355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Андрей Журавлёв » Летающие жирафы, мамонты-блондины, карликовые коровы... От палеонтологических реконструкций к предсказаниям будущего Земли » Текст книги (страница 7)
Летающие жирафы, мамонты-блондины, карликовые коровы... От палеонтологических реконструкций к предсказаниям будущего Земли
  • Текст добавлен: 10 июля 2017, 19:00

Текст книги "Летающие жирафы, мамонты-блондины, карликовые коровы... От палеонтологических реконструкций к предсказаниям будущего Земли"


Автор книги: Андрей Журавлёв



сообщить о нарушении

Текущая страница: 7 (всего у книги 14 страниц)

Но тут же последовало «разоблачение» со стороны геохимиков Деррилла Керрика из Университета штата Пенсильвания и Кена Калдейры из Научного института имени Карнеги в Вашингтоне: ведь горообразование связано с существенным нагревом пород, ведущим к выделению в атмосферу углекислого газа. И в таких объемах, что вздымание Гималаев должно было бы привести к повышению наземной температуры на 0,5 °C, в то время как его поглощение к понижению на 0,2 °C. В итоге получаем дополнительный прирост в +0,3 °C, что никак не вяжется с глобальным похолоданием. Тем не менее Янцзы, Ганг с Брахмапутрой и Амазонка – реки, берущие свое начало именно в Тибете, Гималаях и Андах, – выносят в океан свыше 20 процентов карбонатных растворов, образовавшихся при химическом выветривании. Значит, поглощение «излишков» углекислого газа в этих регионах происходит. Но как? Как можно ускорить химическое выветривание, если площадь обнажившихся горных пород даже во время столь стремительных (в геологическом смысле) процессов, как горообразование, прирастает незначительно? Оказалось, что можно, – если на планете существует жизнь.

Изменения содержания углекислого газа в атмосфере (серое поле) и соотношения морских животных с кальцитовым (К) и арагонитовым (А) скелетом (кривая) за последние 600 миллионов лет. Нынешний уровень углекислого газа – 400 ppmv (400 частиц на миллион в объеме) является одним из самых низких. ГОР и ХОЛ – теплые и холодные эры (Berner, Kothavala, 2001; Zhuravlev, Wood, 2008)
С динозаврами – теплее…

Пока же отметим, что климат планеты зависит от множества явлений, включая потоки галактической космической радиации; определенные стадии орбитальных циклов (задающих время потеплений и оледенений, но отнюдь не их интенсивность); положение континентов и их площадь, доступная выветриванию; характер океанических течений; особенности горообразовательных процессов и вулканизма; типы наземного растительного и облачного покрова; наличие тех или иных групп планктона, активность организмов-деструкторов; таяние метангидратов… Список можно продолжать и продолжать.

Почему бы ни включить в перечень климатических факторов растительноядных динозавров или мамонтов? Ведь их пищеварение вряд ли протекало без выделения метана, который влияет на парниковый эффект. Если принять парниковый эффект двуокиси углерода за единицу, то метан, по данным Рабочей группы I при Межправительственной группе экспертов по изменению климата за 2007 год, окажется в 21–25 раза эффективнее, то есть поступление в атмосферу миллиона тонн метана равнозначно 21–25 миллионам тонн углекислого газа. Ныне метан попадает в атмосферу как из природных источников (вулканы, таяние многолетнемерзлых пород, болота), так и благодаря деятельности человека (потери при добыче природного газа, рисовые чеки, разведение скота, мусорные свалки). Биолог Фелиса Смит из Университета Нью-Мексико и ее коллеги не исключают, что вина человечества в изменении климата имеет давнюю историю и восходит к уничтожению мамонтовой фауны, которая существенно влияла на уровень метана в атмосфере. Расчетные данные вроде бы совпадают с колебанием уровня метана в атмосфере по данным бурения на ледяном щите Гренландии (во льду в виде пузырьков газа заморожены атмосферные пробы за 110 тысяч лет истории Земли). Правда, тогда бы исчезновение мамонтов и прочих мохнатых гигантов должно было усилить похолодание, но никак не потепление. Может, наоборот, узнав о грядущем потеплении, мамонты с испугу усилили метановую эмиссию – вот и потеплело? Пусть физики посчитают…

Однако задолго до появления мамонтов Землю населяли гораздо более крупные растительноядные позвоночные – завроподы. Ныне разведение домашнего скота, основу которого составляют жвачные млекопитающие, является источником примерно 20 процентов метана, ежегодно поступающего в атмосферу. Учитывая огромную разницу в размерах между растительноядными ящерами и млекопитающими, эколог Дэвид Уилкинсон из Ливерпульского университета имени Джона Мура, климатолог Эуан Нисбет из Лондонского университета и эколог Грэм Ракстон из Университета Глазго предположили, что завроподы влияли на климат юрского и мелового периодов. В своих расчетах они исходили из данных по встречаемости костей завропод в верхнеюрской формации Моррисон, распространенной на западе США на площади 15 миллионов квадратных километров. И если скорость обмена веществ у завропод приближалась к таковой у современных пресмыкающихся, а не млекопитающих, то биомасса этих динозавров могла достигать 200 тонн на квадратный километр, или, скажем, 100 апатозавров по 20 тонн каждый. По другим оценкам, общая биомасса ящеров могла составлять от 80 до 670 тысяч килограммов на квадратный километр, то есть в 4–24 раза превышать таковую растительноядных млекопитающих на такой же площади. Кроме того, при более высокой температуре и уровне содержания углекислого газа в юрской и меловой атмосфере продуктивность растительности была оценена как повышенная, несмотря на несколько укороченный световой день (планета вращалась быстрее). И если современные нежвачные млекопитающие производят метана примерно 0,18 литра на килограмм собственной массы, получается, что один апатозавр мог бы испускать 2675 литров этого газа в день, а общий объем динозавровых «выхлопов» приближался к 520 миллионам тонн в год. Это больше, чем образуется метана благодаря деятельности человека, и почти столько же, сколько его выделяют все современные источники, вместе взятые. Впрочем, геолог Том ван Лун из Университета имени Адама Мицкевича в Познани сомневается в правильности подсчетов биомассы завропод. Действительно, эти динозавры могли весить по 20 тонн и более, а продуктивность растительности в теплом мезозойском климате превосходила современную, но скорость обмена веществ у динозавров, особенности их стадного поведения и реальные площади распространения растительности вряд ли позволяли поддерживать очень большую численность ящеров.

Вообще вся эта история с динозаврами – явно с душком, пусть даже и метановым. А хочется вздохнуть полной грудью. Сохранись до наших дней тот высокий уровень углекислого газа, что был в начале палеозойской эры, нам бы пришлось непросто. Но на помощь пришли другие существа…

…А с планктоном прохладнее…

Внушительные меловые утесы и кремнистые скалы, облака, парящие в небесной выси, и тропические циклоны, смывающие приморские города и деревни, – все эти поражающие воображение разнородные явления обязаны существованием одной мелочи, которую не в каждый микроскоп разглядишь. Ведь даже организм размером в миллиметр выглядит среди них как секвойя на травяной лужайке. Группа климатологов во главе с Анандом Гнанадесиканом из Национального управления США по океану и атмосфере установила с помощью компьютерного стимулирования: одно из самых грандиозных на Земле явлений – тропические циклоны – зависит от одного из самых микроскопических – а именно от планктонных водорослей. Эти свободно парящие в океане одноклеточные организмы, подобно деревьям и травам, развиваются благодаря преобразованию солнечной энергии в пигментах – таких, как хлорофилл. Пигменты[25]25
  Лат. pigmentum – краска.


[Закрыть]
названы так не случайно: многомиллиардные скопления планктонных водорослей придают поверхности океана более темную окраску. Если планктон отсутствует, солнечный свет коротковолнового диапазона рассеивается в глубинах, не влияя на температуру вод, а в местах таких скоплений поверхность океана нагревается. Этот и есть одно из важных условий для зарождения циклона. Поскольку планктон отнюдь не однороден, а состоит из весьма «пестрых» групп водорослей, приспособленных к разным глубинам обитания и другим особенностям среды, то изменение состава планктонных сообществ может влиять на место зарождения циклона и на его силу.

Ураганы – далеко не единственное явление на планете, за которое отвечают планктонные водоросли. Облака, казалось бы зависящие лишь от воли ветра, более всего нуждаются в пылинках или капельной взвеси (аэрозоли). Без такой затравки облако само по себе никогда не появится. Четверть века назад метеоролог Роберт Чарлсон из Университета штата Вашингтон и химик Джеймс Лавлок, разрабатывавший инструментальные программы для НАСА, предположили, что затравкой могут служить капельки органических кислот на основе серы и метана. Эти кислоты образуются в нижних слоях атмосферы при распаде диметилсульфида. Название подсказывает, что основу молекулы этого вещества составляет ион серы, к которому присоединены две метильные группы (СН3). И хотя органические вещества не обязательно создаются организмами, диметилсульфид накапливается именно в ходе роста одноклеточных водорослей. После отмирания живых клеток диметилсульфид попадает в воду и, испаряясь вместе с ней, оказывается в атмосфере. Потому скопления планктонных водорослей в океане оказываются одновременно районами образования облаков. Затем вместе с потоками воздуха облака перетекают (именно перетекают, поскольку состоят из воды) в сторону суши и проливаются дождями. Более трети облаков, проплывающих над континентами и приходящих со стороны океана, появляется благодаря морским водорослям. Так необходимую влагу получают наземные растения. Чтобы понять масштабы этого явления, достаточно обратиться к цифрам: в пересчете на объемы серы, водоросли в 1,7 раза более значимы для появления облаков, чем вулканы. И хотя одноклеточные организмы уступают по этому показателю человеческой деятельности (в 8,3 раза), благодаря своему океаническому положению именно они в первую очередь отвечают за возникновение и рост облаков. В любом случае до появления человека планктонные водоросли были самой влиятельной силой в формировании облачного покрова.

Но и это еще не все. Есть такое понятие «альбедо», смысл которого скрывается в его латинском корне albus – белый; альбедо характеризует способность поверхности отражать падающий поток излучения. Именно благодаря белому цвету облачный покров прекрасно отражает солнечные лучи, а водоросли, таким образом, влияют на земное альбедо. Ведь, если бы не они, облачный покров был бы тоньше, и солнечное излучение сильнее бы нагревало земную поверхность, а не рассеивалось бы в космосе. А так мы живем при довольно комфортной температуре, в среднем на 1,3 °C ниже, чем было бы без водорослей. По мере утолщения облаков все меньше солнечной энергии достигает поверхности океана, а значит, условия роста водорослей ухудшаются, они меньше образуют различных органических веществ, и цикл замыкается.

Состав планктонных водорослей не однороден. Сейчас среди них преобладают кокколитофориды, динофлагелляты и диатомовые, причем только первые две из этих групп отвечают за образование серосодержащих соединений. Конечно, самим водорослям подобные вещества необходимы совсем не для влияния на погоду: они нужны для регулирования давления в клетке (чтобы держаться на плаву), для окисления продуктов обмена веществ и многого другого. Различаются водоросли по набору фотосинтезирующих пигментов, архитектуре раковинки, набору органелл, количеству и строению жгутиков.

Так «кокко-лито-фориды», что в переводе с греческого означает «зерна из камня несущие» (соответственно κόκκος, λίθος и φορέω), по цвету дополнительного (к хлорофиллам) пигмента относятся к золотистым водорослям и имеют два-три жгутика. Это одно из самых мелких живых существ: в литре морской воды может поместиться до 200 миллионов особей этих одноклеточных. Диатомовые[26]26
  От греч. διατομή – рассечение.


[Закрыть]
водоросли, наоборот, являются довольно крупными по меркам микромира существами – до миллиметра в поперечнике. Эти организмы лишены жгутиков на зрелой стадии развития, окрашены в коричневатые тона и строят округлые или удлиненные двустворчатые раковинки, своего рода коробочки с крышечками, из опала (легко растворимой разности кремнезема). Когда клетка размножается бесполым путем, она делится – рассекается надвое, и одному потомку достается половинка побольше (крышечка), а другому – поменьше (коробочка). Потомок, получивший большее наследство, пристраивает к своей половинке вторую поменьше, а маленький – еще меньшую. Так из поколения в поколения отпрыски последнего продолжают мельчать, но до определенного предела. В конце концов, чтобы разомкнуть странную цепочку, наследники находят себе партнеров, и у «папы» с «мамой» появляется потомство нормального размера. Диатомовые удивительно живучи и могут размножаться и в горячих источниках, и в Заполярье, придавая снегу красноватый оттенок, они прижились в почве и даже на деревьях. При обильном развитии – цветении – некоторых видов этих водорослей выделяется сильно ядовитая домоевая кислота. Яд поглощается моллюсками, которые, попав на обеденный стол, вызывают потерю памяти у гурманов (страдают ли потерей памяти сами моллюски, пока никто не изучал).

Динофлагелляты, что означает «вертящие жгутиком»[27]27
  От греч. δινέω – вертеть и лат. flagellum – плеть, кнут.


[Закрыть]
, используют два разных по длине жгутика для движения – один, расположенный продольно, в качестве руля, другой, поперечный, – как мотор. Поперечный жгутик волнообразно изгибается вокруг клетки, создавая волну, на «гребне» которой клетка и плывет, вращаясь. Панцирь у динофлагеллят – гибкий, органический; состоит он из отдельных пластинок, образующих нечто вроде рыцарского шлема странной формы. Именно эти микроскопические (0,005–2 миллиметра) существа устраивают восхитительные зеленоватые световые представления в морской воде среди ночи. Но они же вызывают губительные «красные приливы» (по цвету пигментов), поскольку во время цветения динофлагеллят, что теперь нередко происходит в дельтах рек и полузамкнутых морских заливах, загаженных отходами человеческой деятельности, гибнут рыбы, раки, моллюски. Некоторые динофлагелляты еще помнят о своем хищном прошлом – ведь предки всех одноклеточных водорослей были хищниками – и, убивая рыбу своим ядом, потом питаются ее мясом.

Не всегда эти три группы были на первых ролях среди водорослей. Появились они, по геологическим меркам, сравнительно недавно – в мезозойскую эру и впервые отметились в ископаемой летописи примерно 250 (динофлагелляты), 227 (кокколитофориды) и 205 (диатомовые) миллионов лет назад. Эти водоросли, по словам океанографа Пола Фалковски из Университета имени Ратджерса в Нью-Джерси, совершили в океане «красную революцию», поскольку их предшественники использовали для фотосинтеза зеленые пигменты – хлорофиллы а и b, а не хлорофилл с и каротиноиды, придающие клеткам золотисто-оранжевый или красноватый оттенок. Сама по себе цветная красная революция не удивительна – ведь пигменты, обеспечившие ее, более выгодны для фотосинтеза в тусклых водах океана. Удивительно то, что произошла она довольно поздно. Может быть, океан стал другим? Например, потерял значительную долю растворенного кислорода, что действительно могло случиться в странном пермо-триасовом мире (250–205 миллионов лет назад), когда жизнь была сосредоточена в полузамкнутом океане Тетис, сильно обогащенном биогенными веществами и, видимо, нередко «цветущем»? Потому преимущество и получили те, кто мог выжить в почти бескислородных условиях.

Появившись на свет, новый водорослевый планктон буквально горы своротил. Из раковинок диатомовых образовались кремнистые горные породы, а из чешуек кокколитофорид – гигантские залежи писчего мела. Ныне и те, и другие предстают перед нами в виде гор и морских утесов. Но чтобы горы выросли, раковинки простейших уходили на дно океана, а вместе с ними – и часть атмосферного углекислого газа. Дело в том, что этот газ растворяется в океане и включается водорослевым планктоном в обмен веществ, причем 15 процентов органического вещества, которое образуется при фотосинтезе из этого газа, погружается вместе с отмершими клетками в холодные глубины океана и возвращается обратно лишь через сотни лет, а небольшая доля органики попадает на дно. За десятки миллионов лет эта «незначительная доля» преобразуется в горные породы, которые становятся значительными источниками нефти и газа. Так водорослевый планктон изъял существенную часть двуокиси углерода из атмосферы и способствовал наступлению позднекайнозойского похолодания и последнего ледникового периода. Органическое вещество погребалось на дне океана без доступа кислорода, и повышение содержания этого газа в атмосфере оказалось побочным, но очень важным для нас эффектом, связанным с этим процессом. По мере накопления в атмосфере кислорода на Земле появлялись все более совершенные млекопитающие с обменом веществ, требующим больших объемов кислорода, и все более крупным мозгом…

Стоматы

На глобальные климатические изменения и на геологические процессы влияют и наземные растения. Тропический дождевой лес недаром носит свое имя: здесь не просто всегда сыро, здесь очень мокро. Кажется, что вода льется не только с неба, но с самих деревьев, многочисленных лиан и эпифитов – грибов и растений, которые живут на других растениях, и нередко за их счет. Это впечатление не столь обманчиво, как может показаться.

Известно, что мельчайшие (до 0,15 микрона в диаметре) органические частицы, плавающие в плотном, окутывающем амазонскую сельву тумане, служат затравкой для образования дождевых капель. Неясным оставалось происхождение этих частиц. Полевые исследования специалиста по химии атмосферы Кристофера Пёлькера из Института химии имени Макса Планка в Майнце и его многонациональной команды, проведенные в лесах Бразилии, и последующий микроскопический анализ помогли разгадать эту загадку. Оказалось, что основу таких частиц составляет калиевая соль. Конечно, калий может попасть в атмосферу с испарениями океана или во время лесных пожаров вместе с сажей. Но химики выяснили, что изученные соли наряду с ионами хлорида и калия содержат углеводороды, источником которых могут быть лишь грибы. Наличие в составе частиц обильных грибных спор подтверждает эту идею. Такие летучие углеводороды, как изопрен, выделяемые растениями при фотосинтезе, благодаря окислению в атмосфере превращаются в аэрозоли уксусной и муравьиной кислот, которые ускоряют конденсацию дождевых капель. Попутно изопрен нейтрализует приземный озон – газ, разрушающий листовую мякоть.

Так дождевой тропический лес сам поддерживает влажные условия, необходимые для существования. Одновременно эта самая богатая видами растений и животных экосистема служит одним из источников дождевых облаков над сушей наряду с водорослевым планктоном. И такой лес – только один из растительных биомов суши. Есть еще тундра, тайга, степь, другие растительные сообщества. Каждая травинка, дерево, кустик по-своему делают погоду. Скажем, поверхность листьев европейских деревьев и кустарников в четыре раза больше площади самой Европы, а поверхность корней превышает последнюю в 400 раз. И это не просто площадь, а весьма активный интерфейс, где при разложении листового опада и прочей отмершей органики выделяются сильные органические кислоты, способствующие химическому выветриванию, и куда напрямую подводится углекислый газ, изъятый из атмосферы. Замерить количественные характеристики этой взаимосвязи оказалось непросто, но в итоге удалось. Выяснилось, что наземные растения, несомненно, способствуют химическому выветриванию: на облесенных пространствах выветривание происходит в 3–10 раз быстрее (в зависимости от типа растительности), чем на голых площадях. Но все это только наши современники, появившиеся на Земле совсем недавно – несколько миллионов лет назад, но уже успевшие поспособствовать наступлению последнего ледникового периода.

500 миллионов лет назад на суше вообще не было никаких сосудистых растений, и лишайники, наверное, не росли; 400 миллионов лет назад не появились деревья; 200 миллионов лет назад еще не возникли цветковые, составляющие основу современного биоразнообразия наземных растений. И с приходом каждой новой группы растений, началом их господства мир навсегда менялся, порой катастрофически…

Не случайно три интервала наиболее резкого падения уровня углекислого газа в атмосфере – позднеордовикский (444 миллиона лет назад), позднедевонский-раннепермский (364–256 миллионов лет назад) и позднекайнозойский (35 миллионов лет назад – ныне) – приходятся на время наиболее существенных изменений в наземной растительности. Позднеордовикское оледенение вообще было парадоксальным событием: уровень углекислого газа в атмосфере превышал нынешний в 14–22 раза (по разным расчетам) и обрушился в 2–4 раза менее чем за 500 тысяч лет. Это привело к падению среднегодовой температуры на 3,5–7,2 °C в разных климатических поясах. Причина? Появление и распространение наземных растений, которые от двух до десяти раз повысили скорость выветривания для разных биогенных элементов: фосфора, калия, кальция, магния и железа. Эксперименты, проведенные группой биогеохимика Тимоти Лентона из Университета Экстера на мхах (их предшественники и появились в ордовикском периоде), показали, что эти невыдающейся биомассы растения значительно – в 1,5 и 5,5 раза – ускоряют разрушение гранита и андезита, извлекая из прочных горных пород кальций и магний. В свою очередь, биогены ускоренными темпами поступают в океан, где этого только и дожидаются планктонные цианобактерии и водоросли, отметившиеся в ископаемой летописи положительными углеродными изотопными аномалиями. Это значит, что на дно морей уходили значительные объемы органического вещества, увлекая с собой углерод, захваченный из углекислого газа.

Водорослевый планктон нуждается не только в биогенах, но и в двуокиси углерода, без которой не может идти фотосинтез. Но чтобы оказать заметное воздействие на уровень углекислого газа, водоросли должны получать «подкормку». Опыты по рассеиванию железа, проведенные в конце 1980-х – начале 1990-х годов под руководством океанографа Джона Мартина из морских лабораторий Мосс-Лендинга (Калифорния) в акваториях Тихого океана, где обычно наблюдается дефицит этого элемента, привели к быстрому росту биомассы водорослей и одновременному падению содержания углекислого газа в атмосфере. На волне успеха Мартин даже заявил: «Дайте мне полтанкера железа, и я устрою вам ледниковый период». Необходимость подобных опытов, названных геоинженерией, была обоснована грядущим ростом содержания углекислого газа в атмосфере (в два раза к концу нынешнего столетия) и потеплением. Предполагалось, что отмирающие водоросли будут уносить излишки углерода на дно океана. В 2009 году в рамках международного проекта LOHAFEX[28]28
  От хинди «лоха» – железо и аббревиатуры «фертилизационный эксперимент».


[Закрыть]
за сорок дней в южной части Атлантики вывалили десять тонн сульфата железа, рассчитывая в дальнейшем удобрить все воды Антарктики и предотвратить потепление…

Получилось не все: водорослевый планктон благоденствовал, но хоронить органическое вещество не спешил. Востребованный водорослями и бактериями углекислый газ вскоре возвращается обратно. Ведь растут и размножаются не только они: активизируется зоопланктон (рачки копеподы и амфиподы), питающийся этими организмами, и далее все звенья пищевой цепочки вплоть до деструкторов (грибов и бактерий), которые разлагают многократно употребленную органику на исходные составляющие. Добиться направленного изъятия двуокиси углерода из оборота можно, только удаляя органическое вещество – превращая его в осадочные отложения, причем в неокисленном виде, что и происходило в конце позднеордовикской эпохи, а также позднее – в позднедевонскую эпоху и во второй половине кайнозойской эры.

Для этого необходимы подлинные инновации: создать в глобальном масштабе нечто такое, чего планета еще не изведала, как это было в конце девонского – середине каменноугольного периодов, когда леса смогли вырваться из влажных низин на сухие возвышенности и захватили три четверти площади континентов. По всему теплому югу Лаврентии (континент, объединявший Северную Америку и Европу), Сибири и северу Гондваны (в состав которой входили Южная Америка, Африка, Индия и Австралия с Антарктидой) распространились восьмиметровые папоротники, а в умеренных и высоких широтах – прогимноспермовые (Archaeopteris) – растения с перистыми вайями, как у папоротников, но с древесиной, корнями и семенами, как у голосеменных. Корни, гораздо глубже запущенные в землю, и связанные с ними микоризальные грибы начали закачивать углекислый газ из атмосферы в почву. Почва же образуется благодаря разрушению – выветриванию горных пород, для чего и нужен углекислый газ, и с грибами почвообразование идет куда как быстрее, чем без них, – в 4–30 раз.

До недавнего времени считалось, что минеральные кристаллы разрушаются в основном органическими кислотами, которые накапливаются при разложении грибами опавших листьев и другой отмершей органики. Но оказалось, что гриб дробит кристаллы и механически: биогеохимик Стив Боннвиль из Брюссельского свободного университета выяснил, что гифы грибницы свинушки тонкой, которая сосуществует с сосной обыкновенной, расслаивают кристаллы слюды, нагнетая давление до одного миллипаскаля. То есть на один-два порядка выше, чем любой другой микроорганизм. На особых участках гифов – аппрессориях – давление может достигать и восьми миллипаскалей. И пока грибы дробили горные породы, усеянные устьицами листья стали распылять влагу, остававшуюся в почве, в атмосферу[29]29
  Ныне 40 процентов годовых осадков происходят из влаги, испаренной через устьица растениями.


[Закрыть]
. Над сухими прежде континентами поплыли облака, а временные пересыхающие потоки превратились в полноводные реки, которые, совершая плавные повороты, несли в моря свои воды, насыщенные биогенами. Облака изменили альбедо планеты: больше солнечного тепла стало рассеиваться, не достигая поверхности Земли. А уровень углекислого газа упал в три раза.

В отличие от позднеордовикского эпизода новое похолодание длилось более 100 миллионов лет: на суше появлялись все новые растения: древовидные хвощи и плауны, позднее разнообразные голосеменные. Многие из них отличались устойчивой к разрушению древесиной и корой, а максимальная ширина листовой пластины возросла на порядок. Этот показатель влияет сразу на два важных события: увеличивается число устьиц, вдыхающих углекислый газ, и рост продуктивности. К тому же эти деревья гораздо экономнее расходовали биогены. В итоге огромная биомасса легла мощными пластами каменного угля, что дало название целому периоду в истории Земли. Скорость захоронения неокисленного углерода с конца девонского к середине каменноугольного периода возросла в два раза, атмосфера как никогда – на 30 процентов – насытилась кислородом, а значительная часть суперконтинента Пангеи, собравшего воедино и Лаврентию, и Сибирь, и Гондвану, покрылась с юга ледяным щитом.

Последняя – позднекайнозойская – холодная волна накатила во время становления лесных биомов, состоящих из покрытосеменных деревьев, обладающих мощнейшей корневой системой и микоризой, и трав, накапливающих опаловые фитолиты и тем самым ускоряющих выветривание кремнеземсодержащих горных пород. Растительноядные млекопитающие быстро переводили всю эту гигантскую биомассу в то, что в конечном счете становилось гумусом. Биогенные вещества выносились в океан, где царили новые группы водорослевого планктона, которым была посвящена предыдущая подглавка, но особенно нуждавшиеся в кремнеземе диатомовые.

Глобальные модели изменений уровня содержания углекислого газа в атмосфере Земли неплохо согласуются с характером ее растительного покрова в течение последних 450 миллионов лет – с того рубежа, когда растения начали осваивать сушу. Очень возможно, что и самые древние и суровые оледенения – в середине палеопротерозойской эры (2,1 миллиарда лет назад), криогенном[30]30
  От греч. κρύος – холод.


[Закрыть]
периоде и начале эдиакарского периода (850–640 миллионов лет назад) – тоже связаны с эволюцией водорослей.

В совокупности наземные растения с микоризальными грибами и водорослевый планктон снизили содержание углекислого газа в пять раз. Потому и вся биосфера планеты стала иной: в океане преобладают организмы с арагонитовым скелетом, сушу заселили животные с постоянной температурой тела и развитым мозгом, а также растения, приспособленные к жизни при пониженном содержании двуокиси углерода в атмосфере (с иными циклами фотосинтеза). К ним относятся, например, важные для человечества культуры: амарант, сорго, кукуруза. Подобные растения составляют всего три процента видового разнообразия, но пятую часть растительного покрова. У большинства наземных растений реакция фотосинтеза проходит по так называемому С3-пути, в котором важную роль играет фермент рибулозобифосфаткарбоксилаза (или сокращенно рубиско), ответственный за присоединение молекул углекислого газа к органическим молекулам. Однако при низком уровне этого газа в жарком климате данный фермент перестает распознавать, что за молекула перед ним – углекислый газ или кислород. И растения, не добирая до 40 процентов необходимого углерода, начинают дышать в дневное время – поглощать кислород вместо двуокиси углерода. Поэтому травы саванн и прерий пошли другим – С4-путем: у них углекислый газ запасается в особых органах листа, что препятствует его потерям. Саванные травы – не единственные растения, сумевшие приспособиться к нынешней атмосфере. Обширную группу составляют кактусы и некоторые другие суккуленты (алоэ, агавы, «живые камни» Южной Африки), сумевшие наладить свой тип фотосинтеза (CAM-путь) в очень засушливых условиях. Газообмен у них происходит по ночам, благодаря чему сберегаются и влага, и углекислый газ. Именно потому эти растения, как выяснили Моника Аракаки и ее коллеги из Университета имени Брауна в Провиденсе, изучив геном их хлоропластов, и породили огромное разнообразие форм, которые так любят коллекционеры.

Общие изменения в наземной флоре, произошедшие за последние 8 миллионов лет, сопоставимы с мезозойской революцией, когда цветковые сильно потеснили голосеменные растения. Современный же «ледниковый период» представляет собой лишь часть последней холодной эры, начавшейся примерно 35 миллионов лет назад. Не обязательно заключительную…

Расплата № 6

Серьезные ученые давно подозревали, что экономика не подвластна не только отдельно взятым президентам и премьер-министрам, но и самим экономическим законам. Дэйвид Чан из Гонконгского университета и его коллеги, представляющие другие китайские институты, обнаружили, что войны и народные возмущения – крайние проявления экономического краха – напрямую зависят от погоды. Так, похолодание, охватившее Европу в 1560–1652 годах, привело к многолетним неурожаям, значительному росту цен на зерно и, как следствие, – голоду, недовольству населения действиями местных и верховных властей, стихийным миграциям. Эти процессы вызвали эпидемии, войны и снижение средних показателей здоровья, что в итоге привело к общему резкому сокращению популяции европейцев. На Руси на середину этого периода пришлись голодные бунты, закончившиеся падением династий Рюриковичей и Годуновых и Смутным временем.


    Ваша оценка произведения:

Популярные книги за неделю