355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Арнольд Роббинс » Linux программирование в примерах » Текст книги (страница 18)
Linux программирование в примерах
  • Текст добавлен: 6 мая 2017, 11:00

Текст книги "Linux программирование в примерах"


Автор книги: Арнольд Роббинс



сообщить о нарушении

Текущая страница: 18 (всего у книги 55 страниц)

6.4. Терминалы: isatty()

Модель стандартного ввода, стандартного вывода и стандартной ошибки Linux/Unix препятствует специальной трактовке устройств ввода и вывода. Программам обычно не нужно знать или беспокоиться о том, направляется ли их вывод на терминал, в файл, канал, физическое устройство или что-то еще.

Однако иногда бывают моменты, когда программе действительно нужно знать, с какого рода файлом связан файловый дескриптор. Семейство вызовов stat() часто предоставляет достаточно сведений обычный файл, каталог, устройство и т.д. Хотя иногда даже этого недостаточно, и для интерактивных программ, в частности, вам может потребоваться знать, не представляет ли дескриптор файла tty.

tty (сокращение для Teletype, одного из ранних производителей компьютерных терминалов) является любым устройством, представляющим терминал, т.е. нечто, что человек мог бы использовать для взаимодействия с компьютером. Это может быть либо аппаратное устройство, такое, как клавиатура и монитор персонального компьютера, или старинный терминал видеодисплея, соединенный с компьютером через последовательный порт или модем, или программный псевдотерминал, такой, который используется в оконных системах и при сетевых регистрациях.

Различить можно с помощью isatty().

#include /* POSIX */

int isacty(int desc);

Эта функция возвращает 1, если дескриптор файла desc представляет терминал, в противном случае 0. В соответствии с POSIX isatty() может установить errno для указания ошибки; поэтому до вызова isatty() следует установить errno в 0, а затем проверить ее значение, если был возвращен 0. (Справочная страница GNU/Linux isatty(3) не упоминает об использовании errno.) Стандарт POSIX также указывает, что просто возврат isatty() 1 не означает, что на другом конце дескриптора файла находится человек!

Одним местом, где используется isatty(), является современная версия ls, в которой имена файлов по умолчанию печатаются в столбцы, если терминалом является стандартный вывод, а если нет, они печатаются по одной на строчку.

6.5. Рекомендуемая литература

1. Mastering Algorithms With C by Kyle Loudon. O'Reilly & Associates, Sebastopol, California, USA, 1999. ISBN: 1-56592-453-3.

Эта книга предоставляет практическое, утилитарное введение в алгоритмы и структуры данных с использованием С, освещая среди прочих вещей таблицы хэшей, деревья, сортировку и поиск.

2. The Art of Computer Programming Volume 3. Sorting and Searching, 2nd edition, by Donald E. Knuth Addison-Wesley, Reading Massachusetts, USA, 1998. ISBN: 0-201-89685-0.[71]71
  Русский перевод Дональд E. Кнут. Искусство программирования Том 3. Сортировка и поиск (2-е издание). Москва • Санкт-Петербург • Киев, Вильямс, 2000 – Примеч. науч. ред.


[Закрыть]

На эту книгу обычно ссылаются как на последнее слово в сортировке и поиске. Примите во внимание, что она значительно более сжата и труднее для чтения, чем книга Loudon'a.

3. Проект GTK+[72]72
  http://www/gtk.orgПримеч. автора.


[Закрыть]
состоит из нескольких совместно работающих библиотек GTK+ является лежащим в основе инструментарием, используемым проектом GNU GNOME.[73]73
  http://www.gnome.orgПримеч. автора.


[Закрыть]
В основе иерархии библиотек располагается Glib, библиотека фундаментальных типов, структур данных и функций для работы с ними. Glib включает возможности для всех основных операций, которые мы до сих пор рассмотрели в данной книге, и многое другое, включая связанные списки и хэш-таблицы. Для просмотра онлайн-документов начните с веб-сайта проекта документации GTK+[74]74
  http://www/gtk.org/rdpПримеч. автора.


[Закрыть]
, щелкните на ссылке «Загрузить» (Download) и идите дальше по онлайн-версии.

6.6. Резюме

• Время внутренне хранится в виде значений time_t, представляющих «секунды с начала Эпохи». Эпоха для систем GNU/Linux и Unix начинается с полночи 1 января 1970 г. по UTC. Текущее время получается от системы с помощью системного вызова time(), а difftime() возвращает разницу в секундах между двумя значениями time_t.

• Структура struct tm представляет «разложенное время», которое является значительно более удобным представлением даты и времени. gmtime() и localtime() преобразуют значения time_t в значения struct tm, a mktime() действует в обратном направлении.

• asctime() и ctime() осуществляют упрошенное форматирование значений времени, возвращая указатель на static строку символов фиксированного размера и формата, strftime() предусматривает гораздо более гибкое форматирование, включая значения на основе местных настроек.

• Сведения о часовом поясе доступны через вызов tzset(). Поскольку стандартные процедуры действуют так, как если бы они автоматически вызывали tzset(), необходимость в непосредственном вызове этой функции возникает редко.

• Стандартной процедурой для сортировки массивов является qsort(). Используя предоставленную пользователем функцию сравнения и принимая параметры числа элементов массива и их размера, qsort() может сортировать любые виды данных. Это обеспечивает значительную гибкость.

• scandir() читает в массив struct dirent каталог целиком. Для выбора того, какие элементы включить в массив и для обеспечения упорядочения элементов в массиве могут использоваться предоставленные пользователем функции alphasort() является стандартной функцией для сортировки элементов каталога по имени; scandir() передает функцию сортировки прямо через qsort().

• Функция bsearch() работает подобно qsort(). Она осуществляет быстрый бинарный поиск. Используйте ее, если цена линейного поиска перевешивает цену сортировки ваших данных. (Дополнительный API для поиска коллекций данных описан в разделе 14.4 «Расширенный поиск с помощью двоичных деревьев».)

• Базы данных пользователей и групп могут храниться в файлах на локальном диске или могут быть доступны через сеть. Стандартный API намеренно скрывает это различие. Каждая база данных обеспечивает как линейный просмотр всей базы данных, так и непосредственные запросы имени или ID пользователя/группы.

• Наконец, для тех случаев, когда недостаточно простого stat(), isatty() может вам сообщить, представляет ли открытый файл устройство терминала.

Упражнения

1. Напишите простую версию команды date, которая принимает в командной строке строку формата и использует ее для форматирования и вывода текущего времени.

2. Когда файл старше шести месяцев, 'ls -l' использует для печати времени изменения более простой формат. GNU версия файла ls.c использует следующее вычисление:

3043 /* Время считается недавним, если оно в пределах последних 6

3044    месяцев. В Григорианском годе 365.2425 * 24 * 60 * 60 ==

3045    31556952 секунд в среднем. Запишите это значение как

3046    целую константу для избежания трудностей с плавающей точкой.*/

3047    six_months_ago = current_time – 31556952 / 2;

Сравните это с нашим примером вычисления шести прошлых месяцев. Каковы преимущества и недостатки каждого из методов?

3. Напишите простую версию команды touch, которая изменяет время модификации файла, имя которого указано в командной строке, на текущее время

4. Добавьте к вашей команде touch опцию, которая принимает в командной строке значения даты и времени и использует их в качестве нового времени модификации файлов, указанных в командной строке.

5. Добавьте к своей версии touch еще одну опцию, которая принимает имя файла и использует время модификации данного файла как новое время модификации файла, указанного в командной строке.

6. Усовершенствуйте ch06-sortemp.c так, чтобы она сортировала отдельный массив указателей, указывающих на массив сотрудников.

7. Добавьте к ch06-sortdir.c опции для сортировки по номеру индекса, времени модификации, времени доступа и размеру. Добавьте «обратную опцию», так, чтобы основанная на времени сортировка первым помещала самый недавний файл, а по другим критериям (размеру, индексу) помещала вначале наибольшее значение.

8. Напишите простую версию команды chown. Она должна использоваться так:

chown пользователь[:группа] файлы ...

Здесь пользователь и группа являются именами пользователя и группы, представляющими новых пользователя и группу для указанных файлов. Группа необязательна; если она присутствует, она отделяется от пользователя двоеточием. Чтобы протестировать свою версию на системе GNU/Linux, вы должны зарегистрироваться в качестве root. Делайте это осторожно!

9. Усовершенствуйте свою chown, чтобы допустить использование числовых значений пользователя или группы наряду с их именами.

10. Напишите функции для копирования структур пользователя и группы, включая указываемые данные. Для выделения памяти используйте при необходимости malloc().

11. Напишите специализированную библиотеку поиска пользователей, которая считывает в динамически выделяемый массив всю базу данных пользователей. Предусмотрите быстрый поиск пользователей как по ID, так и по именам. Гарантируйте обработку случая, при котором запрошенный пользователь не найден.

12. Сделайте то же самое для базы данных групп.

13. Напишите программу stat, которая печатает содержимое struct stat для каждого файла, указанного в командной строке. Она должна выводить все значения в формате, удобном для восприятия человеком: значения time_t в виде дат и времени, значения uid_t и gid_t в виде соответствующих имен (если они доступны), а также содержимое символических ссылок. Выведите поле st_mode таким же образом, как вывела бы ls.

Сравните свою программу с программой stat GNU Coreutils как по их выводу, так и по исходному коду.

Глава 7
Соединяя все вместе: ls

Команда V7 ls хорошо связывает воедино все, что мы до сих пор видели. Она использует почти все API, которые мы рассмотрели, затрагивая многие аспекты программирования Unix: выделение памяти, вспомогательные данные файлов, времена и даты, имена пользователей, чтение каталогов и сортировку.

7.1. Опции V7 ls

По сравнению с современными версиями ls, V7 ls принимает лишь небольшое количество опций, а значение некоторых из них для V7 отличается от значения для современной ls. Эти опции следующие:

 Выводит все элементы каталога. Без нее '.' и '..' не выводятся. Довольно интересно, V7 игнорирует лишь '.' и '..', тогда как с V1 по V6 игнорируется любой файл, имя которого начинается с точки. Это последнее является также поведением по умолчанию и для современных версий ls.

-n Вместо времени модификации файла использует для -t или -l время изменения индекса.

-d Для аргументов каталогов выводит сведения о самом каталоге, а не о его содержимом.

-f «Заставляет» читать каждый элемент как каталог и печатать найденное в каждом слоте имя. Эта опция отключает -l, -r, -s, -t и включает . (Эта опция, очевидно, существует для отладки и исправления файловой системы.)

-g Для 'ls -l' использует вместо имени пользователя имя группы.

-i Выводит в первом столбце номер индекса вместе с именем файла или длинным листингом.

-l Осуществляет привычный вывод в длинном формате. Обратите, однако, внимание, что V7 'ls -l' выводила лишь имя владельца, а не имена владельца и группы вместе.

-r Изменяет порядок сортировки, будь то по алфавиту для имен файлов или по времени.

-s Выводит размер файла в 512-байтовых блоках. Справочная страница V7 ls(1) утверждает, что вспомогательные блоки (indirect blocks) – блоки, используемые файловой системой для обнаружения блоков больших файлов – также учитываются при вычислении, но, как мы увидим, это утверждение было неверным.

-t Сортирует вывод вместо имени по времени модификации, сначала более ранние.

-u С опциями -t и/или -l использует время доступа вместо времени модификации. Наибольшие различия между V7 ls и современной ls затрагивают опцию и опцию -l. Современные системы опускают все файлы с точками, если не указана , и они включают в длинный листинг -l имена и владельца, и группы. На современных системах -g означает вывод лишь имени группы, а -o означает вывод лишь имени владельца. Стоит заметить, что у GNU ls свыше 50 опций!

7.2. Код V7 ls

Файл /usr/src/cmd/ls.c в дистрибутиве V7 содержит код. Весь он занимает 425 строк.

1  /*

2   * перечисляет файлы или каталоги

3   */

4

5  #include

6  #include

7  #include

8  #include

9

10 #define NFILES 1024

11 FILE *pwdf, *dirf;

12 char stdbuf[BUFSIZ];

13

14 struct lbuf { /* Собирает необходимые сведения */

15  union {

16   char lname[15];

17   char *namep;

18  } ln;

19  char ltype;

20  short lnum;

21  short lflags;

22  short lnl;

23  short luid;

24  short lgid;

25  long lsize;

26  long lmtime;

27 };

28

29 int aflg, dflg, lflg, sflg, tflg, uflg, lflg, fflg, gflg, cflg;

30 int rflg = 1;

31 long year; /* Глобальные переменные: инициализируются 0 */

32 int flags;

33 int lastuid = -1;

34 char tbuf[16];

35 long tblocks;

36 int statreq;

37 struct lbuf *flist[NFILES];

38 struct lbuf **lastp = flist;

39 struct lbuf **firstp = flist;

40 char *dotp = ".";

41

42 char *makename(); /* char *makename(char *dir, char *file); */

43 struct lbuf *gstat(); /* struct lbuf *gstat(char *file, int argfl); */

44 char *ctime(); /* char *ctime(time_t *t); */

45 long nblock(); /* long nblock(long size); */

46

47 #define ISARG 0100000

Программа начинается с включения файлов (строки 5–8) и объявлений переменных. struct lbuf (строки 14–27) инкапсулирует части struct stat, которые интересны ls. Позже мы увидим, как эта структура заполняется.

Переменные aflg, dflg и т.д. (строки 29 и 30) все указывают на наличие соответствующей опции. Такой стиль именования переменных типичен для кода V7. Переменные flist, lastp и firstp (строки 37–39) представляют файлы, о которых ls выводит сведения. Обратите внимание, что flist является массивом фиксированного размера, которая позволяет обрабатывать не более 1024 файлов. Вскоре мы увидим, как используются все эти переменные.

После объявлений переменных идут объявления функций (строки 42–45), а затем определение ISARG, которая различает файл, указанный в командной строке, от файла, найденного при чтении каталога.

49 main(argc, argv) /* int main(int argc, char **argv) */

50 char *argv[];

51 {

52  int i;

53  register struct lbuf *ep, **ep1; /* Объявления переменных и функций */

54  register struct lbuf **slastp;

55  struct lbuf **epp;

56  struct lbuf lb;

57  char *t;

58  int compar();

59

60  setbuf(stdout, stdbuf);

61  time(&lb.lmtime); /* Получить текущее время */

62  year = lb.lmtime – 6L*30L*24L*60L*60L; /* 6 месяцев назад */

Функция main() начинается с объявления переменных и функций (строки 52–58), устанавливая буфер для стандартного вывода, получая время дня (строки 60–61) и вычисляя значение секунд с начала Эпохи для примерно шести месяцев (строка 62). Обратите внимание, что у всех констант есть суффикс L, указывающий на использование арифметики long.

63  if (–argc > 0 && *argv[1] == '-') {

64   argv++;

65   while (*++*argv) switch(**argv) { /* Разбор опций */

66

67   case 'a': /* Все элементы каталога */

68    aflg++;

69    continue;

70

71   case 's': /* Размер в блоках */

72    sflg++;

73    statreq++;

74    continue;

75

76   case 'd': /* Сведения о каталоге, не содержание */

77    dflg++;

78    continue;

79

80   case 'g': /* Имя группы вместо имени владельца */

81    gflg++;

82    continue;

83

84   case 'l': /* Расширенный листинг */

85    lflg++;

86    statreq++;

87    continue;

88

89   case 'r': /* Обратный порядок сортировки */

90    rflg = -1;

91    continue;

92

93   case 't': /* Сортировка по времени, не по имени */

94    tflg++;

95    statreq++;

96    continue;

97

98   case 'u': /* Время доступа, а не изменения */

99    uflg++;

100   continue;

101

102  case 'c': /* Время изменения индекса, а не файла */

103   cflg++;

104   continue;

105

106  case 'i': /* Включить номер индекса */

107   iflg++;

108   continue;

109

110  case 'f': /* Форсировать чтение каждого arg как каталога */

111   fflg++;

112   continue;

113

114   default: /* Незнакомые буквы опций игнорировать */

115    continue;

116  }

117  argc–;

118 }

Строки 63–118 разбирают опции командной строки. Обратите внимание на ручной разбор кода: getopt() еще не была придумана. Переменная statreq устанавливается в true, когда опция требует использования системного вызова stat().

Избежание ненужного вызова stat() для каждого файла дает большой выигрыш в производительности. Вызов stat() был чрезвычайно дорогим, поскольку он мог вызвать поиск расположения индекса на файле, дисковое чтение для получения индекса, а затем поиск на диске расположения содержимого каталога (для того, чтобы продолжить чтение элементов каталога).

В современных системах индексы находятся в группах, распределенных по всей файловой системе, вместо объединения их вместе в начале. Это дает заметный прирост производительности. Тем не менее, вызовы stat() до сих пор не бесплатны, вы должны использовать их лишь при необходимости, но не более.

119 if (fflg) { /* -f аннулирует -l, -s, -t, добавляя -a */

120  aflg++;

121  lflg = 0;

122  sflg = 0;

123  tflg = 0;

124  statreq = 0;

125 }

126 if (lflg) { /* Открыть файл паролей или групп */

127  t = "/etc/passwd";

128  if (gflg)

129   t = "/etc/group";

130  pwdf = fopen(t, "r");

131 }

132 if (argc==0) { /* Если нет аргументов, использовать текущий */

133  argc++;

134  argv = &dotp – 1;

135 }

Строки 119–125 обрабатывают опцию -f, выключая -l, -s, -t и statreq. Строки 126–131 обрабатывают -l, устанавливая для файла чтение сведений о владельце или группе. Помните, что V7 показывает лишь одно из этих сведений, но не оба.

Если аргументов больше не осталось, строки 132–135 устанавливают argv таким образом, что он указывает на строку, представляющую текущий каталог. Назначение 'argr = &dotp – 1' действительно, хотя и необычно. '– 1' компенсирует '++argv' в строке 137. Это позволяет избежать в главной части программы специального случая для 'argc == 1'.

136  for (i=0; i < argc; i++) { /* Получить сведения о каждом файле */

137   if ((ер = gstat(*++argv, 1))==NULL)

138    continue;

139   ep->ln.namep = *argv;

140   ep->lflags |= ISARG;

141  }

142  qsort(firstp, lastp – firstp, sizeof *lastp, compar);

143  slastp = lastp;

144  for (epp=firstp; epp

145   ер = *epp;

146   if (ep->ltype=='d' && dflg==0 || fflg) {

147    if (argc>1)

148     printf("n%s:n", ep->ln.namep);

149    lastp = slastp;

150    readdir(ep->ln.namep);

151    if (fflg==0)

152     qsort(slastp, lastp – slastp, sizeof *lastp, compar);

153    if (lflg || sflg)

154     printf("total %Dn", tblocks);

155    for (ep1=slastp; ep1

156     pentry(*ep1);

157   } else

158   pentry(ep);

159  }

160  exit(0);

161 } /* Конец main() */

Строки 136–141 перебирают аргументы, собирая сведения о каждом. Второй аргумент gstat() булевый: true, если имя является аргументом командной строки, в противном случае false. Строка 140 добавляет флаг ISARG к полю lflags для каждого аргумента командной строки.

Функция gstat() добавляет каждую новую struct lbuf к глобальному массиву flist (строка 137). Она также обновляет глобальный указатель lastp, чтобы он указывал в этом массиве на текущий последний элемент.

Строки 142–143 сортируют массив, используя qsort(), и сохраняют текущее значение lastp в slastp. Строки 144–159 перебирают в цикле каждый элемент массива, выводя соответствующим образом сведения о файле или каталоге.

Код для каталогов заслуживает дальнейшего объяснения:

if (ep->ltype=='d' && dflg==0 || fflg) ...

Строка 146. Если файл является каталогом и -d не предусмотрено или было установлено -f, ls должна прочесть каталог вместо того, чтобы выводить сведения о самом каталоге.

if (argc>1) printf ("n%s:n", ep->ln.namep)

Строки 147–148. Выводят имя каталога и двоеточие, если в командной строке было указано несколько файлов.

lastp = slastp;

readdir(ep->ln.namep)

Строки 149–150. Восстанавливают lastp из slastp. Массив flist действует как двухуровневый стек имен файлов. Аргументы командной строки хранятся с firstp до slastp – 1. Когда readdir() читает каталог, она помещает структуры struct lbuf для содержимого каталога в стек, начиная с slastp и до lastp. Это показано на рис. 7.1.

Рис. 7.1. Массив flist как двухуровневый стек

if (fflg==0) qsort(slastp, lastp – slastp, sizeof *lastp, compar)

Строки 151–152. Сортируют элементы подкаталога, если не действует -f.

if (lflg || sflg) printf("total %Dn", tblocks)

Строки 153–154. Выводят для -l или -s общее число блоков, используемых файлами в каталоге. Эта сумма хранится в переменной tblocks, которая сбрасывается для каждого каталога. На современных системах форматирующая строка %D для printf() эквивалентна %ld; она означает «вывести длинное целое». (В V7 есть также %ld, см. строку 192.)

for (ep1=slastp; ep1

Строки 155–156. Выводит сведения о каждом файле в подкаталоге. Обратите внимание, что V7 ls спускается лишь на один уровень в дереве каталогов. У нее отсутствует современная «рекурсивная» опция -R.

163 pentry(ap) /* void pentry(struct lbuf *ap) */

164 struct lbuf *ap;

165 {

166  struct { char dminor, dmajor;}; /* He использующийся исторический артефакт из V6 ls */

167  register t;

168  register struct lbuf *p;

169  register char *cp;

170

171  p = ap;

172  if (p->lnum == -1)

173   return;

174  if (iflg)

175   printf("%5u ", p->lnum); /* Номер индекса */

176  if (sflg)

177   printf("%4D nblock(p->lsize)); /* Размер в блоках */

Процедура pentry() выводит сведения о файле. Строки 172–173 проверяют, установлен ли -1 в поле lnum, и если так, функция возвращается. Когда верно 'p->lnum == -1', структура struct lbuf недействительна. В противном случае это поле содержит номер индекса файла.

Строки 174–175 выводят номер индекса, если действует -i. Строки 176–177 выводят общее число блоков, если действует -s. (Как мы увидим ниже, это число может быть неточным.)

178  if (lflg) { /* Расширенный листинг: */

179   putchar(p->ltype); /* – Тип файла */

180   pmode(p->lflags); /* – Права доступа */

181   printf("%2d ", p->lnl); /* – Число ссылок */

182   t = p->luid;

183   if (gflg)

184    t = p->lgid;

185   if (getname(t, tbuf)==0)

186    printf("%-6.6s", tbuf); /* – Владелец или группа */

187   else

188    printf("%-6d", t);

189   if (p->ltype=='b' || p->ltype=='c') /* – Устройство: старший и младший номера */

190    printf("%3d,%3d", major((int)p->lsize), minor((int)p->lsize));

191   else

192    printf("%71d", p->lsize); /* – Размер в байтах */

193   cp = ctime(&p->lmtime);

194   if (p->lmtime < year) /* – Время изменения */

195    printf(" %-7.7s %-4.4s ", cp+4, cp+20); else

196    printf(" %-12.12s ", cp+4);

197  }

198  if (p->lflags & ISARG) /* – Имя файла */

199   printf("%sn", p->ln.namep);

200  else

201   printf("%.14sn", p->ln.lname);

202 }

Строки 178–197 обрабатывают опцию -l. Строки 179–181 выводят тип файла, права доступа и число ссылок. Строки 182–184 устанавливают t на ID владельца или группы, в зависимости от опции -g. Строки 185–188 получают соответствующее имя и выводят его, если оно доступно. В противном случае программа выводит числовое значение.

Строки 189–192 проверяют, является ли файл блочным или символьным устройством. Если да, они выводят старшее и младшее номера устройств, извлеченные с помощью макросов major() и minor(). В противном случае они выводят размер файла.

Строки 193–196 выводят соответствующее время. Если оно старше шести месяцев, код выводит месяц, день и год. В противном случае, выводятся месяц, день и время (формат результата с time() см. раздел 6.1.3.1 «Простое форматирование времени: asctime() и ctime()»).

Наконец, строки 198–201 выводят имя файла. Мы знаем, что для аргумента командной строки это завершающаяся нулем строка, и может быть использована %s. Для файла, прочитанного из каталога, оно может не завершаться нулем, поэтому должна использоваться явно указанная точность, %.14s.

204 getname(uid, buf) /* int getname(int uid, char buf[]) */

205 int uid;

206 char buf[];

207 {

208  int j, c, n, i;

209

210  if (uid==lastuid) /* Простое кэширование, см. текст */

211   return(0);

212  if (pwdf == NULL) /* Проверка безопасности */

213   return(-1);

214  rewind(pwdf); /* Начать с начала файла */

215  lastuid = -1;

216  do {

217   i = 0; /* Индекс в массиве buf */

218   j = 0; /* Число полей в строке */

219   n = 0; /* Преобразование числового значения */

220   while ((c=fgetc(pwdf)) != 'n') { /* Прочесть строки */

221    if (c==EOF)

222     return(-1);

223    if (c==':') { /* Число полей*/

224     j++;

225     c = '0';

226    }

227    if (j==0) /* первое поле – имя */

228     buf[i++] = c;

229    if (j==2) /* Третье поле – числовой ID */

230     n = n*10 + c – '0';

231   }

232  } while (n != uid); /* Продолжать до обнаружения ID */

233  buf[i++] = '';

234  lastuid = aid;

235  return(0);

236 }

Функция getname() преобразует ID владельца или группы в соответствующее имя. Она реализует простую схему кэширования; если переданное uid то же самое, которое находится в глобальной переменной lastuid, функция возвращает 0 (все нормально), буфер уже содержит имя (строки 210–211). lastuid инициализируется в -1 (строка 33), поэтому этот тест не проходит, когда getname() вызывается первый раз.

pwdf уже открыт либо в /etc/passwd, либо в /etc/group (см. строки 126–130). Код здесь проверяет, что открытие было успешным, и если нет, возвращает -1 (строки 212–213).

Удивительно, ls не использует getpwuid() или getgrgid(). Вместо этого она использует преимущество того факта, что формат /etc/passwd и /etc/group идентичен для трех первых полей (имя, пароль, числовой ID) и что оба используют в качестве разделителя двоеточие.

Строки 216–232 реализуют линейный поиск по файлу. j содержит число обнаруженных до сих пор двоеточий: 0 для имени и 2 для ID. Таким образом, при сканировании строки она заполняет как имя, так и ID.

Строки 233–235 завершают буфер name, устанавливают в глобальной lastuid последний найденный ID и возвращают 0 для обозначения успеха.

238 long /* long nblock(long size) */

239 nblock(size)

240 long size;

241 {

242  return ((size+511) >>9);

243 }

Функция nblock() сообщает, сколько дисковых блоков использует файл. Это вычисление основано на размере файла, возвращенном stat(). Размер блока V7 равен 512 байтам – размер физического сектора диска.

Вычисление в строке 242 выглядит несколько устрашающим. '>>9' является сдвигом вправо на девять битов. Это осуществляет деление на 512 для получения числа блоков. (На раннем аппаратном обеспечении сдвиг вправо выполнялся гораздо быстрее деления.) Пока все хорошо. Теперь, файл даже размером в один байт все равно занимает целый дисковый блок. Однако, '1 / 512' дает ноль (целое деление срезает), что неверно. Это объясняет 'size+511'. Добавляя 511, этот код гарантирует, что сумма дает правильное число блоков при делении на 512.

Это вычисление, однако, лишь приблизительное. У очень больших файлов есть также дополнительные блоки. Несмотря на заявление в справочной странице V7 ls(1), данное вычисление не принимает в расчет дополнительные блоки.

Более того, рассмотрите случай файла с большими дырами (созданными установкой указателя файла дальше конца файла с помощью lseek()). Дыры не занимают дисковых блоков; однако, это не отражается в значении размера. Поэтому вычисления, выполненные nblock(), будучи обычно верными, могут давать результаты больше или меньше реальных.

По этим причинам в struct stat 4 2 BSD были добавлены члены st_blocks, которые затем были приняты для System V и POSIX.

245 int m1[] = { 1, S_IREAD>>0, 'r', '-' };

246 int m2[] = { 1, S_IWRITE>>0, 'w', '-' };

247 int m3[] = { 2, S_ISUID, 's', S_IEXEC>>0, 'x', '-' };

248 int m4[] = { 1, S_IREAD>>3, 'r', '-' };

249 int m5[] = { 1, S_IWRITE>>3, 'w', '-' };

250 int m6[] = { 2, S_ISGID, 's', S_IEXEC>>3, 'x', '-' };

251 int m7[] = { 1, S_IREAD>>6, 'r', '-' };

252 int m8[] = { 1, S_IWRITE>>6, 'w', '-' };

253 int m9[] = { 2, S_ISVTX, ' t', S_IEXEC>>6, 'x', '-' };

254

255 int *m[] = { m1, m2, m3, m4, m5, m6, m7, m8, m9 };

256

257 pmode(aflag) /* void pmode(int aflag) */

258 {

259  register int **mp;

260

261  flags = aflag;

262  for (mp = &m[0]; mp < &m[sizeof(m)/sizeof(m[0])];)

263   select(*mp++);

264 }

265

266 select(pairp) /* void select(register int *pairp) */

267 register int *pairp;

268 {

269  register int n;

270

271  n = *pairp++;

272  while (–n>=0 && (flags&*pairp++)==0)

273   pairp++;

274  putchar(*pairp);

275 }

Строки 245–275 выдают права доступа к файлу. Код компактен и довольно элегантен, он требует тщательного изучения.

• Строки 245–253: массивы с m1 по m9 кодируют биты прав доступа для проверки вместе с соответствующими буквами для вывода. На каждую выводимую букву режима файла имеется один массив. Первый элемент каждого массива является числом пар (право доступа, буква), закодированных в данном конкретном массиве. Последний элемент является буквой, которая должна быть выведена в случае, если не найден ни один из битов прав доступа.

Обратите также внимание, что права доступа обозначены как 'I_READ>>0', 'I_READ>>3', 'I_READ>>6' и т.д. Отдельные константы для каждого бита (S_IRUSR, S_IRGRP и т.п.) не были еще придуманы. (См. табл. 4.5 в разделе 4 6.1 «Указание начальных прав доступа к файлу».)

• Строка 255: массив m указывает на каждый из массивов с m1 по m9.

• Строки 257–264: функция pmode() сначала устанавливает глобальную переменную flags равной переданному параметру aflag. Затем она просматривает в цикле массив m, передавая каждый элемент функции select(). Переданный элемент представляет один из массивов с m1 по m9.

• Строки 266–275: функция select() понимает структуру каждого из массивов с m1 по m9. n является числом пар в массиве (первый элемент); его устанавливает строка 271. Строки 272–273 ищут биты прав доступа, проверяя установленную ранее в строке 261 глобальную переменную flags.

Обратите внимание на использование оператора ++ как в проверке цикла, так и в теле цикла. Результатом является пропуск пары в массиве, если в flags не обнаружен бит доступа в первом элементе пары.

Когда цикл завершается, либо бит разрешения был найден, в этом случае pairp указывает на второй элемент пары, являющийся нужным для вывода символом, либо он не был найден, в этом случае pairp указывает на символ по умолчанию. В любом случае, строка 274 выводит символ, на который указывает pairp.

Последним стоящим внимания моментом является то, что на С символьные константы (такие как 'x') имеют тип int, а не char[75]75
  В C++ это по-другому: там символьные константы действительно имеют тип char. Это различие не влияет на данный конкретный код – Примеч. автора.


[Закрыть]
. Поэтому проблем с помещением этих констант в массив целых нет; все работает правильно.

277 char* /* char *makename(char *dir, char *file) */

278 makename(dir, file)

279 char *dir, *file;

280 {

281  static char dfile[100];

282  register char *dp, *fp;

283  register int i;

284


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache