355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Арнольд Роббинс » Linux программирование в примерах » Текст книги (страница 15)
Linux программирование в примерах
  • Текст добавлен: 6 мая 2017, 11:00

Текст книги "Linux программирование в примерах"


Автор книги: Арнольд Роббинс



сообщить о нарушении

Текущая страница: 15 (всего у книги 55 страниц)

5.5.4. Использование fchown() и fchmod() для обеспечения безопасности

В исходных системах Unix были только системные вызовы chown() и chmod(). Однако, на сильно загруженных системах эти системные вызовы попадают в условия состязания, посредством чего злоумышленник может организовать замещение другим файлом файла, у которого изменяется владелец или права доступа.

Однако, после открытия файла условие состязания больше не представляет проблему. Программа может использовать stat() с именем файла для получения информации о файле. Если получены сведения, которые ожидались, после открытия файла fstat() может проверить, что файл тот же самый (сравнив поля st_dev и st_ino структур struct stat «до» и «после»).

Когда программа знает, что файлы те же самые, владение или права доступа могут быть изменены с помощью fchown() или fchmod().

Эти системные вызовы, также как lchown(), сравнительно недавние;[63]63
  fchown() и fchmod() были введены в 4 2 BSD, но не включались в System V до выпуска 4 – Примеч. автора.


[Закрыть]
в старых системах Unix их не было, хотя в современных совместимых с POSIX системах они есть.

Соответствующих функций futime() или lutime() нет. В случае futime() это (очевидно) потому, что временные отметки не являются критическими для безопасности системы в том же отношении, что для владения и прав доступа, lutime() отсутствует потому, что временные отметки неуместны для символических ссылок.

5.6. Резюме

• Иерархия файлов и каталогов, как она видится пользователю, является одним логическим деревом, корень которого находится в /. Оно составлено из одного или более разделов, каждый из которых содержит файловую систему. Внутри файловой системы в индексах хранятся данные о файлах (метаданные), включая размещение блоков данных.

• Каталоги осуществляют связь между именами файлов и индексами. Концептуально содержимое каталога, которое является просто последовательностью пар (индекс, имя). Каждый элемент каталога для файла называется (прямой) ссылкой, а файлы могут иметь множество ссылок. Прямые ссылки, поскольку они работают лишь по номеру индекса, все должны находиться в одной файловой системе. Символические ссылки являются указателями на файлы или каталоги и работают на основе имени файла, а не номера индекса, поэтому их использование не ограничено одной и той же файловой системой.

• Прямые ссылки создаются с помощью link(), символические ссылки создаются с помощью symlink(), ссылки удаляются с помощью unlink(), а переименовываются файлы (с возможным перемещением в другой каталог) с помощью rename(). Блоки данных файла не освобождаются до тех пор, пока счетчик ссылок не достигнет нуля и не закроется последний открытый дескриптор файла.

• Каталоги создаются с помощью mkdir(), а удаляются с помощью rmdir(); перед удалением каталог должен быть пустым (не оставлено ничего, кроме '.' и '..'). GNU/Linux версия функции ISO С remove() вызывает соответствующие функции unlink() или rmdir().

• Каталоги обрабатываются с помощью функций opendir(), readdir(), rewinddir() и closedir(). struct dirent содержит номер индекса и имя файла. Максимально переносимый код использует в члене d_name только имя файла. Функции BSD telldir() и seekdir() для сохранения и восстановления текущего положения в каталоге широко доступны, но не полностью переносимы, как другие функции работы с каталогами.

• Вспомогательные данные получаются с помощью семейства системных вызовов stat(), структура struct stat содержит всю информацию о файле за исключением имени файла. (В самом деле, поскольку у файла может быть множество имен или он может совсем не иметь ссылок, невозможно сделать имя доступным.)

• Макрос S_ISxxx() в дает возможность определить тип файла. Функции major() и minor() из дают возможность расшифровки значений dev_t, представляющих блочные и символьные устройства.

• Символические ссылки можно проверить, использовав lstat(), а поле st_size структуры struct stat для символической ссылки возвращает число байтов, необходимых для размещения имени указываемого файла. Содержимое символической ссылки читают с помощью readlink(). Нужно позаботиться о том, чтобы размер буфера был правильным и чтобы завершить полученное имя файла нулевым байтом, чтобы можно было его использовать в качестве строки С.

• Несколько разнообразных системных вызовов обновляют другие данные: семейство chown() используется для смены владельца и группы, процедуры chmod() для прав доступа к файлу, a utime() для изменения значений времени доступа и изменения файла.

Упражнения

1. Напишите программу 'const char *fmt_mode(mode_t mode)'. Ввод представляет собой значение mode_t, полученное из поля st_mode структуры struct stat; т.е. оно содержит как биты прав доступа, так и типа файла.

Вывод должен представлять строку в 10 символов, идентичную первому полю вывода 'ls -l'. Другими словами, первый символ обозначает тип файла, а остальные девять – права доступа.

Когда установлены биты S_ISUID и S_IXUSR, используйте s вместо x; если установлен лишь бит I_ISUID, используйте S. То же относится к битам S_ISGID и S_IXGRP. Если установлены оба бита S_ISVTX и S_IXOTH, используйте t; для одного S_ISVTX используйте T.

Для простоты можете использовать статический (static) буфер, содержимое которого перезаписывается при каждом вызове процедуры.

2. Доработайте ch05-catdir.c, чтобы она вызывала stat() для каждого найденного имени файла. Затем выведите номер индекса, результат вызова fmt_mode(), число ссылок и имя файла.

3. Доработайте ch05-catdir.c так, что если файл является символической ссылкой, программа будет также выводить имя указываемого файла.

4. Добавьте такую опцию, что если имя файла является именем подкаталога, программа рекурсивно входит в него и отображает сведения о файлах (и каталогах) этого подкаталога. Необходим лишь один уровень рекурсии.

5. Если вы не работаете на системе GNU/Linux, запустите ch05-trymkdir (см. раздел 5.2 «Создание и удаление каталогов») на своей системе и сравните результаты с приведенными нами.

6. Напишите программу mkdir. Посмотрите свою локальную справочную страницу для mkdir(1) и реализуйте все ее опции.

7. В корневом каталоге, /, как номер устройства, так и номер индекса для '.' и '..' совпадают. Используя эту информацию, напишите программу pwd.

Вначале программа должна найти имя текущего каталога, прочитав содержимое родительского каталога. Затем она должна продолжить собирать сведения о иерархии файловой системы, пока не достигнет корневого каталога.

Отображение имени каталога в обратном порядке, от текущего каталога до корневого, легко. Как будет справляться ваша версия pwd с выводом имени каталога правильным образом, от корневого каталога вниз?

8. Если вы написали pwd, использовав рекурсию, напишите ее снова, использовав итерацию. Если вы использовали итерацию, напишите ее с использованием рекурсии. Что лучше? (Подсказка: рассмотрите очень глубоко вложенные деревья каталогов.)

9. Тщательно исследуйте функцию rpl_utime() (см. раздел 5.5.3.1 «Подделка utime(file, NULL)»). Какой ресурс не восстанавливается, если одна из проверок в середине if не выполняется? (Спасибо Джеффу Колье (Geoff Collyer).)

10. (Трудное) Прочтите страницу справки для chmod(1). Напишите код для анализа аргумента символических опций, который позволяет добавлять, удалять и устанавливать права доступа на основе владельца, группы, других и «всех».

Когда вы решите, что это работает, напишите свою собственную версию chmod, которая применяет назначенные права доступа к каждому файлу или каталогу, указанному в командной строке. Какую функцию вы использовали, chmod() – или open() и fchmod() – и почему?

Глава 6
Общие библиотечные интерфейсы – часть 1

В главе 5 «Каталоги и служебные данные файлов» мы видели, что непосредственное чтение каталога возвращает имена файлов в том порядке, в каком они хранятся в каталоге. Мы также видели, что struct stat содержит всю информацию о файле за исключением его имени. Однако, некоторые компоненты этой структуры не могут использоваться непосредственно; они являются просто числовыми значениями.

В данной главе представлена оставшаяся часть API, необходимая для полного использования значений компонентов struct stat. Мы по порядку рассматриваем следующие темы: значения time_t для представления времени и функций форматирования времени; функции сортировки и поиска (для сортировки имен файлов или других данных); типы uid_t и gid_t для представления пользователей, групп и функций, которые сопоставляют их с соответствующими именами пользователей и групп; и наконец, функцию для проверки того, что дескриптор файла представляет терминал.

6.1. Времена и даты

Значения времени хранятся в типе, который известен как time_t. Стандарт ISO С гарантирует, что это числовой тип, но во всем остальном никак не указывает, чем именно он является (целым или с плавающей точкой), как и не указывает степень точности хранящихся в нем значений.

На системах GNU/Linux и Unix значения time_t представляют «секунды с начала Эпохи». Эпоха представляет собой начало записываемого времени, которое относится к полночи 1 января 1970 г. по UTC. На большинстве систем time_t является long int С. Для 32-разрядных систем это означает, что time_t переполнится 19 января 2038 г. К тому времени, мы надеемся, тип time_t будет переопределен как по меньшей мере 64-разрядное значение.

Для получения текущего времени, вычисления разницы между двумя значениями time_t, преобразования значений time_t в более удобное представление и форматирования обоих представлений в виде символьных строк существуют различные функции. Вдобавок, представление даты и времени можно преобразовать обратно в time_t, доступна также ограниченная информация по часовым поясам.

Отдельный набор функций предоставляет доступ к текущему времени с разрешением, большим чем одна секунда. Функции работают с предоставлением двух различных значений, времени в виде секунд с начала Эпохи и числа микросекунд в текущей секунде. Эти функции описаны далее в разделе 14.3.1 «Время в микросекундах: gettimeofday()».

6.1.1. Получение текущего времени: time() и difftime()

Системный вызов time() получает текущие дату и время; difftime() вычисляет разницу между двумя значениями time_t:

#include /* ISO С */

time_t time(time_t *t);

double difftime(time_t time1, time_t time0);

time() возвращает текущее время. Если параметр t не равен NULL, переменная, на которую указывает t, также заполняется значением текущего времени. Функция возвращает (time_t)(-1), если была ошибка, устанавливая errno.

Хотя ISO С не указывает, чем является значение time_t, POSIX определяет, что оно представляет время в секундах. Поэтому это предположение является обычным и переносимым. Например, чтобы посмотреть, что значение времени представляет отметку в прошлом шесть месяцев назад или позже, можно использовать код, подобный этому:

/* Для краткости проверка ошибок опущена */

time_t now, then, some_time;

time(&now); /* Получить текущее время */

then = now – (6L * 31 * 24 * 60 * 60); /* Примерно 6 месяцев назад */

/* ...установить какое-нибудь время, например, через stat()... */

if (some_time < then)

 /* более 6 месяцев назад */

else

 /* менее 6 месяцев назад */

Однако, поскольку переносимый код может потребоваться запустить на не-POSIX системах, существует функция difftime() для вычисления разницы между двумя значениями времени. Тот же самый тест с использованием difftime() можно было бы написать таким способом:

time_t now, some_value;

const double six_months = 6.0 * 31 * 24 * 60 * 60;

time(&now); /* Получить текущее время */

/* ...установить какое-нибудь время, например, через stat()... */

if (difftime(now, some_time) >= six_months)

 /* более 6 месяцев назад */

else

 /* менее 6 месяцев назад */

Возвращаемым типом difftime() является double, поскольку time_t может также содержать доли секунд. На системах POSIX он всегда представляет целые секунды.

В обоих предыдущих примерах обратите внимание на использование типизированных констант, чтобы форсировать выполнение вычислений с нужным математическим типом: 6L в первом случае для целых long, 6.0 во втором случае для чисел с плавающей точкой

6.1.2. Разложение времени: gmtime() и localtime()

На практике форма представления даты и времени в виде «секунд с начала эпохи» не является очень удобной, кроме очень простых сравнений. Самостоятельное вычисление компонентов времени, таких, как месяц, день, год и т.д., подвержено ошибкам, поскольку необходимо принять во внимание местный часовой пояс (возможно, с учетом перехода на летнее время), правильно вычислить високосные годы и пр. К счастью, две стандартные процедуры делают за вас эту работу:

#include /* ISO С */

struct tm *gmtime(const time_t *timep);

struct tm *localtime(const time_t *timep);

gmtime() возвращает указатель на struct tm, которая представляет время UTC. localtime() возвращает указатель на struct tm, представляющий местное время, т.е. в расчет берутся текущий часовой пояс и переход на летнее время. На самом деле это «время для настенных часов», дата и время, которые были бы отображены на настенных или ручных часах. (Как это работает, обсуждается далее в разделе 6.1.5 «Получение сведений о часовом поясе».)

Обе функции возвращают указатель на struct tm, которая выглядит следующим образом:

struct tm {

 int tm_sec;   /* секунды */

 int tm_min;   /* минуты */

 int tm_hour;  /* часы */

 int tm_mday;  /* день месяца */

 int tm_mon;   /* месяц */

 int tm_year;  /* год */

 int tm_wday;  /* день недели */

 int tm_yday;  /* день в году */

 int tm_isdst; /* летнее время */

};

struct tm называют разложенным временем (broken-down time), поскольку значение time_t «разложено» на свои составные части. Составные части, их диапазоны и значения показаны в табл. 6.1.

Таблица 6.1. Поля структуры tm


tm_sec 0–60Секунда минуты. Секунда 60 предусматривает пропущенные (leap) секунды. (В C89 был диапазон 0–61.)
tm_min 0–59Минута часа.
tm_hour 0–23Час дня
tm_mday 1–31День месяца
tm_mon 0–11Месяц года
tm_year 0–NГод, начиная с 1900 г.
tm_wday 0–6День недели, воскресенье = 0
tm_yday 0–365День года, 1 января = 0.
tm_isdst <0, 0, >0Флаг летнего времени.

Стандарт ISO С представляет большинство этих значений как «x после y». Например, tm_sec является числом «секунд после минуты», tm_mon «месяцев после января», tm_wday «дней недели после воскресенья» и т.д. Это помогает понять, почему все значения начинаются с 0. (Единственным исключением, достаточно логичным, является tm_mday, день месяца, имеющий диапазон 1–31.) Конечно, отсчет их с нуля также практичен; поскольку массивы С отсчитываются с нуля, использование этих значений в качестве индексов тривиально:

static const char *const days[] = { /* Массив имен дней */

 "Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday",

};

time_t now;

struct tm *curtime;

time(&now); /* Получить текущее время */

curtime = gmtime(&now); /* Разложить его */

printf("Day of the week: %sn", days[curtime->tm_wday]);

 /* Проиндексировать и вывести */

Как gmtime(), так и localtime() возвращают указатель на struct tm. Указатель указывает на static struct tm, содержащуюся в каждой процедуре, и похоже, что эти структуры struct tm переписываются каждый раз, когда вызываются процедуры. Поэтому хорошая мысль сделать копию возвращенной struct. Возвращаясь к предыдущему примеру.

static const char *const days[] = { /* Как ранее */ };

time_t now;

struct tm curtime; /* Структура, а не указатель */

time(&now); /* Получить текущее время */

curtime = *gmtime(&now); /* Разложить его и скопировать данные */

printf("Day of the week: %sn", days[curtime.tm_wday]);

 /* Проиндексировать и напечатать, использовать . , а не -> */

Поле tm_isdst указывает, действует ли в настоящий момент летнее время (DST) Значение 0 означает, что DST не действует, положительное значение означает, что действует, а отрицательное значение – что информация о DST недоступна. (Стандарт С намеренно неконкретен, указывая лишь нулевое, положительное и отрицательное значения; это дает возможность большей свободы при реализации.)

6.1.3. Форматирование даты и времени

Примеры в предыдущем разделе показали, как поля в struct tm могли бы быть использованы в качестве индексов символьных строк для вывода информативных значений даты и времени. Хотя можно было бы написать собственный код, использующий такие массивы для форматирования даты и времени, стандартные процедуры облегчают работу

6.1.3.1. Простое форматирование времени: asctime() и ctime()

Две первые стандартные процедуры, перечисленные ниже, выводят данные в фиксированном формате:

#include /* ISO С */

char *asctime(const struct tm *tm);

char *ctime(const time_t *timep);

Как и в случае с gmtime() и localtime(), asctime() и ctime() возвращают указатели на статические буфера, которые могут быть перезаписаны после каждого вызова. Более того, эти две процедуры возвращают строки в одном и том же формате. Они отличаются лишь видом принимаемых аргументов, asctime() и ctime() должны использоваться тогда, когда все, что вам нужно, это простые сведения о дате и времени.

#include

#include

int main(void) {

 time_t now;

 time(&now);

 printf("%s", ctime(& now));

}

После запуска эта программа выводит результат в виде: 'Thu May 22 15:44:21 2003'. Завершающий символ конца строки включен в результат. Точнее, возвращаемое значение указывает на массив из 26 символов, как показано на рис. 6.1.

Рис. 6.1. Возвращаемая функциями ctime() и asctime() строка

Значительная часть старого кода Unix полагается на тот факт, что значения в возвращенной строке имеют фиксированную позицию. При использовании этих функций помните, что они включают завершающий символ конца строки. Поэтому наш небольшой пример программы использует для printf() простую форматирующую строку "%s", а не "%sn", как можно было бы ожидать.

ctime() устраняет необходимость шага вызова localtime(); в сущности, это эквивалентно

time_t now;

char *curtime;

time(&now);

curtime = asctime(localtime(&now));

6.1.3.2. Сложное форматирование времени: strftime()

Хотя часто достаточно использования asctime() и ctime(), у них есть также и ограничения:

• Формат вывода фиксирован. Нет способа изменить порядок элементов.

• В вывод не включаются сведения о часовом поясе.

• В выводе используются сокращенные названия месяца и дня.

• В выводе используются английские названия месяцев и дней.

По этим причинам C89 ввело стандартную библиотечную процедуру strftime():

#include /* ISO С */

size_t strftime(char *s, size_t max, const char *format,

 const struct tm *tm);

strftime() сходна с sprintf(). Ее аргументы следующие:

char *s

Буфер для форматированной строки.

size_t max

Размер буфера.

const char *format

Форматирующая строка.

const struct tm *tm

Указатель на struct tm, представляющий разложенное время, которое надо отформатировать.

Форматирующая строка содержит символы букв, смешанные о описателями преобразования, указывающими, что должно быть помещено в строку, такими, как полное имя дня недели, час в соответствии с 24-часовым или 12-часовым циклом, наличие указателей am или p.m[64]64
  a.m. – от ante meridiem (до полудня), p.m. – от post meridiem (пополудни), американская система обозначения 12-часового цикла времени суток. – Примеч. перев.


[Закрыть]
, и т.д. (Вскоре будут приведены примеры.)

Если всю строку можно отформатировать с использованием не более max символов, возвращаемое значение представляет собой число символов, помещенных в s, не включая завершающий нулевой байт. В противном случае, возвращаемое значение ноль. В последнем случае содержание s «неопределенно». Следующий простой пример дает представление об использовании strftime():

#include

#include

int main(void) {

 char buf[100];

 time_t now;

 struct tm *curtime;

 time(&now);

 curtime = localtime(&now);

 (void)strftime(buf, sizeof buf,

  "It is now %A, %B %d, %Y, %I:%M %p", curtime);

 printf("%sn", buf);

 exit(0);

}

После запуска эта программа выводит что-то типа:

It is now Thursday, May 22, 2003, 04:15 PM

В табл. 6.2 предоставлен полный список описателей преобразования, их возможные альтернативные представления и их значения. Вдобавок стандарт C99 добавил к списку дополнительные описатели; новые для C99 описатели помечены символом √.

Таблица 6.2. Описатели преобразования формата strftime()


%a Локальное сокращенное название дня недели.
%A Локальное полное название дня недели.
%b Локальное сокращенное название месяца.
%B Локальное полное название месяца.
%c, %Ec Локальное «подходящее» представление даты и времени
%C, %EC Век (00–99)
%d, %Od День месяца (01–31)
%D То же, что %m/%d/%y
%e, %Oe День месяца. Одна цифра дополняется пробелом (1–31).
%F То же, что и %Y-%m-%d (формат даты ISO 8601)
%g Две последние цифры, основанной на неделе года (00–99).
%G Основанный на неделе год ISO 8601
%h То же, что и %b
%H, %OH Час в 24-часовом цикле (00–23)
%I, %OI Час в 12-часовом цикле (01–12)
%j День года (001–366)
%m, %Om Месяц в виде числа (01–12).
%M, %OM Минута в виде числа (00–59)
%n Символ конца строки ('n')
%p Локальное обозначение a.m./p.m.
%r Локальное время в 12-часовом цикле
%R Тоже, что и %H:%M
%S, %OS Секунда в виде числа (00–60)
%t Символ табуляции ('t')
%T То же, что и %H:%M:%S (формат ISO 8601).
%u, %Ou Число дня недели ISO 8601, понедельник = 1 (1–7).
%U, %OU Номер недели, первое воскресенье является первым днем недели 1 (00–53)
%V, %OV Номер недели ISO 8601 (01–53)
%w, %Ow День недели как число, воскресенье = 0 (0–6).
%W, %OW Номер недели, первый понедельник является первым днем недели 1 (00–53)
%x, %Ex Локальное «подходящее» представление даты
%X, %EX Локальное «подходящее» представление времени.
%y, %Ey, %Oy Две последние цифры года (00–99)
%Y, %EY Год как число.
%Z Локальный часовой пояс или отсутствие символов, если сведения о часовом поясе недоступны
%% Простой %

Локаль (locale) является способом описания местной специфики, принимая во внимание такие вещи, как язык, кодировка символов и значения по умолчанию для форматирования дат, времени, денежных сумм и т.д. Мы будем иметь с ними дело в главе 13 «Интернационализация и локализация». Пока достаточно понять, что результаты strftime() для одной и той же форматирующей строки могут быть разными в зависимости от настроек текущей локали.

Версии, начинающиеся с %E и %O, предназначены для «альтернативного представления». В некоторых локалях есть несколько способов представления одних и тех же сведений; эти описатели предоставляют доступ к дополнительным представлениям. Если определенная локаль не поддерживает альтернативного представления, strftime() использует обычную версию.

Многие Unix-версии date дают возможность предоставить в командной строке форматирующую строку, начинающуюся с символа '+'. Затем date форматирует текущие дату и время и выводит в соответствии с форматирующей строкой:

$ date + 'It is now %A, %B %d, %Y, %I:%M %p'

It is now Sunday, May 25, 2003, 06:44 PM

Большинство новых описателей C99 происходит от таких существующих реализаций date Unix. Описатели %n и %t не являются в С абсолютно необходимыми, поскольку символы табуляции и конца строки могут быть помещены в строку непосредственно. Однако в контексте форматирующей строки date для командной строки они имеют больше смысла. Поэтому они также включены в спецификацию strftime().

Стандарт ISO 8601 определяет (среди других вещей), как нумеруются недели в пределах года. В соответствии с этим стандартом недели отсчитываются с понедельника по воскресенье, а понедельник является днем недели 1, а не 0. Если неделя, в которой оказывается 1 января, содержит по крайней мере четыре дня нового года, она считается неделей 1. В противном случае, это последняя неделя предыдущего года с номером 52 или 53. Эти правила используются для вычислений описателей форматов %g, %G и %V. (Хотя ограниченным американцам, таким, как автор, эти правила могут показаться странными, они обычно повсюду используются в Европе.)

Многие из описателей стандартов дают результаты, специфичные для текущей локали. Вдобавок некоторые указывают, что они выдают «подходящее» представление для локали (например, %x). Стандарт C99 определяет значения для локали «С». Эти значения перечислены в табл. 6.3

Таблица 6.3. Значения локали «С» для определенных форматов strftime()


Первые три символа .
Один из дней Sunday, Monday, …, Saturday
%b Первые три символа
Один из месяцев January, February, …, December
То же, что и %а %b %е %T %Y
%p AM или PM
%r То же, что и %I:%M:%S %p
%x То же, что и %m/%d/%y
%X То же, что и %T.
%Z Определяется реализацией

Должно быть очевидно, что strftime() предоставляет значительную гибкость и контроль над связанным с датой и временем выводом, во многом таким же образом, как printf() и sprintf(). Более того, strftime() не может переполнить буфер, поскольку она проверяет входной параметр размера, что делает ее более безопасной процедурой, чем sprintf().

В качестве простого примера рассмотрим создание файлов журнала программы, когда каждый час создается новый файл. Имя файла должно включать дату и время создания:

/* Проверка ошибок для краткости опущена */

char fname[PATH_МАХ]; /* PATH_МАХ находится в */

time_t now;

struct tm *tm;

int fd;

time(&now);

tm = localtime(&now);

strftime(fname, sizeof fname, "/var/log/myapp.%Y-%m-%d-%H:%M", tm);

fd = creat(name, 0600);

...

Формат год-месяц-день-час-минута вызывает сортировку файлов в том порядке, в каком они были созданы.

ЗАМЕЧАНИЕ. Некоторые форматы данных более полезны, чем другие. Например, 12-часовое время двусмысленно, также, как чисто числовые форматы дат. (Что означает '9/11'? Это зависит от того, где вы живете) Сходным образом, годы из двух цифр также являются плохой мыслью. Используйте strftime() благоразумно


    Ваша оценка произведения:

Популярные книги за неделю