355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антон Любке » Техника и человек в 2000 году » Текст книги (страница 8)
Техника и человек в 2000 году
  • Текст добавлен: 30 апреля 2017, 10:33

Текст книги "Техника и человек в 2000 году"


Автор книги: Антон Любке


Жанр:

   

История


сообщить о нарушении

Текущая страница: 8 (всего у книги 13 страниц)

Переработка воды

Вода так же, как и дерево, сопровождала человека с незапамятных времен в его хозяйственной жизни. В своем экономическом и техническом развитии человеку всегда приходилось пользоваться водой. Развитие культуры, образование государств, основание городов – возможны были лишь там, где в достаточном количестве имелась вода. Если мы проследим историю древних культур, то увидим, что ни одна из них немыслима без водного хозяйства; более того, древние культуры развивались почти исключительно на основе водного хозяйства, примером чего могут служить Египет и страна двух рек – Месопотамия. Китай, наиболее густо населенная страна земного шара, которая еще не получает, подобно Европе, всю свою энергию от угля, не мог бы существовать без своей широко разветвленной системы водного хозяйства.

Вся наша жизнь и предметы, которые нас окружают, тесно связаны с водой. Этот необходимый основной элемент нашей жизни – вода – состоит из 11 % водорода и 89 % кислорода. Вода повсюду находится в природе в жидком, газообразном и даже твердом состоянии. На одном лишь экваторе ежегодно испаряется 700 триллионов куб. м воды, что соответствует океану в 66 глубины и площадью в 9,7 млн кв. км. Эти огромные массы воды снова изливаются на землю из туч в виде дождей, снабжающих реки, источники и моря. Энергия, сообщаемая воде солнцем, проявляется в силе ее течения, которая также зависит еще от двух причин: во-первых, от ската и, во-вторых, от количества воды, протекающего по скату. Лишь в век пара научились систематически пользоваться этими силами с помощью водяных колес, турбин и т. д. Крупные силовые станции в Баварии, Бадене, Швейцарии и Швеции служат доказательством возможности использования водяной силы, которая в настоящее время является большим подспорьем в дополнение к все более эксплуатируемой энергии угля. Здесь мы будем говорить не о получении энергии от падения воды, которая, как известно, уже тысячи лет знакома человеку и которая лишь за последнее десятилетие получает все более широкое развитие в качестве дополнительного источника энергии наравне с углем и нефтью, но о химическом составе воды и возможностях его использования в энергетических целях.

До конца XVIII века воду считали за простое вещество, так как не знали ее составных частей. Летом 1781 г. англичанин Кавендиш установил опытным путем, что при сжигании водорода и кислорода получается вода и только вода.

Лавуазье, знаменитый реформатор химии, дополнил этот опыт еще в том направлении, что из полученной таким способом воды снова выделил в виде газа водород и удержал кислород в соединении с железом.

Водород в современном транспорте за последние годы играет значительную роль. Без него воздушное судоходство не могло бы развиться до современного уровня. Гелий, которым в настоящее время наполняют дирижабли, в то время еще не был известен. Лишь в последние годы ученые выяснили, что вместо сравнительно легко взрывающегося водорода более удобен для применения другой менее опасный газ, гелий, который в последнее время удается искусственным путем получать из водорода. В самое последнее время водород получил применение еще в одной весьма важной области, причем приобретает здесь неожиданно крупное значение, – в главе о «Переработке угля» мы указали на значение водорода в весьма важном для экономической жизни Европы методе гидрирования угля.

Эти две важные области хозяйства показывают, что наступило время, когда мы должны пользоваться водой не только в качестве источника энергии в виде водопадов и рек, но и путем прямого химического использования ее составных частей. Известный германский исследователь в области угля проф. Фишер сделал на мировом энергетическом конгрессе в Лондоне в 1924 г. интересное сообщение, что в химических процессах, в которых теоретически исходными веществами являются окись углерода и водород, можно исходить и из углекислоты и что таким образом в принципе возможно производить моторное топливо, в котором ощущается такая нужда, из составных частей воздуха и воды, при условии наличия соответствующих источников энергии (водяных сил). Углекислоту можно было бы получать из воздуха, а водород путем электролиза из воды. Если бы удалось получать энергию непосредственно из воды и из воздуха, подобно тому как из воздуха добывается азот, то это было бы достижением, значение которого в настоящее время не поддается еще даже более или менее приблизительному учету.

Важное значение, которое имеет водород в современной экономической жизни, заставляет нас уделить ему более серьезное внимание.

Получение газа из воды известно уже свыше 100 лет. В начале XIX века в Лондоне умер упомянутый выше Кавендиш – ученый, занимавшийся главным образом физикой и химией. Он ознакомил химическую науку с водородом, который был им получен при опытах, во время которых он изучал действие слабого раствора кислоты на железо, цинк и олово. В последнее время делались различные опыты добывания водорода. Прежние опыты Кавендиша в настоящее время уже утратили свое значение. Кавендиш предполагал, что водород находится в металлах, тогда как последующие исследователи считали, что он является составным элементом кислот. Водород представляет собой прозрачный, лишенный запаха и вкуса газ, который горит и при соединении с кислородом дает воду.

Лишь в 1883 г. Чарльзом были сделаны первые попытки наполнить водородом воздушные шары. Майерт и Рихтер пользовались для получения водорода ретортой, в которой докрасна накалялась смесь гидрата окисей кальция и цинка.

Большое значение имеет электролитический метод добывания водорода. Уже в 1789 г. два голландца установили, что путем электрического разряда вода разлагается на водород и кислород. Если через подкисленную воду или раствор едкого натра пропустить электрический ток, то на отрицательном полюсе выделяется водород, на положительном – кислород.

Другие методы добывания кислорода, как, например, с удалением, посредством сильного охлаждения или поглощающих средств, побочных газов, углекислоты и окиси углерода, или добывание водорода с помощью алюминия и др., отличаются чрезвычайной сложностью и слишком дороги для широкого технического применения. Лишь после того как химия угля привлекла к себе усиленное внимание и для получения жидкого угля потребовался водород, задумались и над упрощением и удешевлением способов добывания водорода. Сам уголь в процессе перехода в жидкое состояние становится источником водорода, в непрерывном круговороте с которым и происходит процесс разжижения угля. Значение водорода в будущем вполне сознается и авторитетными представителями химической науки. В 1926 г. О-во германских химиков на юбилейном заседании заслушало доклад проф. Бинца о взаимоотношениях между химией, техникой и мировой историей. В числе огромных технических проблем, стоящих перед человечеством, Бинц выдвинул вопрос о перенесении тропического тепла в страны умеренного пояса. Вполне реальна мысль о постройке на Ниле солнечной силовой станции, которая позволит разлагать нильскую воду и добывать водород, который затем в кварцевых бутылях на деревянных судах будет перевозиться в Европу, где он будет отоплять и освещать дома.

Необходимо сказать еще несколько слов о вышеназванном гелии, заменяющем водород при наполнении камер дирижаблей; как известно, он в своей естественной форме получается в Америке из натурального газа нефтяных источников. Гелий, подобно аргону, неону, криптону, ксенону, гафнию и т. д., принадлежит к классу благородных газов. Честь открытия благородных газов принадлежит Рэлею, который в 1894 г. в сотрудничестве с упомянутым уже Рамзаем в ряде опытов пришел к открытию аргона, гелия и остальных членов этой группы. Уже давно в спектре солнечных протуберанцев обнаружили присутствие гелия. Рамзай и Клеве (1895 г.) выяснили затем, что выделявшийся клевеитом газ, который первоначально принимали за азот, в действительности являлся гелием. Все минералы группы урана также содержат гелий. Исследования атмосферы привели к выводу, что в нижних слоях воздуха гелий имеется лишь в количестве 0,000056 %, в то время как на высоте свыше 100 км атмосфера вероятно состоит из 0,4 % гелия, а в остальной части из водорода.

При искусственном получении гелия, ставшем возможным лишь в самое последнее время, значительную роль опять-таки играет применение воздуха и воды. Гелий поддается сжижению, а именно путем охлаждения жидким кислородом, при давлении в 100 атм. Хотя гелий, в противоположность кислороду, не горит, он в два раза тяжелее последнего. Быть может, с течением времени химии удастся еще сделать водород несгораемым, путем, например, соответствующего добавления гелия или других благородных газов.

В 1924 г. печать обошло сообщение о том, что известный проф. Сорбонны Шарль Анри напал на совершенно новый способ получения энергии из воды и не путем изобретения новой водяной турбины, но путем химического разложения воды, составные части которой якобы можно применять вместо бензина в моторах. Это сенсационное сообщение открывает возможности, значение которых для всей энергетической проблемы на первый взгляд не поддается учету. Проф. Анри говорит, что повсюду в природе имеются вещества, которые чрезвычайно ускоряют течение известных химических процессов; при этом они сами ни в малейшей степени не затрагиваются этими процессами. В науке подобные любопытные вещества носят название «катализаторов». Что такое катализаторы? Объясним это более подробно.

Взаимодействие одного вещества с другим называется в химии химической реакцией. Без этого процесса, каких существует тысячи, мы не имели бы химии в современном ее развитии, ибо тысячи продуктов, как краски, мыла, кислоты и т. д., были бы человечеству в настоящее время совершенно неизвестны. Действие одного вещества на другое может быть незначительным или большим, медленным или бурным. Оно может быть ослаблено, если-между веществами находится хотя бы тончайший изолирующий слой; оно становится более интенсивным, если соответствующие вещества растворены в воде; реакции вообще не происходит, если в соприкосновение друг с другом вступают химически не реагирующие друг с другом вещества. Мы можем изготовлять некоторые газовые смеси и спокойно сохранять их долгое время, хотя при других условиях те же газы представляют огромную опасность; можно хранить сильно взрывчатые вещества, которые взрываются при определенных условиях и при прикосновении к ним. Различное расположение атомов в веществах создает в одних неустойчивые, а в других устойчивые комплексы (группы) молекул. Неустойчивые группы молекул очень легко распадаются при небольшом даже воздействии на них.

Одной из элементарнейших истин является положение, что теплота помогает осуществлению реакций или ускоряет их, тогда как холод задерживает реакции. Влияние тепла на реакцию образования воды и значение тепла при превращении воды в пар было известно уже Джемсу Ватту при сооружении им первой паровой машины. Давление, сильное встряхивание или электрические разряды также вызывают перемещение молекулярных комплексов. При сильном давлении возможно самовозгорание угольных залежей, сжижение воздуха; электрическая искра применяется в шахтах для воспламенения взрывчатых веществ и т. д. Все эти явления объединяют под понятием катализа в широком смысле этого слова.

Химии однако известны не только возможности при названных условиях вызвать реакцию, но и вещества, которые преобразовывают при более низкой или средней температуре другие вещества. Эти вещества, которые сами не изменяются, но одним соприкосновением с другим веществом производят свое действие, называются катализаторами. Достаточно совершенно незначительного количества катализатора, чтобы в кратчайший срок осуществить подобный загадочный процесс. Проф. Анри стоит на верном пути, пророча воде и ее химическому использованию широкие перспективы в будущем, ибо сама вода в химической науке давно уже известна в качестве необходимого катализатора, причисляемого к катализаторам общего действия, тогда как катализаторами специального действия наука стала пользоваться лишь в последние годы – с прогрессом техники. Как известно, существует целый ряд важных фабричных процессов, которые не осуществимы без применения катализаторов, так как без них они протекали бы слишком медленно. Известный способ Габер-Боша добывания аммиака из азота и водорода основан, например, на участии в соответствующем процессе одного из таких катализаторов – обычно урана. Кроме этого примера, можно назвать сколько угодно других.

Аналогичные процессы имеют место в сотнях других случаях, когда к известным веществам прибавляются кислоты; железо, медь, алюминий, ртутные соли, перекись марганца сплошь и рядом употребляются в качестве ускорителей реакций; медные соединения применяются при производстве анилиновой черной краски; окись кобальта, пятиокись ванадия, вольфрамовые кислоты и др. служат сильными катализаторами в самых различных химических процессах.

Проф. Анри, опираясь на теорию катализаторов, говорит, что в природе должны быть вещества, которые могут в сильной степени ускорять процесс распада воды на ее составные части, водород и кислород, – процесс, при обыкновенной температуре протекающий бесконечно медленно; получающиеся при указанных ускоренных реакциях газы смогут применяться в двигателях внутреннего сгорания для автомобилей и т. д.

Несмотря на возражения как теоретического, так и практического характера, выдвигаемые против плана Анри, имеется основание предполагать, что идея Анри в недалеком будущем перейдет из области проекта в действительность. Доказательством этого служит всем известный факт, что легко взрывающийся гремучий газ представляет собою не что иное, как смесь водорода и кислорода.

В известном смысле водяной мотор, проектируемый Анри, уже осуществлен, если и не для автомобилей, то во всяком случае для дирижаблей, где имеется возможность брать с собою в больших количествах газ, получаемый с помощью воды. Как известно, конструкторы дирижаблей уже долгие годы мечтают о замене бензинового мотора какой-либо другой машиной или о замене бензина другим топливом. Несмотря на то, что бензин является наиболее концентрированным топливом, а бензиновый мотор самым легким, все-таки воспламеняемость бензиновых паров, образующихся при сгорании в моторе, несет с собою чрезвычайную опасность для дирижабля. Если вспомнить, что цеппелин «Америка» при перелете через океан взял с собою 30 000 кг бензина, то ясно становится, какой источник опасности представляет собою подобная масса легко воспламеняющегося вещества. Лишь в 1926 г. на верфях в Фридрихсгафене, где строятся цеппелины, удалось бензиновый мотор заменить в новых дирижаблях совершенно новым двигателем внутреннего сгорания, питаемым газовой смесью.

Д-р Эккенер, пилот цеппелина «Америка», пишет о новом горючем следующее: «Многими делались попытки заменить бензиновый мотор мотором, работающим на сырой нефти, но с отрицательным результатом, так как вес мотора, работающего на сырой нефти, слишком велик. Конструкторы дирижаблей особенно в Англии, пытались разрешить вопрос в том смысле, что начали в моторах пользоваться газом, предназначенным для поддерживания дирижабля в воздухе (водород). Этим путем надеются, по крайней мере, значительно сократить необходимый запас бензина, заменив его отчасти несущим газом, часть которого освобождается во время плавания. Воздухоплавательная компания „Цеппелин“, которая уже довольно давно занимается этой проблемой, нашла, наконец, подходящее горючее в виде тяжелых, так называемых углеводородных газов, удельный вес которых в общем равняется единице и которые при испытании в моторах дали уже чрезвычайно благоприятный результат. Применение этих углеводородных газов связано с целым рядом весьма важных преимуществ: в виду того, что их удельный вес, как сказано, приблизительно равен удельному весу атмосферного воздуха, их применение в моторах не уменьшает и не увеличивает веса дирижабля, как это имеет место при пользовании бензином. Дирижабль сохраняет всегда статическое равновесие, и вследствие этого достигается увеличение средней быстроты его движения. Далее, в соответствии с требованием большей безопасности, устраняется опасный и занимающий много места бензин.

Замена бензина моторным газом имеет и еще одно важное преимущество: калорийность кубического метра тяжелых углеводородов приблизительно на 30 % выше калорийности килограмма бензина. Если учесть даже то, что кубический метр водорода соответствует 1,15 кг бензина, то производительность кубического метра водорода все же на 20–25 % будет выше производительности бензина».

Подводя итоги достижениям в области превращения воды в новый источник энергии, можно сказать, что вода в будущем обещает открыть перед техникой еще неслыханные возможности.

Энергия океана

Наряду с энергией, получаемой от речных потоков и водяных бассейнов, в последние годы техника заинтересовалась также использованием морских приливов и отливов и силой морских волн. В технике давно уже известно, что в мощных океанских бурунах и в постоянно сменяющихся приливах и отливах скрыты огромные силы, которые могут быть использованы в энергетических целях. Изо дня в день на неизмеримых океанских пространствах совершается процесс колоссальной мощности, не поддающейся исчислению силами человеческого разума. Солнечные лучи подымают воды из океанов, мчат их затем снова в далекое мировое пространство, бушуют страшными волнами у морских берегов, вызывают приливы и отливы. Бурные ветры, вызываемые солнечной энергией, с гигантской силой мчат водяные частицы над землей, сея теплый дождь и оплодотворяя луга, поля и сады.

Первые попытки использовать на службе техники морские приливы и отливы насчитывают уже довольно много лет. Много изобретателей изощряло свою проницательность в стремлении покорить технике гигант-океан. Согласно сведений французской технической прессы, с 1837 по 1917 г. вышло свыше 100 работ в этой важной области.

Около Нью-Йорка еще сравнительно недавно существовала построенная в XVII веке голландцами силовая станция, пользовавшаяся прибоем океана; в XVIII веке аналогичная станция была сооружена на северном французском и голландском берегу. Море отделялось плотиной. В плотинах находились отверстия, через которые вода вливалась и выливалась, приводя в движение водяные колеса. В 1901 г. американец Верт устроил волновой мотор на калифорнийском берегу. Изобретатель выстроил от берега в море перемычку длиной в 100 м, на которой находились три больших поплавка, двигавшиеся вверх и вниз (под влиянием отлива и прилива). Это движение передавалось насосу, наполнявшему резервуар водой, которая затем приводила в движение турбину. Англичанин Стивенсон исчислял энергию движения волн, омывающих берега северной Франции, в 100 млн л. с.

В 1927 г. общее внимание было привлечено изобретением, которое имеет в виду использование силы океана для судоходства и, по-видимому, способно произвести в будущем переворот в судоходстве. Инженер Бернер в Дрездене, уже создавший себе имя различными другими изобретениями, испытал на Эльбе в феврале 1927 г. впервые новый тип судна, основная идея которого заключается в заимствовании формы от быстро плавающих рыб.

Рис. 16. Первая модель быстроходного судна Бернера.

Изобретатель думает, что эта новая конструкция судна сможет повысить скорость судна на 100 % и сберечь до 80 % энергии, иначе говоря, судам можно будет придать скорость, равную скорости наших лучших локомотивов. Изобретатель назвал свое судно «Форелью», и действительно, по своей внешности, а также по конструкции оно похоже на эту рыбу. Прежде чем изобретатель приступил к осуществлению своего плана, он изучал строение рыб и пришел при этом к выводу, что, например, форель способна плыть с невероятной быстротой против течения и что при этом рыба пользуется не только своими плавниками, но, в первую очередь, своими жабрами. Дальнейшие исследования Бернер производил над акулой длиной в 1 1/2 м. При этом он открыл, что различные виды акул обладают несколькими жаберными отверстиями и своеобразными рубцами на коже, которые являются приспособлениями для быстрого передвижения. На основе этих наблюдений он построил следующую теорию: рыба поглощает воду не только для дыхания, но и для плавания. Через жабры она ее снова выпускает с усиленной скоростью, причем вода скользит вдоль ее тела. Таким образом, рыба создает как бы средостение между движущимся поступательно телом и водой, оказывающей телу сопротивление и вызывающей трение. Выдавливаемая вода образует водовороты и, отталкиваясь от чешуек и рубцов, создает движение вперед. Плавники рыбы служат исключительно для сохранения равновесия, а хвост исполняет обязанности руля. На основе этих наблюдений изобретатель сконструировал свое судно следующим образом: он прежде всего придал ему рыбообразную форму. При продвижении судна возникающее у носа сопротивление воды уничтожается вследствие всасывания воды с помощью винтов внутрь судна; там винтами вода приводится в дальнейшее вращение и затем выбрасывается из боковых «жаберных» отверстий. Благодаря этому тело судна омывается новым нейтральным течением, которое быстрее остальной воды и придает судну ускоренное движение вперед.

На ряду с этими интересными опытами следует остановиться на многообещающих перспективах использования действия морских приливов и отливов для получения энергии. Приливы и отливы в некоторых морях повторяются через точно определенные промежутки времени: вследствие притягательной силы луны море дважды за 6 часов подымается и падает. Разница в уровне между приливом и отливом достигает обычно 2–4 м. На западном и юго-западном берегу Франции этот процесс принимает наиболее величественные формы. Здесь зачастую наблюдаются приливы, достигающие вышины 15 м. Работоспособность этой колоссальной энергии моря измеряется приблизительно в 11 триллионов л. с. Ее хватило бы при современном потреблении энергии приблизительно на 40 млрд лет. Какое счастье было бы для человечества, если бы среди него нашелся гениальный человек, который сумел бы овладеть этими силами! При ближайшем рассмотрении вопроса о реальности этих количеств энергии вскоре выясняется однако, что человечество может использовать лишь совершенно ничтожную часть этих сил, значительнейшая же доля энергии уже с самого начала пропадает у скал, в виде бурунов.

В странах, ощущающих сильный недостаток в угле, или там, где истощение угольных залежей уже начинает вырастать в серьезную опасность, в последнее время было обращено внимание на использование энергии океана. Использование приливов и отливов, которые, как сказано выше, особенно интенсивны у французских берегов, обратило на себя внимание французских техников. Предварительные работы по устройству силовых станций, которые могут пользоваться силою прибоя, давно уже в ходу. Французское правительство часто ассигновывало большие суммы для поощрения соответствующих опытов. На изрезанном берегу Бретани, поблизости от Абе-Бреш, проектировалось установить первую французскую морскую силовую станцию. Интересно, что яри этом выяснилось, что морская вода, вследствие ее насыщенности солью, не применима в турбинах. Пришлось перейти к передаче давления морской воды на пресную. Проектировалось воду реки Сиури накачивать посредством морского давления в бассейн, откуда лишь она должна была питать турбины. Таким образом хотели действующую толчками силу моря как бы консервировать в бассейне пресной воды. Стоимость предприятия по проекту чрезвычайно высока: стоимость установки исчисляется в 15 000 франков на один киловатт.

В Англии также серьезно занялись вопросом использования морских приливов. Уже давно английское правительство проектирует постройку в устье Северна одной из крупнейших на земле силовых станций, с максимальной нагрузкой в 1 млн л. с. Таким образом крупнейшая до сих пор силовая станция на Ниагарском водопаде, мощностью около 400000 л. с., отойдет уже на второе место. Река Северна у своего впадения в Бристольский канал имеет очень длинную бухту, в которой очень сильно действие морских приливов. Если разделить эту бухту дамбой, стоимость которой была бы сравнительно невелика, то можно было бы выстроить здесь одну из крупнейших силовых станций. Крупные промышленные предприятия на берегах этой силовой станции легко бы оправдали стоимость строительства. Стоимость предприятия исчисляется в 30 млн фунтов (английский фунт = 10 р.). Срок постройки предполагается в семь лет. Английское правительство, несмотря на скептическое отношение специалистов к этому плану, снова решило организовать предварительно исследования относительно осуществимости этого проекта.

Уже в течение целого ряда лет инженеры Англии занимаются проектированием мощных энергетических установок, причем энергия может быть получена в северных морских рукавах с помощью ежедневных приливов и отливов. Еще раньше был выдвинут проект, согласно которому путем создания бассейнов в 15 шотландских озерах может быть получен источник электрической энергии мощностью в 183 500 л. с. Но эти проекты не были осуществлены.

Наряду с этими и другими планами использования энергии приливов и отливов в последние годы возникли проекты, имеющие целью использовать для получения энергии тепло морей.

В 1925 г. в этой области выделился проект берлинца д-ра Баймера. Баймер исходил из того положения, что в тропиках море на поверхности обладает температурой в 25°, на глубине же в 3 000-4 000 м температура не достигает даже 10°. Тепло поверхностных слоев воды можно использовать для испарения углекислоты или аммиака, а тем самым и для работы паровой турбины. Холодная вода могла бы быть использована для сгущения отработанного пара. Подобное приспособление позволило бы использовать высокую температуру моря на 3 %. Для этого потребовалось бы построить плавающие по морю силовые станции, которые полученной энергией пользовались бы на месте, хотя бы для производства удобрительных средств и т. п.

С аналогичным проектом выступил в 1926 г. известный пионер в области получения синтетического аммиака, Ж. Клод. Клод изложил свой проект на одном из заседаний французской Академии наук. Вместе с Полем Бушеро, известным конструктором крупных динамотурбин, он разработал способ использования морской теплоты, который он и продемонстрировал на маленькой опытной машине. Изобретатель также исходил из того факта, что в тропических морях поверхностные слои показывают очень высокую температуру, тогда как глубже лежащие слои воды – весьма низкую. Сконструированная изобретателем машина состоит из двухколенного герметически закупоренного сосуда, в котором давление достигает 1/1000 атм.; в трубе, соединяющей эти оба колена, находится паровая турбина. Если в обоих коленах находится вода, то в пространстве, находящемся над водою, господствует давление пара, соответствующее данной температуре воды.

Рис. 17. Клод перед своим аппаратом, с помощью которого он демонстрирует использование морского тепла. Левый сосуд содержит воду при температуре в 28°, правый – лед, служащий конденсирующим средством.

Клод исчисляет мощность своей машины, исходя из предположения, что при достаточном поступлении в нее теплой воды каждый кубический метр воды отдает 5 000 калорий и производит 8 кг пара. Изобретатель полагает, что, пропуская в секунду 1 000 куб. м воды через паровой котел, можно получить 600 000 л. с. По сравнению с этим проектом все попытки использовать морские приливы для получения энергии теряют всякое значение, и даже современные станции, получающие энергию из угля, нефти или водяных турбин, отступают по мнению изобретателя далеко на задний план, если их сопоставить с его машиной, работающей в 20 раз дешевле. Хотя эта идея весьма соблазнительна и осуществление ее можно только приветствовать, однако к оптимизму Клода приходится отнестись очень скептически; ибо путь от лаборатории к широкому техническому применению очень далек и труден, в особенности в том случае, когда приходится иметь дело с силами, которые не поддаются измерению в стенах лаборатории.

Как бы то ни было, из вышеизложенного уясняется, с каким упорством изобретатели и техника трудятся над проблемой покорения чудовищных сил океана и использования их на службе человека.


    Ваша оценка произведения:

Популярные книги за неделю