредником в изучении физики Вселенной с участием Министерства энергетики, НАСА и Национального научного фонда. [29]29
  Независимое федеральное ведомство, основанное по инициативе Конгресса в 1950 году с целью содействия развитию фундаментальные и прикладные научные и научно – технических исследований в государственные интересах. Поддерживает и финансирует перспективные разработки в университетах и научно-исследовательских учреждениях. Во главе фонда стоит правление из 24 видные научные и общественные деятелей, назначаемые наряду с директором президентом США с согласия Сената на шестилетний срок и работающих на общественные началах. Его годовой бюджет в 1990-е годы составлял более трех миллиардов долларов. На его долю приходится примерно четверть всех средств, отпускаемые правительством на поддержание фундаментальной науки.


[Закрыть]
Члены Комитета по физике Вселенной и те, кто может помочь в этом деле:

Майкл Стенли Тернер (Чикагский университет, председатель);

Роджер Дэвид Бландфорд (Калифорнийский технологический институт);

Сандра Мур Фейбер (Калифорнийский университет, Санта-Крус);

Томас К. Гайссер (Делавэрский университет);

Файона Энн Харрисон (Калифорнийский технологический институт);

Джон Питер Хачра (Гарвардский университет);

Хелен Р. Куинн (Стэнфордский центр линейного ускорителя);

Р. Дж. Хамиш Робертсон (Вашингтонский университет);

Бернар Садуле (Калифорнийский университет, Беркли);

Фрэнк Дж. Скиулли (Колумбийский университет);

Дэвид Натаниел Спергел (Принстонский университет);

Дж. Энтони Тайсон [научно-исследовательский центр «Bell Laboratories»] компании Lucent Technologies;

Фрэнк Энтони Вилчек (Массачусетский технологический институт);

Клиффорд Мартин Уилл (Вашингтонский университет);

Брюс Д. Уинстейн (Чикагский университет);

Филип Джеймс Эдвин Пиблз;

Джон Баколл;

Джереми Острикер;

И. У. «Рокки» Колб.

Вселенная походит на подарок, принесенный кем-то на вечеринку. Подарок довольно темен и завернут в темную бумагу, но зато украшен блестящей тесьмой затейливых расцветок и узоров.

Так и мы: настолько поглощены яркой тесьмой видимой материи во Вселенной, что до сих пор почти ничего не ведаем о таящейся внутри темной материи и темной энергии. Мы только начинаем трясти коробку. Что мы услышим?

Список проблем

Теперь я подозреваю, что Вселенная не только более необычна, чем мы себе воображаем, – она более необычайна, чем мы себе можем вообразить.

Дж. Б. Холдейн

Ограничить число нерешенных наукой проблем – то же самое, что заставить полноводную Миссисипи течь сквозь садовый шланг.

В действительности, помимо затронутых нами пяти крупнейших не решенных наукой задач, внимания и усилий ученых требует множество иных проблем. Некоторые из них, возможно, оспорят или даже в итоге оттеснят нашу пятерку.

В данном разделе перечислены и бегло рассмотрены некоторые иные не решенные наукой задачи.

Узнать о них больше можно из других источников (см. раздел «Источники для углубленного изучения» в конце книги).

Проблемы физики

Какова природа света?

Свет в некоторых случаях ведет себя подобно волне, а во многих других – сродни частице. Спрашивается: что же он такое? Ни то, ни другое. Частица и волна – лишь упрощенное представление о поведении света. На самом же деле свет не частица и не волна. Свет оказывается сложнее того образа, что рисуют эти упрощенные представления.

Каковы условия внутри черных дыр?

Черные дыры, рассматриваемые в гл. 1 и 6, обычно представляют собой сжимающиеся ядра больших звезд, переживших взрыв в виде сверхновой. У них такая огромная плотность, что даже свет не в состоянии покинуть их недра. Ввиду огромного внутреннего сжатия черных дыр к ним неприменимы обычные законы физики. А поскольку ничто не может покинуть черных дыр, недоступно и проведение каких-либо опытов для проверки тех или иных теорий.

Сколько измерений присуще Вселенной и можно ли создать «теорию всего сущего»?

Как говорилось в гл. 2, пытающиеся потеснить стандартную модель теории, возможно, в итоге прояснят число измерений, а также преподнесут нам «теорию всего сущего». Но пусть вас не вводит в заблуждение название. Если «теория всего сущего» и даст ключ к пониманию природы элементарных частиц, внушительный список нерешенных проблем – залог того, что подобная теория оставит без ответа еще много важных вопросов. Подобно слухам о смерти Марка Твена, слухи о кончине науки с приходом «теории всего сущего» слишком преувеличены.

Возможно ли путешествие во времени?

Теоретически общая теория относительности Эйнштейна допускает такое путешествие. Однако нужное при этом воздействие на черные дыры и их теоретических собратьев, «кротовые норы», [30]30
  Так называемые топологические туннели. Другие названия этих гипотетических объектов – мосты Эйнштейна – Розена (1909–1995), Подольского (1896–1966), горловины Шварцшильда (1873–1916). Туннели могут связывать как отдельные, сколь угодно отдаленные области пространства нашей Вселенной, так и области с различными моментами начала ее раздувания. В настоящее время продолжается дискуссия о реализуемости туннелей, об их проходимости и эволюции.


[Закрыть]
потребует огромных затрат энергии, значительно превосходящих наши нынешние технические возможности. Толковое описание путешествия во времени дается в книгах Митио Каку Гиперпространство (1994) и Образы (1997) и на сайте http://mkaku. org

Удастся ли обнаружить гравитационные волны?

Некоторые обсерватории заняты поиском свидетельств существования гравитационных волн. Если такие волны удастся найти, данные колебания самой пространственно-временной структуры будут указывать на происходящие во Вселенной катаклизмы вроде взрыва сверхновых, столкновений черных дыр, а возможно, еще неведомых событий. За подробностями обращайтесь к статье У. Уэйта Гиббса «Пространственно-временная рябь».

Каково время жизни протона?

Некоторые теории, не укладывающиеся в рамки стандартной модели (см. гл. 2), предсказывают распад протона, и для обнаружения такого распада было сооружено несколько детекторов. Хотя самого распада пока не наблюдалось, нижняя граница периода полураспада у протона оценивается величиной 10 32лет (значительно превышающей возраст Вселенной). С появлением более чувствительных датчиков, возможно, удастся обнаружить распад протона или же придется отодвинуть нижнюю границу периода его полураспада.

Возможны ли сверхпроводники при высокой температуре?

Сверхпроводимость появляется при падении у металла электрического сопротивления до нуля. В таких условиях установившийся в проводнике электрический ток течет без потерь, которые свойственны обычному току при прохождении в проводниках вроде медного провода. Явление сверхпроводимости впервые наблюдалось при крайне низкой температуре (чуть выше абсолютного нуля, – 273 °C). В 1986 году ученым удалось сделать сверхпроводящими материалы при температуре кипения жидкого азота (—196 °C), что уже допускало создание промышленных изделий. Механизм данного явления понят еще не до конца, но исследователи пытаются добиться сверхпроводимости при комнатной температуре, что позволит уменьшить потери электроэнергии.

Проблемы химии

Как состав молекулы определяет ее облик?

Знание орбитального строения атомов в простых молекулах позволяет довольно легко определить внешний вид молекулы. Однако теоретические исследования облика сложных молекул, особенно биологически важных, пока не проводились. Один из аспектов данной проблемы – укладка белков, рассматриваемая в Списке идей, 8.

Каковы химические процессы при раке?

Биологические факторы вроде наследственности и внешней среды, вероятно, играют большую роль в развитии рака. Зная происходящие в раковых клетках химические реакции, возможно, удастся создать молекулы для прерывания этих реакций и выработки у клеток сопротивляемости раку.

Как молекулы обеспечивают связь в живых клетках?

Для оповещения в клетках задействуются молекулы нужной формы, когда через «подгонку» в виде комплиментарности и происходит передача сообщения. Белковые молекулы наиболее важны, так что вид их укладки и определяет их облик [конформацию]. Поэтому более глубокое знание белковой укладки поможет решить вопрос со связью.

Где на молекулярном уровне задается старение клетки?

Другая биохимическая проблема старения, возможно, связана с ДНК и белками, занятыми «починкой» ДНК, которая урезается в ходе неоднократной репликации (см.: Список идей, 9. Генетические технологии).

Проблемы биологии

Как развивается целый организм из одной оплодотворенной яйцеклетки?

На данный вопрос, похоже, удастся ответить, как только будет решена главная задача из гл. 4: каково устроение и предназначение протеома? Конечно, каждому организму свойственны свои особенности в устроении белков и их предназначении, но наверняка удастся отыскать и много общего.

Что вызывает массовые вымирания?

За последние 500 млн. лет пять раз происходило полное исчезновение видов. Наука продолжает доискиваться причин этого. Последнее вымирание, случившееся 65 млн. лет назад, на рубеже мелового и третичного периодов, связано с исчезновением динозавров. Как ставит вопрос Дэвид Роп в книге Вымирание: подкачали гены или удача? (см.: Источники для углубленного изучения), вызвано ли вымирание большинства живших в ту пору организмов генетическими факторами или же неким катаклизмом? Согласно выдвинутой отцом и сыном, Луисом и Вальтером, Альваресами гипотезе, 65 млн. лет назад на Землю упал огромный метеорит (примерно 10 км в поперечнике). Произведенный им удар поднял огромные облака пыли, которые стали помехой фотосинтезу, что привело к гибели многих растений, а значит, и составляющих одну пищевую цепочку животных, вплоть до громадных, но уязвимых динозавров. Подтверждение этой гипотезы – большой метеоритный кратер, обнаруженный в южной части Мексиканского залива в 1993 году. Возможно ли, что и предыдущие вымирания были следствием подобных столкновений? Исследования и споры продолжаются.

Динозавры были теплокровными или холоднокровными животными?

Британский профессор анатомии Ричард Оуэн ввел понятие «динозавр» (что значит «ужасные ящеры») в 1841 году, когда было найдено всего три неполных скелета. Воссозданием облика вымерших животных занялся британский художник-анималист и ваятель Бенджамин Уотерхаус Гаукинс. Поскольку первые найденные особи имели зубы, как у игуаны, его чучела напоминали огромных игуан, вызвав настоящий переполох среди посетителей.

А ведь ящерицы холоднокровные пресмыкающиеся, и поэтому сначала решили, что таковыми были и динозавры. Затем несколько ученых предположили, что по меньшей мере некоторые динозавры относились к теплокровным животным. Доказательств не было вплоть до 2000 года, когда в Южной Дакоте обнаружили окаменевшее сердце динозавра. Имевшее четырехкамерное устройство, это сердце подтверждает предположение о теплокровных динозаврах, поскольку в сердце ящериц всего три камеры. Однако, чтобы убедить остальной мир в верности такого предположения, необходимы дополнительные свидетельства.

Что лежит в основе человеческого сознания?

Будучи предметом изучения гуманитарных наук, данный вопрос выходит далеко за рамки настоящей книги, однако многие наши научные коллеги берутся за его изучение.

Как и следовало ожидать, существует несколько подходов к трактовке человеческого сознания. Сторонники редукционизма утверждают, что мозг представляет собой огромное множество взаимодействующих молекул и что в итоге мы разгадаем правила их работы (см. статью Крика и Коха «Проблема сознания» [В мире науки. 1992. № 11–12]).

Другой подход восходит к квантовой механике. Согласно ему, мы не в состоянии постичь нелинейность и непредсказуемость работы мозга, пока не уясним связи между атомным и макроскопическим уровнями поведения материи (см. книгу Роджера Пенроуза Новый ум короля: О компьютерах, мышлении и законах физики [М., 2003]; а также Тени разума: В поисках науки о сознании. [М., 2003]).

В соответствии с давним подходом человеческому уму присуща мистическая составляющая, недоступная научному объяснению, так что наука вообще не способна постичь человеческое сознание.

В связи с недавней работой Стивена Вулфрема по созданию упорядоченных образов постоянным применением одних и тех же простых правил (см. гл. 5) не стоит удивляться, что данный подход используют по отношению к человеческому сознанию; так появится еще одна точка зрения.


    Ваша оценка произведения:

Популярные книги за неделю