355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антон Первушин » Кто угрожает России? Вызовы будущего » Текст книги (страница 9)
Кто угрожает России? Вызовы будущего
  • Текст добавлен: 5 октября 2016, 05:22

Текст книги "Кто угрожает России? Вызовы будущего"


Автор книги: Антон Первушин


Жанр:

   

Публицистика


сообщить о нарушении

Текущая страница: 9 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]

* * *

Таким образом, реакторы РБМК ныне вполне безопасны. Это, однако, не способствует их эффективности и экономии средств при эксплуатации, да и предубеждение слишком велико – поэтому российская атомная энергетика делает сегодня ставку на реакторы других типов: ВВЭР (водо-водяной корпусной реактор) и РБН (реактор на быстрых нейтронах).

За прошедшие с Чернобыльской аварии годы были разработаны новые варианты этих реакторов, и некоторые из них уже эксплуатируются. Так, российские реакторы ВВЭР-1000 установлены на новых АЭС в Индии, Китае, Иране. Шесть ВВЭР-100 Cанкт-петербургского производственного объединения «Ижорский завод» работают на Запорожской АЭС – крупнейшей АЭС в Европе.

В самой России в настоящее время на 10 атомных станциях (Белоярская, Билибинская, Волгодонская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Смоленская), входящих в состав концерна «Росэнергоатом», эксплуатируется 31 энергоблок (РБМК, ВВЭР, РБН) установленной мощностью 23,24 ГВт. Это обеспечивает 15 % энергопотребления страны (для сравнения – в развитых странах вклад АЭС в среднем превышает 32 %). Поскольку в ближайшем будущем старые энергоблоки будут выведены из эксплуатации и законсервированы, до 2030 года российским атомщикам придется построить как минимум 42 энергоблока. В таком случае реакторы РБМК уйдут в прошлое, а их заменят реакторы ВВЭР нового поколения. Кроме того, руководство «Росэнергоатома» предполагает в октябре 2010 года ввести в эксплуатацию первую в мире плавучую тепловую электростанцию малой мощности (АТЭС ММ) с реакторами КЛТ-4C, которая должна стать прототипом целой линейки таких электростанций.

Планы впечатляют, однако уже на первом этапе их реализации возникли серьезные проблемы. Так, из пяти блоков, намеченных к пуску до 2008 года, в эксплуатацию удалось ввести лишь два: первый энергоблок на Волгодонской АЭС (пуск состоялся в 2001 году) и третий на Калининский АЭС (ввод в эксплуатацию состоялся в 2005 году). При этом затраты на строительство третьего блока Калининской АЭС превысили утвержденную в 2002 году смету расходов в два раза!

В октябре 2006 года была утверждена новая программа – «Развитие атомного энергопромышленного комплекса России на 2007–2010 гг. и на перспективу до 2015 года». В ее рамках пуск второго энергоблока Волгодонской АЭС запланирован на 2009 год (реально, судя по темпам строительства – не ранее 2012 года). Четвертый блок Калининской АЭС вместо 2007 года, как это планировалась в Энергетической стратегии, теперь намечено пустить в 2011 году (в реальности он будет запущен не ранее 2014 года). А недостроенные пятый и шестой блоки Курской АЭС были и вовсе выкинуты из новой программы.

В программу строительства энергоблоков до 2015 года включительно входят:

– два блока Нововоронежской АЭС-2 (1 блок – 2012 год, 2 блок – 2013 год);

– три блока Ленинградской АЭС-2 (1 блок – 2013 год, 2 блок – 2014 год, 3 блок – 2015 год);

– один блок на Волгодонской АЭС (3 блок – 2014 год);

– один блок Курской АЭС-2 (1 блок – 2015 год);

– один энергоблок Белоярской АЭС (4 блок – 2012 год).

Согласно программе, совокупная мощность новых энергоблоков составляет 7,8 ГВт. Средняя стоимость строительства составляет 66,7 миллиардов рублей за 1 вводимый ГВт «в ценах соответствующих лет» (то есть с учетом инфляции). Однако уже сегодня проектные организации отрасли объявляют о необходимости увеличения смет в полтора раза, то есть до более чем 100 миллиардов рублей за 1 ГВт. Причина – отсутствие в отрасли механизмов контроля роста цен на поставляемое оборудование и услуги. Характерный пример: в 2004 году стоимость парогенераторов, которые входят в основное оборудование на АЭС Кудамкулам (Индия), равнялось 8 миллионам долларов за один парогенератор, сегодня объявленная заводом-изготовителем цена одного парогенератора – 44 миллиона долларов. Таким образом, цена оборудования выросла в 5,5 раз за четыре года.

В этой связи особо следует отметить строительство четвертого блока Белоярской АЭС (реактор БН-800 на быстрых нейтронах) по проекту 1970-х годов. Стоимость строительства в силу уникальности проекта и оборудования станции вдвое превысит утвержденные 3 миллиарда долларов, то есть обойдется в 6 миллиардов. С точки зрения экономики строительство этого блока неоправданно. Его можно было бы счесть в какой-то степени целесообразным, если бы на нем отрабатывались технологии топливного цикла на смешанном уран-плутониевом топливе – это позволило бы в перспективе разгрузить хранилища радиоактивных отходов, вторично пустив отработанное топливо в энергетику. Однако руководство отрасли не смогло организовать производство смешанного топлива и намерено пускать реактор полностью на уране. Но ведь такой энергоблок (БН-600) уже есть и работает много лет на той же самой Белоярской АЭС – делать еще один, намного более дорогой, не имеет смысла. Тем более что атомная энергетика на реакторах типа РБН вряд ли когда-нибудь станет магистральным направлением – в настоящее время появились более интересные варианты.

* * *

Развитие атомной энергетики в России сдерживают и другие факторы. Так, эксперты считают ошибочным решение руководства Росатома о том, что до 2020 года строительство атомных блоков будет проводиться по новому проекту «АЭС 2006». Это решение означало прекращение работ по проекту АЭС с реактором ВВЭР-1500 (электрическая мощность 1500 МВт) с заменой его на ВВЭР-1200 (электрическая мощность 1150 МВт). Получается, проект «АЭС-2006» имеет новый реактор, мощность которого всего на 10 % больше эксплуатируемых и строящихся в России и за рубежом. Столь незначительное повышение мощности экономически не оправдано, ведь реактору придется работать десятки лет, а он морально устареет еще до начала запуска. В то же время новый проект требует столько же затрат, что и доведение ВВЭР-1500. Проект «АЭС-2006» до сих не завершен, что приводит к задержке развертывания строительства на площадках Нововоронежской АЭС-2 и Ленинградской АЭС-2.

К самим АЭС-2 у экологов имеются серьезные претензии. Дело в том, что на этих атомных электростанциях проектировщики впервые отказались от прудов-охладителей, которые забирают избыточное тепло цикла, в пользу четырех труб-градирен. То есть теплоноситель будет охлаждаться путем испарения в атмосферу, что может серьезным образом повлиять на экологическую обстановку – напомню, что ЛАЭС-2 будет возведена поблизости от ЛАЭС-1, которая находится в городе Сосновый Бор, в 80 километрах от Санкт-Петербурга.

Кроме того, экологи, протестующее против возведения ЛАЭС-2, вполне резонно спрашивают у властей, куда последние собираются складировать радиоактивные отходы. Ведь они на ЛАЭС не перерабатываются, а сливаются в специальное хранилище, которое за время эксплуатации уже заполнено более чем на половину.

В пресс-релизе общественной экологической организации «Зеленый мир», резюмирующем общественные слушания по ЛАЭС-2, прямо говорится: «Отработавшее ядерное топливо (ОЯТ) планируют 3 года охлаждать в приреакторных бассейнах на каждом энергоблоке, затем 1 год в бассейнах специального хранилища и отправлять на завод по регенерации ОЯТ. Завода пока не существует».

Не существует, как ни странно, и денег, определенных на вывод старых энергоблоков из эксплуатации, а это – 2,5 миллиардов евро. Кто будет оплачивать остановку и консервацию старых энергоблоков, имеющих в своем составе злосчастные РБМК-1000 чернобыльского типа, также не ясно.

Предполагаемые расходы таковы, что вместо ЛАЭС-2 можно было бы возвести тепловую электростанцию нового поколения сопоставимой мощности. На это указывают ряд экспертов, в том числе активист петербургского отделения международной организации «Гринпис» Игорь Бабанин, предлагающий заменить атомные реакторы парогазовыми энергоблоками.

Серьезные вопросы вызывает и проект создания плавучих АЭС малой мощности. Был продекларирован высокий экспортный потенциал этого проекта и его востребованность в отдаленных регионах Крайнего Севера и Дальнего Востока. Однако технико-экономические расчеты показывают чрезвычайно высокую стоимость произведенной на плавучих АЭС электроэнергии: цена одного киловатта вводимой мощности достигает 10 000 долларов и более, что делает проект неконкурентоспособным по сравнению с традиционными энергоисточниками.

Впрочем, планы Росатома по скорейшему введению в эксплуатацию новых энергоблоков и остановке старых могут быть сорваны – на этот раз из-за мирового экономического кризиса. По крайней мере, глава Росатома Сергей Кириенко прямо заявил: «В ближайшие годы с первых лет мы планировали по два блока в год, теперь у нас скорректированная программа – по одному энергоблоку в год в ближайшие несколько лет».

Наверное, экологи и противники атомной энергетики могут радоваться: чем меньше АЭС на карте страны, тем лучше для природы. Однако не всё так просто. Ведь глубокое продуманное развитие атомной энергетики способствует появлению новых, более свершенных, систем, а извлекаемая за счет продажи электроэнергии прибыль позволяет финансировать фундаментальные исследования в этой области и подготовку высококвалифицированных кадров.

К примеру, в настоящее время разрабатывается очень интересный российско-американский проект гелиевой атомной станции ГТ-МГР, в которой теплоносителем служит не вода, а гелий, что позволяет еще больше повысить безопасность и значительно снизить тепловые потери. Топливо для станции – это оксид и карбид урана или оксид плутония, выполненные в виде шариков диаметром всего 0,2 миллиметра и покрытые несколькими слоями различной термостойкой керамики. Шарики «насыпаются» в стержни, те формируют сборку, и так далее. Физические (масса конструкции, условия протекания реакции) и геометрические параметры реактора таковы, что при любом развитии событий, даже полной потере теплоносителя, эти шарики не расплавятся. Поскольку ГТ-МГР может потреблять не только уран, но и оружейный плутоний, такие АЭС становятся идеальным устройством по его утилизации. Согласно Энергетической стратегии, сооружение головной АЭС ГТ-МГР и установки по производству топлива для нее на Сибирском химическом комбинате (город Северск, Томская область) будет завершено к 2010 году, а к 2012–2015 годам предполагается ввести в эксплуатацию первую четырехмодульную АЭС ГТ-МГР. Станут ли эти планы реальностью? Или снова будут отодвинуты на несколько лет?..

* * *

Если мы откажемся от атомной энергетики по причине недостатка финансирования или из боязни повторения Чернобыльской аварии, то раньше или позже перед нами встанет другая и очень серьезная проблема: что делать с отработанным топливом и старыми АЭС? Сохранность могильников радиоактивных отходов на протяжении десятилетий – это отдельная непростая задача, решение которой требует наличия соответствующих технологий, высокой культуры персонала и опять же значительного финансирования.

Если же всё пустить на самотек, мы придем к ситуации, которая окажется пострашнее чернобыльской.

Мрачным примером здесь может служить взрыв газопровода на западе Москвы (в районе дома 46 по Большой Очаковской улице), произошедший в ночь с 9 на 10 мая 2009 года. Москвичам тогда просто повезло – газ воспламенился почти сразу же после прорыва трубы, а ведь он мог скопиться в облако и рвануть позже. Объемный взрыв большой мощности почти наверняка разрушил бы многие здания поблизости, в том числе и пострадавшее сильнее остальных здание Научно-исследовательского физико-химического института имени Карпова. Между прочим, в лабораториях этого НИИ хранились различные радиоактивные вещества.

«Самого неприятного нам удалось избежать, – заверяет генеральный директор института Алексей Алякин. – В лабораториях были легковоспламеняющиеся жидкости, баллоны с газом, но наши специалисты вовремя проконсультировали пожарных, как их лучше тушить – порошком или водой, поэтому серьезных последствий не было. Были в здании на Озерной улице и радиоактивные вещества. Да, должен признаться, угроза локального радиоактивного заражения была. Но сразу хочу отметить, что в самом худшем случае радиация не распространилась бы за пределы здания института – максимальный радиус заражения составил бы не больше 50 метров».

Представьте, что началось бы в Москве, если бы здание НИИ выгорело полностью, а в прессу просочились бы слухи о том, что в воздух попали радиоактивные изотопы!..

Причиной аварии, которая могла обернуться масштабной катастрофой, стали ошибки в прокладке трубы, допущенные в начале 1980-х годов, и нарушения в ходе ремонта газопровода в 1996 году, когда на трубе была обнаружена первая трещина. Сколько подобных «мин замедленного действия» заложено сейчас по всей России, не может сказать никто. И никто не может гарантировать, что крупная техногенная авария не произойдет в непосредственной близости от старой АЭС или хранилища радиоактивных отходов.

Желаем мы этого или нет, но нам придется поддерживать определенный уровень технологической культуры, невзирая на кризисы и рыночную конъюнктуру, – иначе придется расплачиваться не деньгами, а жизнями людей и выселенными городами.

«Черный» август энергетики

Давно замечено, что в августе в России происходят крупные катастрофы, сопряженные с большим количеством жертв. К сожалению, не стал исключением и август 2009 года. Так, 16 августа произошли сразу две «громкие» авиакатастрофы. В Калужской области разбился учебный «Як-52», на борту которого находилась абсолютная чемпионка Европы по самолетному спорту, призер чемпионатов мира, пилот-инструктор Светлана Федоренко. Примерно в то же самое время под Кубинкой в Московской области столкнулись и упали два «Су-27» пилотажной группы «Русские витязи», при падении погиб командир пилотажной группы Игорь Ткаченко; были тяжело ранены пятеро местных жителей – самолет рухнул на дачный поселок. Однако эта трагедия померкла на фоне катастрофы, которая произошла днем позже – на Саяно-Шушенской ГЭС.

* * *

Саяно-Шушенская ГЭС (имени Петра Степановича Непорожнего) – самая большая в России и одна из крупнейших в мире гидроэлектростанция. Она расположена на реке Енисей, в поселке Черемушки (Хакасия), возле Саяногорска.

История Саяно-Шушенской ГЭС началась 4 ноября 1961 года, когда первый отряд изыскателей института «Ленгидропроект» прибыл в горняцкий поселок Майна. В условиях суровой зимы и последующего бездорожья предстояло обследовать три конкурирующих створа. Уже в июле 1962 года экспертная комиссия, возглавляемая академиком Беляковым, смогла по материалам изысканий выбрать окончательный вариант – Карловский створ. В 20 километрах ниже по течению было намечено строительство «спутника» Саяно-Шушенской – контррегулирующей Майнской ГЭС.

Проект уникальной арочно-гравитационной плотины высотой 242 метра, шириной по основанию 110 метров и длиной по гребню 1070 метров был разработан Ленинградским отделением института «Гидропроект». Создание плотины такого типа в условиях широкого створа Енисея и сурового климата Сибири не имело аналогов в мире. Сегодня она занесена в Книгу рекордов Гиннеса как самое надежное гидротехническое сооружение данного типа.

Хроника строительства Саяно-Шушенской ГЭС такова.

В 1966 году в поселке Черемушки организован первый строительный участок. В 1967 году в поселке Означенное заложен первый крупнопанельный дом. В 1968 году начата отсыпка правобережного котлована первой очереди. В 1970 году в котловане первой очереди уложен первый кубометр бетона. 11 октября 1975 года Енисей полностью перекрыт, началось возведение плотины.

Крупнейшие производственные объединения СССР создавали для двух новых гидростанций новое мощное оборудование. Гидротурбины делал Ленинградский металлический завод, гидрогенераторы – «Электросила», трансформаторы – «Запорожтрансформатор». Огромные рабочие колеса турбин были доставлены в верховья Енисея водным путем длиною почти в десять тысяч километров, через Северный Ледовитый океан.

Всего на Саяно-Шушенской ГЭС установлено десять гидроагрегатов. Первый из них был запущен 18 декабря 1978 года, десятый – 25 декабря 1985 года. Вместе они вырабатывали 24,5 миллиардов кВтч в год.

Всё было бы хорошо, но в процессе эксплуатации проявились серьезные проблемы. Дело в том, что строительство ГЭС велось с поэтапным освоением, которое сильно отличалось от проектных предположений. Для обеспечения пуска первого гидроагрегата в назначенный срок спешно начали наполнение водохранилища, чтобы успеть использовать необходимый объем притока Енисея. При этом проектанты не предусмотрели возможность сброса воды на случай каких-либо непредвиденных обстоятельств. Технологические возможности не позволили уложить требуемый объем бетона в водосбросную плотину, поэтому к половодью 1979 года она оказалась не готова, и 23 мая 1979 года паводок буквально затопил станцию – под водой оказались и здание ГЭС, и первый работающий гидроагрегат.

В результате другого мощного половодья 1985 года произошло разрушение водобойного колодца: плиты крепления толщиной более двух метров просто вымывало, как будто они были сделаны из пенопласта, в скальном основании образовались каверны глубиной до 7 метров. Фактически плотина сама размывала свое основание, ослабляя его сцепление с дном русла. Из-за нерасчетных деформаций в теле плотины появились трещины, куда устремились новые потоки воды. Всё это могло закончиться катастрофой, но тогда энергетикам повезло. Причинами этих разрушений были признаны плохо проведенный ремонт дна колодца после половодья 1981 года и ряд инженерно-конструкторских просчетов.

Разрушения в конструкции плотины в начале эксплуатации стали неприятным сюрпризом для тогдашнего хозяина ГЭС – Минэнерго СССР. Был выполнен срочный ремонт: усилено дно водобойного колодца, чтобы исключить ослабление и размывание основания плотины потоком сбрасываемой воды; трещины в теле плотины герметизировались раствором на основе эпоксидных смол.

Не дожидаясь, пока Енисей еще раз покажет свой нрав, было принято принципиальное решение о возведении дополнительного берегового водосброса. Из-за экономических проблем начало строительства откладывалось, и только после того, как Министерство чрезвычайных ситуация (МЧС) России внесло Саяно-Шушенскую ГЭС в список «потенциально опасных объектов», руководство РАО ЕЭС озаботилось проблемой. Сооружаемый водосброс представляет собой два тоннеля, проложенные внутри горы правого берега, а также отводной канал в виде пятиступенчатого каскада. Завершить строительство берегового водосброса Саяно-Шушенской ГЭС планировалось в 2010 году…

* * *

17 августа в 8:13 по местному времени (4:13 по московскому) взорвался гидроагрегат № 2 Саяно-Шушенской ГЭС. Поток воды под давлением в 50 атмосфер ударил в крышу машинного зала, частично разрушив ее. Сильные повреждения получили агрегаты № 7 и 9, обломки крыши завалили агрегаты № 3, 4 и 5. После этого вода затопила подземные сооружения машинного зала. Электростанция остановилась, прекратив производство энергии.

На ГЭС в тот момент работала ночная смена – 300 человек. Из них 88 находились непосредственно в машинном зале. Поступление воды в машинный зал оперативный персонал ГЭС и службы МЧС сумели перекрыть лишь через час.

Первый же осмотр показал, что самого страшного удалось избежать – плотина устояла, повреждений гидротехнических сооружений и водоводов обнаружено не было. Таким образом, угроза затопления поселков и городов, находящихся ниже по течению Енисея, отступила.

Начались поиски выживших работников станции, которые были осложнены тем, что большая часть машинного зала оставалась затопленной. Поэтому к операции привлекли водолазов. Сразу же выявился дефицит спасателей – их собирали со всей Сибири.

Потери оказались весьма значительными. Погибли 75 человек – в основном молодые специалисты, элита инженерного корпуса.

Авария повлияла на работу многих предприятий, получающих электроэнергию от ГЭС. Были отключены Саянский и Хакасский алюминиевые заводы, снижено обеспечение Красноярского алюминиевого завода, Кемеровского завода ферросплавов и Новокузнецкого алюминиевого завода. На Алтае было остановлено шесть заводов. С ограничением подачи электроэнергии столкнулся ряд кузбасских угольных шахт. Кроме того, веерные отключения электроэнергии начали томские энергетики, причем это коснулось как предприятий, так и жилых домов.

О сложившейся ситуации вскоре после аварии было доложено и президенту Дмитрию Медведеву, и премьер-министру Владимиру Путину. Они поручили главе МЧС Сергею Шойгу вылететь в Абакан и лично проконтролировать работы по ликвидации аварии.

Между тем в регионе началась паника, подстегнутая слухами о том, что плотина разрушена. Первыми ей поддались жители поселка Черемушки – ближайшего населенного пункта к ГЭС. Затем их опасения подхватили жители Саяногорска, Шушенского, Минусинска и столицы Хакасии – Абакана. К этому моменту в Абакан уже ехали колонны автомобилей тех, кто решил, что там будет безопаснее, чем дома. На заправках и шоссе образовались многокилометровые пробки. Люди лихорадочно скупали спички, свечи, продукты и предметы первой необходимости. Сбоила сотовая связь и Интернет – сеть не выдержала нагрузки.

Однако реальных поводов для паники не было – уровень воды в Енисее не поднимался, города даже не начало подтапливать, а эвакуация не объявлялась. Больше того, к местному населению обратились министр Сергей Шойгу и руководители региона, которые опровергли слухи о возможном затоплении и попросили людей успокоиться. Однако сделать это было не так просто – память о замалчивании произошедшего на Чернобыльской АЭС свежа до сих пор…

Прозвучали первые предположения о том, когда Саяно-Шушенская ГЭС вновь начнет работу. Глава ОАО «РусГидро» Василий Зубакин сообщил, что на возвращение станции в энергосеть уйдет несколько месяцев, а замена трех полностью разрушенных гидроагрегатов потребует годы. На это придется потратить как минимум 10 миллиардов рублей. Сюда включены и выплаты семьям погибших энергетиков в размере 1 миллиона рублей за каждого.

Но косвенный ущерб может быть гораздо выше: сибирские города готовятся встретить зиму с дефицитом электричества. Столь масштабное происшествие наверняка приведет и к росту цен на электроэнергию по всей стране.


    Ваша оценка произведения:

Популярные книги за неделю