355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антон Первушин » Кто угрожает России? Вызовы будущего » Текст книги (страница 8)
Кто угрожает России? Вызовы будущего
  • Текст добавлен: 5 октября 2016, 05:22

Текст книги "Кто угрожает России? Вызовы будущего"


Автор книги: Антон Первушин


Жанр:

   

Публицистика


сообщить о нарушении

Текущая страница: 8 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]

* * *

Интересно, что у ITER уже появился конкурент. Им может стать сверхмощный лазер, создаваемый в рамках проекта US National Ignition Facility (NIF), что переводится как «Национальная зажигательная установка». Проект, который ведет Ливерморская Национальная лаборатория имени Лоуренса в Калифорнии, является результатом сотрудничества правительства США с крупными индустриальными корпорациями и научным сообществом страны. Строительство лазерной установки продолжалось 12 лет и завершилось в апреле 2009 года. На лазерный комплекс было потрачено 3,5 миллиарда долларов.

Зачем же понадобились такие расходы? Оказывается, NIF тоже способен обеспечить управляемый термоядерный синтез, но несколько иным, чем ITER, путем. Еще в 1960 году Андрей Сахаров показал, что реакцию можно получить, не удерживая плазму магнитным полем, а позволяя ей свободно разлетаться во все стороны. При этом разлету плазмы препятствует инерция ее частиц, обладающих массой. Вместо очень разреженной, но долго удерживаемой магнитным полем плазмы предлагается противоположное ее состояние – очень плотная и короткоживущая. А результат будет тот же – превышение энергии, выделяемой в реакциях синтеза, над энергетическими затратами.

Конкретный путь реализации «инерционного термояда» был указан советскими физиками Николаем Басовым и Олегом Крохиным в 1962 году – обжимать и нагревать дейтерий-тритиевые «мишени» (размером в 1 миллиметр) мощными лазерными пучками. Это направление получило название «лазерного термояда».

За прошедшие полвека лазерный метод проделал большой путь. Были созданы многопучковые установки, которые позволяли синхронно сбрасывать импульсы лазерного излучения на сферические мишени, добиваясь их равномерного сжатия и разогрева. Были разработаны сверхкороткие импульсные лазеры, наиболее пригодные для «зажигания» термоядерной реакции, и многослойные мишени, сжимаемые равномерно без потери формы.

В основе NIF – 192 мощных лазера, которые будут одновременно направляться на миллиметровую сферическую мишень (около 150 микрограммов термоядерного топлива – смесь дейтерия и трития). Температура мишени достигнет в результате 100 миллионов градусов, при этом давление внутри шарика в 100 миллиардов раз превысит давление земной атмосферы. То есть условия в центре мишени будут сравнимы с условиями внутри Солнца.

Первый цикл целевых испытаний NIF начался летом 2009 года, а попытка получить термоядерный синтез с положительным энергетическим сальдо запланированы на 2010 год.

Эксперты, правда, указывают, что главный недостаток такого рода установок – слабое поглощение лазерного излучения горячей плазмой: чем выше ее температура, тем меньше она «замечает» лазерный луч, проходящий через нее. Велики потери и на отражение от холодной короны, образованной вокруг мишени.

Впрочем, даже если американским ученым не удастся запустить термоядерный синтез в фокусе своего суперлазера, он найдет множество других применений, ведь в отличие от чисто гражданского реактора ITER этот проект курируют военные из Пентагона…

* * *

Как видите, и магнитный термояд, и инерционный лазерный термояд требуют серьезных капиталовложений и большого строительства, поэтому постоянно всплывает тема «холодного» термояда, который действительно смог бы сделать фантастику реальностью.

Говоря о холодном термояде, нужно сразу отметить, что под этим термином понимаются самые разные реакции, и зачастую происходит путаница.

Направление, получившее название холодного термояда, или, что более правильно, мюонного катализа, было предложено Андреем Сахаровым и Яковом Зельдовичем в 1957 году. Суть его заключается в использовании нестабильной частицы – отрицательно заряженного мюона, масса которого в 200 раз больше массы электрона. Мюон по своим свойствам очень похож на электрон (его называют тяжелым электроном), в частности, он может замещать электрон в атоме, но по закону квантования радиус мюонной орбиты в 200 раз меньше, чем электронной. Атомы дейтерия и трития, в которых место электрона занял мюон, могут объединяться в молекулы, где ядра дейтерия и трития (по той же причине) сближены в 200 раз. В горячей плазме при таком сближении ядерная реакция не пойдет, но в мезомолекуле дейтерий и тритий постоянно находятся на таком расстоянии и могут, «почувствовав» друг друга, с заметной вероятностью осуществить «туннельный переход», вступив в реакцию. При этом образуются ядро гелия и нейтрон, выделится энергия синтеза, а мюон, ставший вновь свободным, может сесть на орбиту соседнего атома, заменив в нем электрон. Всё повторится – произойдет новое сближение ядер и новая реакция синтеза. Таким образом, мюон может выступать ядерным катализатором. За время своей короткой жизни (2 микросекунды) мюон успевает осуществить до ста реакций! При этом не нужны сверхвысокие температуры, нет надобности в капризной плазме и сильных магнитных полях. Но эта кажущаяся простота не дается даром – нужны интенсивные потоки мюонов, которые можно получить только на ускорителях во взаимодействии энергичных протонов с ядрами, а значит, снова понадобятся значительные финансовые расходы и большие стройки – без уверенности в конечном успехе.

В конце 1980-х годов появилось сообщение американских химиков о холодном синтезе при электролизе тяжелой воды. Секрет якобы состоял в выборе материала электродов (лучшим оказался палладий), адсорбирующего водород. Ионы дейтерия скапливались в электроде, где из-за большого давления мог происходить «туннельный эффект», как при мюонном катализе. Никакие теоретические оценки не подтверждали такой возможности, что сразу настораживало. Тщательная проверка, проведенная в других лабораториях, показала ошибочность этих экспериментов. И всё же, отвергнув данный метод, физики получили положительный результат: оказалось, что при некоторых условиях ядерный синтез возможен без высокой температуры за счет скрытого ускорения частиц в субатомных электрических полях. Впрочем, получить на этой основе энергетически выгодный синтез невозможно.

Другая «сенсация» пока еще жива, но, похоже, и она скоро заглохнет. Речь идет о «пузырьковом» термояде, предложенном десять лет назад академиком Робертом Нигматулиным из Уфимского научного центра РАН и подтвержденном группой американских исследователей во главе с профессором Диком Лэхи. Это тоже вариант холодного синтеза, но с более серьезным обоснованием. В дейтерированном ацетоне при температуре ниже 2–3 °C создавались условия роста микропузырьков газа, а затем внешним акустическим воздействием проводилось их сжатие (кавитация), что резко повышало температуру до нескольких миллионов градусов и могло инициировать реакции синтеза. При экспериментах регистрировались нейтроны и активность трития. То есть ядерный синтез происходил, но, как отмечают эксперты, совершенно не очевидно, что на выходе будет получен энергетически выгодный термояд – затраты энергии опять оказываются выше, чем ее выделение.

Сам академик Нигматулин говорит по этому поводу так: «Для досконального изучения явления необходимы время и средства. Хотя эти потоки нейтронов и трития невелики, но и не малы, тем более, что установка занимает всего лишь письменный стол и работает много часов. Высвобождаемая энергия пока ничтожна, но лиха беда начало. Я представляю, как повысить производительность и эффективность процесса. Помимо практических перспектив, представленные измерения позволят определять свойства вещества при десятках миллионах градусов и плотностях в пятьдесят раз больших, чем встречаются в природе. Теперь мы крайне заинтересованы в том, чтобы другие лаборатории проверили наши результаты».

Таким образом, уповать на холодный термояд не стоит – пока что это игрушка для теоретиков, и не факт, что когда-нибудь удастся получить сколько-нибудь значимый результат.

Возможен ли новый Чернобыль?

Безусловно, термоядерная энергетика – это будущее. Однако списывать со счетов классическую атомную энергетику явно преждевременно, у нее еще есть значительный потенциал для роста.

Специалисты говорят, что если дешевые запасы углеводородов истощатся, термояд так и не будет освоен, а тенденция к значительному росту энергопотребления сохранится, то единственным спасением для цивилизации станут именно атомные электростанции, использующие энергию цепного уранового распада.

Атомная энергетика сегодня не вызывает того энтузиазма, который вызывала еще тридцать лет назад. Ширится движение за ее полный и окончательный запрет. Такое отношение возникло не на пустом месте, а как общественная реакция на последствия Чернобыльской аварии, которая потрясла и напугала весь мир, вызвав настоящую пандемию радиофобии. Но самое главное и самое ужасное, что история этой аварии еще не закончилась – Зона отчуждения, созданная вокруг Чернобыльской АЭС, будет существовать сотни лет, если, конечно, люди не придумают способ эффективно очистить ее от долгоживущих радиоактивных изотопов.

Посему любые разговоры о необходимости развивать атомную энергетику часто натыкаются на непонимание и страх. Вопрос в этом случае задают всего один: вы хотите повторения Чернобыля?

Разумеется, никто не хочет повторения Чернобыля. Хотя это покажется парадоксальным, но можно даже сказать, что Чернобыльская авария способствовала развитию атомной энергетики, выявив серьезные недостатки в обеспечении безопасности АЭС и принудив атомщиков устранить их.

Но прежде чем говорить о мерах, предпринятых для того, чтобы предотвратить повторение аварии, давайте вспомним, как это было и что именно привело к трагическому исходу.

* * *

По поводу причин Чернобыльской аварии существует множество версий: от локального землетрясения до диверсии, осуществленной то ли злыми американцами, то ли «прогрессорами» из будущего. На самом деле всё куда прозаичнее – к взрыву привело сочетание недостатков конструкции и ошибок работников станции.

Ко времени аварии на Чернобыльской АЭС (ЧАЭС) использовались четыре реактора РБМК-1000 (реактор большой мощности канального типа) с электрической мощностью 1000 МВт каждый. Рядом строили еще два аналогичных реактора.

В реакторе РБМК-1000 в качестве замедлителя выделяемых ураном нейтронов используется графит, а теплоносителем служит вода. Реактор размещается в наземной бетонной шахте и опирается на бетонное основание, под которым находится бассейн-барботер. В качестве ядерного топлива используется слабообогащенная (2 %) двуокись урана. Стационарная загрузка топлива в один реактор составляет свыше 190 тонн. Каждая тонна ядерного топлива содержит примерно 20 килограммов ядерного горючего (урана-235). Ядерное топливо загружается в реактор в виде тугоплавких таблеток, помещенных в трубки из циркониевого сплава – в ТВЭЛах. Трубки устанавливаются в активной зоне в виде тепловыделяющих сборок (ТВС) объединяющих по 18 ТВЭЛов. Эти сборки (около 1700 штук) вводят в специальные вертикальные технологические каналы в графитовой кладке. По этим же каналам циркулирует вода, которая в результате теплового воздействия от происходящей в реакторе цепной реакции доводится до кипения. Пар через специальные коммуникации подается на турбину, которая вырабатывает электрическую энергию. По мере выгорания топлива кассеты с ТВЭЛами заменяются.

К моменту аварии активная зона реактора 4-го энергоблока ЧАЭС содержала 1659 кассет с ТВЭЛами. Радиоактивные продукты деления имели период полураспада от 2,35 суток (нептуний-239) и свыше 27 000 лет (плутоний-239).

В цилиндре активной зоны реактора имеются сквозные отверстия (трубы), в которых размещаются 211 стержней регулирования из бористой стали или карбида бора, поглощающих нейтроны, а также регулирующих изменение скорости нейтронного потока. По мере извлечения стержней из активной зоны (поднятия вверх) начинается цепная реакция и нарастание мощности реактора (чем выше извлечены стержни, тем больше мощность). Однако в любом случае количество опущенных в активную зону стержней должно быть не менее 28–30 (после Чернобыльской аварии установлено, что в нижнем положении должно находиться не менее 70 стержней).

На 25 апреля 1986 года была запланирована остановка 4-го энергоблока ЧАЭС для очередного планово-предупредительного ремонта. Во время таких остановок обычно проводятся различные испытания оборудования и непредусмотренные регламентом эксперименты. В тот раз целью одного из них была экспериментальная проверка возможности использования кинетической энергии ротора турбогенератора для обеспечения электропитания циркуляционных насосов до запуска аварийных дизель-генераторов в случае обесточивания собственных нужд. Дело в том, что в случае отключения внешних источников энергии (а станция тоже является потребителем энергии, не только ее производителем) происходит отключение питательных насосов (подающих холодную питательную воду в реактор) и главных циркуляционных насосов (обеспечивающих прокачку нагреваемой воды через активную зону), что мгновенно приводит к отсечению поступления пара в турбину. Несмотря на прекращение подачи пара, ротор турбины продолжает некоторое время вращаться по инерции, что позволяет, в принципе, генератору турбины давать электроток, которым можно поддерживать работу насосов, избежав таким образом их немедленного отключения. Подобный режим работы не был штатным для АЭС, не был отработан и нигде не применялся. Но он очень интересовал энергетиков и военных – ведь подобное отключение внешних источников питания вполне могло произойти в случае катастрофического развала энергосистемы, например, после ядерного удара. Кстати, проведение подобного эксперимента предлагалось многим атомным электростанциям, но из-за рискованности все отказывались. Руководство ЧАЭС согласилось. Больше того, аналогичные эксперименты, проведенные там в 1982, 1984 и 1985 годах, заканчивались неудачно – ожидаемый эффект не был достигнут из-за слишком быстрого падения тока возбуждения генератора и обусловленного этим снижения напряжения на шинах генератора. Однако вместо того чтобы отказаться от проведения сомнительного опыта, руководство ЧАЭС назначило новую серию испытаний, в которых предусматривалось устранение этого недостатка с помощью специального регулятора магнитного поля генератора.

Уже на стадии разработки программы эксперимента был допущен ряд грубейших ошибок. Так, испытания считались руководством ЧАЭС чисто электротехническими, не влияющими на ядерную безопасность реактора, поэтому не согласовывались с генпроектантом, главным конструктором и научным руководителем. Программой не только не были предусмотрены дополнительные меры безопасности, но даже снижены существующие штатные меры. Так, в ней предписывалось отключить систему аварийного охлаждения реактора на весь период испытаний (4 часа), поскольку считалось, что она может автоматически сработать и сорвать эксперимент.

Испытания должны были проводиться на тепловой мощности 700-1000 МВт. Примерно за сутки до аварии мощность реактора была снижена до 50 % (1600 МВт), однако дальнейшее снижение мощности запретил диспетчер электросети. Продолжение снижения мощности энергоблока было разрешено диспетчером 25 апреля за час до полуночи. В итоге длительное время активная зона реактора находилась в режиме «отравления» продуктами распада – радиоактивным ксеноном-135, что неизбежно привело к дальнейшему падению мощности. Компенсация производилась операторами, выдвигавшими из активной зоны стержни-поглотители В течение примерно двух часов мощность реактора была снижена до уровня, предусмотренного программой (около 700 МВт тепловых), однако была допущена ошибка, в результате которой тепловая мощность реактора начала быстро падать, достигнув величины в 30 МВт. Персонал принял роковое решение о восстановлении мощности реактора, снова приступив к извлечению стержней. Через несколько минут удалось добиться начала ее роста, и в дальнейшем – стабилизации на уровне 160–200 МВт. Всё это время продолжалось «отравление», и операторы продолжали поднимать стержни. В момент аварии в крайнем верхнем положении находилось 205 стержней, то есть внизу оставалось только 6 стержней, что явилось грубейшим нарушением регламента эксплуатации.

26 апреля в 1:23:04 начался эксперимент. Из-за снижения оборотов насосов, подключенных к «выбегающему» генератору, и так называемого положительного парового коэффициента реактивности (который был обусловлен конструкцией РБМК-1000) реактор испытывал тенденцию к самопроизвольному увеличению мощности, что и произошло – тепловая мощность скачком увеличилась до 530 МВт. Только в этот момент персонал осознал всю меру опасности. В 1:23:40 начальник смены дал команду нажать кнопку АЗ-5 – по ней поглощающие стрежни начали движение в активную зону. Это была первая попытка предотвратить аварию и последняя из вызвавших ее причин. Дело в том, что каждый из стержней-поглотителей имеет на своем нижнем конце вытеснитель – алюминиевый цилиндр, заполненный графитом, поглощающий нейтроны в значительно меньшей мере, чем вода. Введение вытеснителей в активную зону спровоцировало резкий рост потока нейтронов, что повлекло скачкообразный рост мощности реактора и интенсивное парообразование. Реактор в буквальном смысле закипел.

Аварийный разгон сопровождался мощными ударами и отключением света. К 1:23:44 мощность цепной реакции в сто раз превысила номинальную. Бурное вскипание теплоносителя, в который попали частицы разрушаемых ТВЭЛов, привело к повышению давления в технологических каналах, их разрыву и взрыву, разрушившему реактор. Спустя две секунды после первого взрыва прогремел второй, причиной которого, по мнению специалистов, было образование и воспламенение смеси кислорода с водородом. При этом разрушилась часть здания реакторного цеха, наружу из реактора было выброшено около четверти графита и часть топлива. Очевидцы наблюдали фейерверк вылетающих раскаленных и горящих фрагментов. Часть из них, упав на крышу машинного зала, вызвала пожар.

Поток горячего воздуха поднял в атмосферу радиоактивные продукты деления. Суммарный выброс составил 3,5 % от общего количества радионуклидов в реакторе на момент аварии. Высота струи превышала 1200 метров, а уровни радиации в ней достигали 1000 мР/ч даже на расстоянии 10 километров от станции. Произошло радиоактивное загрязнение не только 30-километровой зоны вокруг АЭС, но и значительных территорий в ряде областей Украины, Белоруссии и России.

Непосредственно во время взрыва на 4-ом энергоблоке погиб один человек, еще один скончался в тот же день от полученных ожогов. У 134 сотрудников ЧАЭС и членов спасательных команд, находившихся на станции во время взрыва, развилась лучевая болезнь, 28 из них умерли.

Вечером 26 апреля было принято решение о начале эвакуации населения. Всего из 188 населенных пунктов было эвакуировано около 116 000 человек.

* * *

Мировой атомной энергетике в результате Чернобыльской аварии был нанесен серьезный удар. С 1986 до 2002 года в странах Северной Америки и Западной Европы не было построено ни одной новой АЭС, что связано как с давлением общественного мнения, так и с тем, что значительно возросли страховые взносы и уменьшилась рентабельность ядерной энергетики.

В СССР было законсервировано или прекращено строительство и проектирование 10 новых АЭС, заморожено строительство десятков новых энергоблоков на действующих АЭС в разных областях и республиках.

В то же время перед атомщиками была поставлена задача повысить уровень безопасности существующих АЭС с реакторами РБМК.

Прежде всего, разумеется, они доработали системы управления регулирующими стержнями. Сегодня просто невозможно вывести из реактора опасное количество стержней на опасное расстояние. Больше того, извлекать их даже для замены и ремонта можно только поштучно.

Аварийную автоматику на работающем реакторе сможет отключить теперь разве что направленный взрыв – столько в нее введено дополнительных блокировок. Но и в этом случае все регулирующие стержни немедленно и полностью погрузятся в реактор.

Заменены вытеснители на концах стержней-поглотителей. Вместо графита – удобного в штатных режимах, но опасного в аварийных – поставлена обычная реакторная конструкционная сталь. Сама конструкция стержней доработана так, чтобы нижний конец вытеснителя всегда находился на границе активной зоны, а длина поглощающей части увеличена до 6,8 метра. При этом часть стержней переведена в режим быстрой аварийной защиты, что сократило время аварийного останова реактора до двух секунд.

Была изменена геометрия каналов. Заметно выросла доля воды в общем замедлении нейтронов, что позволило устранить опасный положительный паровой коэффициент реактивности – РБМК обрели автоматическую стабилизацию, ранее достигнутую на реакторах других типов.


    Ваша оценка произведения:

Популярные книги за неделю