355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Андрей Соколов » "Шпионские штучки 2" или как сберечь свои секреты » Текст книги (страница 15)
"Шпионские штучки 2" или как сберечь свои секреты
  • Текст добавлен: 6 октября 2016, 00:22

Текст книги ""Шпионские штучки 2" или как сберечь свои секреты"


Автор книги: Андрей Соколов


Соавторы: Владимир Андрианов

Жанр:

   

Справочники


сообщить о нарушении

Текущая страница: 15 (всего у книги 18 страниц)

Рис. 5.20. Индикатор напряженности поля диапазона 1…200 МГц

В качестве поискового элемента использована объемная катушка L1. Ее достоинство, по сравнению с обычной штыревой антенной, заключается в более точной индикации места установки передатчика. Сигнал, наведенный в этой катушке, усиливается двухкаскадным усилителем высокой частоты на транзисторах VT1, VT2 и выпрямляется диодами VD1, VD2. По наличию постоянного напряжения и его величине на конденсаторе С4 (в режиме милливольтметра работает микроамперметр М476-Р1) можно определить наличие передатчика и его местоположения.

Комплект съемных катушек L1 позволяет находить передатчики различной мощности и частоты в диапазоне от 1 до 200 МГц.

Генератор звука состоит из двух мультивибраторов. Первый, настроенный на частоту 10 Гц, управляет вторым, настроенным на частоту 600 Гц. В результате чего формируются пачки импульсов, следующие с частотой 10 Гц. Эти пачки импульсов поступают на транзисторный ключ VT3, в коллекторной цепи которого включена динамическая головка В1, размещенная в направленном боксе (пластмассовая труба длиной 200 мм и диаметром 60 мм).

Для более удачных поисков желательно иметь несколько катушек L1. Для диапазона до 10 МГц катушку L1 нужно намотать проводом ПЭВ 0,31 мм на пустотелой оправке из пластмассы или картона диаметром 60 мм, всего – 10 витков; для диапазона 10—100 МГц каркас не нужен, катушка наматывается проводом ПЭВ 0,6…1 мм, диаметр объемной намотки около 100 мм; число витков – 3…5; для диапазона 100–200 МГц конструкция катушки такая же, но она имеет всего один виток.

Для работы с мощными передатчиками можно использовать катушки меньшего диаметра.

Заменив транзисторы VT1, VT2 на более высокочастотные, например КТ368 или КТ3101, можно поднять верхнюю границу частотного диапазона обнаружения детектора до 500 МГц.

Индикатор напряженности поля диапазона 0,95…1,7 ГГц

В последнее время в составе радиозакладок все чаще используются передающие устройства сверхвысокочастотного (СВЧ) диапазона. Это обусловлено тем, что волны этого диапазона хорошо проходят через кирпичные и бетонные стены, а антенна передающего устройства имеет малые габариты при большой эффективности ее использования. Для обнаружения СВЧ излучения радиопередающего устройства, установленного в вашей квартире, можно использовать прибор, схема которого приведена на рис. 5.21.


Рис. 5.21. Индикатор напряженности поля диапазона 0,95…1.7 ГГц

Основные характеристики индикатора:

Диапазон рабочих частот, ГГц…………….0,95—1,7

Уровень входного сигнала, мВ…………….0,1–0,5

Коэффициент усиления СВЧ сигнала, дБ…30 – 36

Входное сопротивление, Ом………………75

Потребляемый ток не более, мЛ………….50

Напряжение питания, В…………………….+9 – 20 В

Выходной СВЧ сигнал с антенны поступает на входной разъем XW1 детектора и усиливается СВЧ усилителем на транзисторах VT1 – VT4 до уровня 3…7 мВ. Усилитель состоит из четырех одинаковых каскадов, выполненных на транзисторах, включенных по схеме с общим эмиттером, с резонансными связями. Линии L1 – L4 служат коллекторными нагрузками транзисторов и имеют индуктивное сопротивление 75 Ом на частоте 1,25 ГГц. Разделительные конденсаторы СЗ, С7, C11 имеют емкостное сопротивление 75 Ом на частоте 1,25 ГГц.

Такое построение усилителя позволяет добиться максимального усиления каскадов, однако неравномерность коэффициента усиления в рабочей полосе частот достигает 12 дБ. К коллектору транзистора VT4 подключен амплитудный детектор на диоде VD5 с фильтром R18C17. Продетектированный сигнал усиливается усилителем постоянного тока на ОУ DA1. Его коэффициент усиления по напряжению равен 100. К выходу ОУ подключен стрелочный индикатор, показывающий уровень выходного сигнала. Подстроенным резистором R26 балансируют ОУ так, чтобы компенсировать начальное напряжение смещения самого ОУ и собственные шумы СВЧ усилителя.

На микросхеме DD1, транзисторах VT5, VT6 и диодах VD3, VD4 собран преобразователь напряжения для питания ОУ. На элементах DD1.1, DD1.2 выполнен задающий генератор, вырабатывающий прямоугольные импульсы с частотой следования около 4 кГц. Транзисторы VT5 и VT6 обеспечивают усиление по мощности этих импульсов. На диодах VD3, VD4 и конденсаторах С13, С14 собран умножитель напряжения. В результате на конденсаторе С14 формируется отрицательное напряжение – 12 В при напряжении питания усилителя СВЧ +15 В. Напряжения питания ОУ стабилизированы на уровне 6,8 В стабилитронами VD2 и VD6.

Элементы индикатора размещены на печатной плате из двустороннего фольгированного стеклотекстолита толщиной 1,5 мм. Плата заключена в латунный экран, к которому припаяна по периметру. Элементы находятся со стороны печатных проводников, вторая, фольгированная сторона платы служит общим проводом.

Линии L1 – L4 представляют собой отрезки медного посеребренного провода длиной 13 и диаметром 0,6 мм. которые впаяны в боковую стенку латунного экрана на высоте 2,5 мм над платой. Все дроссели – бескаркасные с внутренним диаметром 2 мм, намотаны проводом ПЭЛ 0.2 мм. Отрезки провода для намотки имеют длину 80 мм. Входным разъемом XW1 служит кабельный (75 Ом) разъем С ГС.

В устройстве применены постоянные резисторы МЛТ и полстроечные СП5-1ВА, конденсаторы КД1 (С4, С5, С8-С10, С12, С15, С16) диаметром 5 мм с отпаянными выводами и КМ, КТ (остальные). Оксидные конденсаторы – К53. Электромагнитный индикатор с током полного отклонения 0.5…1 мА – от любого магнитофона.

Микросхему К561ЛА7 можно заменить на К176ЛА7, К1561ЛА7, К553УД2 – на К153УД2 или КР140УД6, КР140УД7. Стабилитроны – любые кремниевые с напряжением стабилизации 5,6…6,8 В (КС156Г, КС168А). Диод VD5 2А201А можно заменить на ДК-4В, 2А202А или ГИ401А, ГИ401Б.

Налаживание устройства начинают с проверки цепей питания. Временно отпаивают резисторы R9 и R21. После подачи положительного напряжения питания +12 В измеряют напряжение на конденсаторе С14, которое должно быть не менее -10 В. В противном случае по осциллографу убеждаются в наличии переменного напряжения на выводах 4 и 10 (11) микросхемы DD1.

Если напряжение отсутствует, убеждаются в исправности микросхемы и правильности монтажа. Если переменное напряжение присутствует, проверяют исправность транзисторов VT5, VT6, диодов VD3, VD4 и конденсаторов С13, С14.

После налаживания преобразователя напряжения припаивают резисторы R9, R21 и проверяют напряжение на выходе ОУ и подстройкой сопротивления резистора R26 устанавливают нулевой уровень.

После этого на вход устройства подают сигнал напряжением 100 мкВ и частотой 1,25 ГГц с генератора СВЧ. Резистором R24 добиваются полного отклонения стрелки индикатора РА1.

Индикатор СВЧ излучений

Прибор предназначен для поиска СВЧ излучении и обнаружения маломощных СВЧ-передатчиков выполненных, например, на диодах Ганна. Он перекрывает диапазон 8…12 ГГц.

Рассмотрим принцип работы индикатора. Простейшим приемником, как известно, является детекторный. И такие приемники диапазона СВЧ, состоящие из приемной антенны и диода, находят свое применение для измерения СВЧ мощности. Самым существенным недостатком является низкая чувствительность таких приемников. Чтобы резко повысить чувствительность детектора, не усложняя СВЧ головки, используется схема детекторного СВЧ приемника с модулируемой задней стенкой волновода (рис. 5.22).


Рис. 5.22. СВЧ приемник с модулируемой задней стенкой волновода

СВЧ головка при этом почти не усложнилась, добавился только модуляторный диод VD2, a VD1 остался детекторным.

С некоторым приближением можно считать, что когда диод VD2 закрыт, он не влияет на процессы в волноводе, а когда открыт – полностью закорачивает волновод, т. е. играет роль короткозамкнутой задней стенки.

Рассмотрим процесс детектирования. СВЧ сигнал, принятый рупорной (или любой другой, в нашем случае – диэлектрической) антенной, поступает в волновод. Поскольку задняя стенка волновода короткозамкнута, в волноводе устанавливается режим стоячих воли. Причем, если детекторный диод будет находиться на расстоянии полуволны от задней стенки, он будет в узле (т. е. минимуме) поля, а если на расстоянии четверти волны – то в пучности (максимуме). То есть, если мы будем электрически передвигать заднюю стенку волновода на четверть волны (подавая модулирующее напряжение с частотой 3 кГц на VD2), то на VD1, вследствие перемещения его с частотой 3 кГц из узла в пучность СВЧ поля, выделится НЧ сигнал с частотой 3 кГц, который может быть усилен и выделен обычным усилителем НЧ.

Таким образом, если на VD2 подать прямоугольное модулирующее напряжение, то при попадании в СВЧ поле с VD1 будет снят продетектированный сигнал той же частоты. Этот сигнал будет противофазен модулирующему (это свойство с успехом будет использовано в дальнейшем для выделения полезного сигнала из наводок) и иметь очень малую амплитуду.

То есть вся обработка сигнала будет производиться на НЧ, без дефицитных СВЧ деталей.

Схема обработки приведена на рис. 5.23. Питается схема от источника 12 В и потребляет ток около 10 мА.


Рис. 5.23. Схема обработки СВЧ сигнала

Резистор R3 обеспечивает начальное смещение детекторного диода VD1.

Принятый диодом VD1 сигнал усиливается трехкаскадным усилителем на транзисторах VT1 – VT3. Для исключения помех питание входных цепей осуществляется через стабилизатор напряжения на транзисторе VT4.

На микросхеме DD2 собран генератор импульсов частотой 3 кГц, которыми через резистор R22 модулируется диод VD2. Модулирующее напряжение в прямой (вывод 8 DD2) и инверсной (вывод 9 DD2) фазах через R8 поступает на резистор R11 «Чувствительность». Этим резистором устанавливается такая фаза и амплитуда компенсирующего напряжения на движке R11, чтобы свести к нулю наводки на диод VD1. В самом деле, на VD1 так или иначе будет наведено (через паразитные связи) модулирующее напряжение 3 кГц (все-таки на VD2 почти 1 В, а полный сигнал снимается с VD1 и имеет амплитуду 1 мкВ и менее).

Но вспомним, что полезный сигнал (от СВЧ поля) с диода VD1 и модулирующее напряжение на диоде VD2 противофазны. Именно поэтому движок R11 можно установить в такое положение, при котором наводки будут подавлены.

Подключите осциллограф к выходу ОУ DA2 и, вращая ползунок резистора R11, вы увидите, как происходит компенсация.

С выхода предварительного усилителя VT1—VT3 сигнал поступает на выходной усилитель на микросхеме DA2. Обратите внимание на то, что между коллектором VT3 и входом DA2 стоит RC-пспочка R17C3 (или С4 в зависимости от состояния ключей DD1) с полосой пропускания всего 20 Гц(!). Это так называемый цифровой корреляционный фильтр. Мы знаем, что должны принять прямоугольный сигнал частотой 3 кГц, в точности равной модулирующей, и в противофазе с модулирующим сигналом. Цифровой фильтр как раз и использует это знание – когда должен приниматься высокий уровень полезного сигнала, подключается конденсатор СЗ, а когда низкий – С4. Таким образом, на СЗ и С4 за несколько периодов накапливаются верхнее и нижнее значения полезного сигнала, в то время как шумы со случайной фазой отфильтровываются. Цифровой фильтр улучшает соотношение сигнал/шум в несколько раз, соответственно повышая и общую чувствительность детектора. Становится возможным уверенно обнаруживать сигналы, лежащие ниже уровня шума (это общее свойство корреляционного приема).

С выхода DA2 сигнал через еще один цифровой фильтр R5C6 (или С8 в зависимости от состояния ключей DD1) поступает на интегратор-компаратор DA1, напряжение на выходе которого при наличии полезного сигнала на входе (VD1) становится равным примерно напряжению питания. Этим сигналом включается светодиод HL2 «Тревога» и головка ВА1. Прерывистое тональное звучание головки ВА1 и мигание светодиода HL2 обеспечивается работой двух мультивибраторов с частотами около 1 и 2 кГц, выполненными на микросхеме DD2, и транзистором VT5, шунтирующим базу VT6 с частотой работы мультивибраторов.

Конструктивно прибор состоит из СВЧ головки и платы обработки, которая может быть размещена как рядом с головкой, так и отдельно.


5.2.3. Средства обнаружения несанкционированного подключения к телефонной линии

Ежедневно, говоря по телефону, вы даже не задумываетесь о том, что вас могут подслушивать. В результате содержание самых важных разговоров (деловая, стратегически ценная, компрометирующая информация) становится известным именно тем людям, которые не должны ничего о них знать. Как только ваши телефонные переговоры заинтересуют кого-либо, находится простое решение – подслушать их. Каждый раз, когда вы поднимаете трубку телефона у себя дома или в офисе, на телефонной линии включаются специальные радиопередатчики или диктофоны; для того, чтобы прослушать ваш разговор, достаточно просто подключить к ней параллельный аппарат или телефонную трубку.

Существуют различные системы для предотвращения несанкционированного прослушивания телефонных переговоров, факсов и модемной связи. Принцип действия таких систем заключается в том, что они подавляют нормальную работу телефонных закладок всех типов (последовательных и параллельных) и диктофонов, установленных на вашей телефонной линии от места установки до АТС. Результатом работы устройств является «размывание спектра» излучения телефонной закладки, что делает невозможным прием информации от нее, а также «забивание» системы АРУ звука и выведение из строя системы VOX (система автоматического включения при наличии на линейном входе сигнала определенного уровня) диктофонов, подключенных к линии.

В результате становится крайне затруднительно перехватить ваши телефонные разговоры обычными средствами прослушивания как зарубежного, так и отечественного производства.

Система безопасности телефонной линии «Барьер» (рис. 5.24) разработана специально для того, чтобы исключить любую возможность подслушивания ваших телефонных переговоров.


Рис. 5.24. Система безопасности телефонной линии «Барьер»

«Барьер» включается между телефонным аппаратом и линией (телефонной розеткой) и автоматически обеспечивает максимальную защиту от подслушивающих и записывающих устройств любого типа.

Кроме того, с помощью специальной системы индикации вам станет известно о попытках подключения кого-либо и чего-либо к вашей телефонной линии. Используя систему «Барьер», нет необходимости заботиться о проведении конфиденциальных встреч, вы можете спокойно говорить по телефону на любые темы.

Система «Барьер» обеспечивает:

– подавление подслушивающих устройств (телефонных радиозакладок), несанкционированно подключенных к телефонной линии, не зависимо от их типов и способов подключения (в том числе с индуктивным съемом);

– подавление автоматических звукозаписывающих устройств, подключенных к телефонной линии и активизируемых поднятием телефонной трубки;

– подавление звукозаписывающих устройств с ручным управлением записи;

– блокировку запуска диктофонов, активируемых голосом при опущенной телефонной трубке;

– защиту телефонного аппарата (в режиме «опущенной трубки») от съема информации методами «ВЧ навязывания», микрофонного эффекта;

– блокирование работы микрофонов, работающих по телефонной линии;

– блокирование работы подключенного к телефонной линии параллельного телефонного аппарата или телефонной трубки;

– цифровую индикацию напряжения телефонной линии и напряжения отсечки;

– возможность подключения к телефонной линии звукозаписывающей аппаратуры (диктофонов) для архивации телефонных переговоров;

– аудиовизуальную индикацию несанкционированного подключения устройств съема информации, изменяющих параметры телефонной линии.

Основные технические характеристики системы «Барьер»:

Уровень маскирующего шума не более, В……40 (регул.)

Напряжение отсечки не более, В………………50 (регул.)

Напряжение питания, В/Гц…………………….. 220/50

Потребляемая мощность не более, Вт…………5

Габаритные размеры, мм………………………200x110x50

5.3. Устройства и способы защиты информации
5.3.1. Рекомендации по комплексной защите информации

Для противодействия конкурирующим фирмам и преступным группам необходимо, прежде всего, определить порядок ведения деловых бесед по телефону; определить круг лиц, допускаемых к тем или иным секретам; запретить сотрудникам вести служебные разговоры по домашним телефонам. Для передачи материалов, содержащих коммерческую тайну, использовать только устойчивые каналы связи (с нарочным, с использованием компьютерных шифраторов).

Если вы почувствовали, что за вами установлен контроль (рис. 5.25), во время беседы используйте систему условностей и сознательной дезинформации.


Рис. 5.25. Если вы почувствовали, что за вами установлен контроль, во время беседы используйте систему условностей и сознательной дезинформации

Никогда не называйте фамилию, отчество собеседника, если это позволяет этикет. Назначая место и время встречи, переходите на условности, которые должны органически вписываться в контекст вашего разговора. Приучите к определенному порядку ведения телефонных переговоров членов вашей семьи: они не должны сообщать никому о том, где вы находитесь и когда вернетесь домой.

При шантаже преступными группами не пытайтесь тотчас же звонить в милицию. Целесообразно «взять паузу» и, убедившись, что за вами нет слежки, позвонить с телефона-автомата в соответствующую организацию, причем лучше всего, чтобы это сделал ваш друг и, не называя истинной причины, организовал встречу (помните, что телефоны милиции тоже могут прослушиваться).

Для защиты информации могут использоваться различные электронные устройства. В настоящее время наиболее широкое распространение нашли генераторы акустического шума отечественного и зарубежного производства. Ниже мы расскажем о некоторых промышленных образцах и простых самодельных устройствах, используемых для защиты информации.


5.3.2. Генераторы шума

Для защиты акустической информации, например речи, используют генераторы шума. В широком смысле под шумом понимают помехи, представляющие собой смесь случайных и кратковременных периодических сигналов. В узком смысле под шумом понимают так называемый белый шум, характеризующийся тем, что его амплитудный спектр распределен по нормальному закону, а спектральная плотность мощности постоянна для всех частот. Примером белого шума является тепловой шум резистора.

Для защиты переговоров от прослушивания используют генераторы акустической шумовой помехи – белого шума. Они позволяют замаскировать полезную информацию на фоне шума. В отличие от однотональной или многотональной периодической помехи, музыки, шума двигателя и т. п., которые путем специальной обработки сигнала могут быть отфильтрованы, помехи типа белого шума практически не поддаются полной фильтрации и поэтому являются наиболее эффективными для закрытия полезной информации. Кроме того, акустические генераторы белого шума эффективны еще и тем, что воздействуют непосредственно на входные низкочастотные тракты подслушивающих систем (микрофоны) независимо от особенностей их схемотехники и принципов передачи информации.

Для защиты от утечки информации по каналам побочных электромагнитных излучений электронно-вычислительной техники используют генераторы шума, излучающие активную широкополосную радиопомеху, воздействующую на входные цепи радиоприемных устройств. Аналогичные приборы используются для защиты от утечки информации по электрической сети и телефонным линиям.

Генератор белого шума промышленного производства

В качестве примера промышленного прибора кратко рассмотрим генератор белого шума ANG-2000, внешний вид которого показан на рис. 5.26.


Рис. 5.26. Генератор белого шума ANG-2000

Основные технические характеристики генератора ANG-2000:

Диапазон частот акустического шума, Гц…….250 – 5000

Минимальное сопротивление нагрузки, Ом……1

Напряжение на нагрузке 6 Ом, В……………….0 – 14

Напряжение питания, В…………………………12 —18

Потребляемый ток не более А………………..2

Габаритные размеры, мм……………………….43x152x254

Генератор шума несложно изготовить и самостоятельно. Ниже мы рассмотрим несколько простых схем таких приборов.

Генераторы шума на транзисторах

Первый генератор шума (рис. 5.27) состоит из двух мультивибраторов.


Рис. 5.27. Генератор шума на транзисторах

На транзисторах VT1, VT2 выполнен обычный симметричный мультивибратор, частоту следования импульсов которого можно изменять подстроечным резистором R2. Правда, генерирует он не обычные прямоугольные импульсы, а колебания более сложной формы. Это объясняется сильной связью через конденсатор СЗ сравнительно большой емкости со вторым мультивибратором – ждущим (его называют одновибратор), собранном на транзисторах VT3 и VT4. Длительность импульсов этого мультивибратора изменяют подстроечным резистором R10.

Поскольку времязадающий конденсатор С4 зашунтирован резистором R9, результирующий сигнал, снимаемый с резистора R11 и поступающий через конденсатор С5 на усилитель звуковой частоты, воспринимается на слух как ясно выраженный шум. Его характер точнее подбирают подстроечными резисторами R2 и R10.

Если верхние по схеме выводы подстроечного резистора R2 отсоединить от источника питания и подключить к третьему мультивибратору (рис. 5.28), генерирующему сигналы инфранизкой частоты, шум станет модулированным этой частотой. Вот теперь звук будет почти полной имитацией сигнала глушения радиопередач, которые в свое время приходилось прослушивать в эфире на коротковолновом диапазоне.


Рис. 5.28. Имитатор сигнала глушения радиостанции

В обоих устройствах допустимо использовать оксидные конденсаторы на напряжение не менее 10 В, остальные конденсаторы – любого типа (БМ, МБМ, КЛС, КМ). Транзисторы – любые из серий МП25, МП26, МП39-МП42; подстроечные резисторы – СПЗ-3, СПЗ-29, СПЗ-29М; постоянные – МЛТ мощностью 0.25 Вт. Питать генераторы шума можно от батарей «Крона», «Корунд», двух последовательно соединенных 3336А либо от сетевого стабилизированного источника постоянного тока напряжением от 4 до 10 В.


5.3.3. Устройства защиты от лазерных средств съема информации

Простой модулятор стекла

Для скрытности проведения перехвата речевых сообщений из помещений могут быть использованы устройства, в которых передача информации осуществляется в оптическом диапазоне. Чаще всего используется невидимый для простого глаза инфракрасный диапазон излучения.

Наиболее сложными и дорогостоящими средствами дистанционного перехвата речи из помещений являются лазерные устройства. Принцип их действия заключается в посылке зондирующего луча в направлении источника звука и приеме этого луча после отражения от каких-либо предметов, например, оконных стекол, зеркал и т. д. Эти предметы вибрируют под действием окружающих звуков и модулируют своими колебаниями лазерный луч. Приняв отраженный от них луч можно восстановить модулирующие колебание.

Исходя из этого, рассмотрим один из достаточно простых, но очень эффективных способов защиты от лазерных устройств. Он заключается в том, чтобы с помощью специальных устройств сделать амплитуду вибрации стекла много большей, чем вызванную голосом человека. При этом на приемной стороне возникают трудности в детектировании речевого сигнала.

Вашему вниманию предлагается простая схема защиты от лазерных средств съема информации (рис. 5.29).


Рис. 5.29. Модулятор

В качестве модулятора с частотой 50 Гц используется обычное малогабаритное реле постоянного тока РЭС22, РЭС9. Выводы обмотки подключаются к источнику переменного тока напряжением чуть ниже порога срабатывания. Реле жестко крепятся к стеклу эпоксидным клеем. За счет разности фаз подводимых к реле К1 и К2 напряжений и неидентичности порогов срабатывания этих реле удается получить случайные (хаотические) колебания стекла.

Многочастотный генератор

Фильтрация периодического сигнала не представляет особого труда и может быть выполнена с помощью простого режекторного фильтра. А вот использование многочастотной помехи увеличивает вероятность закрытия полезной информации, т. к. необходимо применение нескольких, в зависимости от количества используемых частот, точно настроенных фильтров. И чем больше количество частот в многочастотной помехе, тем более сложно выделить необходимую информацию.

Многочастотный генератор, схема которого изображена на рис. 5.30, можно использовать в качестве генератора шума и устанавливать на стекла и рамы (выходным элементом здесь является пьезокерамический излучатель ZQ1).


Рис. 5.30. Многочастотный генератор

Практически, это RC-мультивибратор на элементах DD3.1, DD3.2, частота которого регулируется включением дополнительных резисторов R2—R9 параллельно основному R1. Таким образом, частота на выходе увеличивается соответственно уменьшению общего сопротивления резисторов.

Изменение тональности происходит циклически с периодом в восемь тактов, при этом с каждым тактом частота может не обязательно последовательно уменьшаться или увеличиваться, значение ее для каждого такта выбирается произвольно, подбором номиналов R2—R9 соответствующим образом.

Переключение резисторов обеспечивает мультиплексор DD1, в соответствии с двоичным кодом, поступающим на его входы «1», «2», «4» со счетчика DD2.

Длительность звучания каждого такта и скорость смены тактов определяется быстротой работы мультиплексора, а следовательно частотой тактового генератора на элементах DD3.4, DD3.5, импульсы от которого поступают на счетный вход счетчика DD2. Скорость изменения тактов можно регулировать резистором R11.

Если требуется в определенном такте сделать паузу (во время действия этого такта на выходе устройства будет логический нуль), нужно соответствующий вывод мультиплексора соединить не с одним из резисторов R2-R9, а с плюсом питания, а соответствующий резистор не устанавливать.


5.3.4. Защита от несанкционированного использования телефонной линии

Устройство защиты от несанкционированного подключения к телефонной линии

Устройство защиты от несанкционированного подключения к телефонной линии предназначено для кодирования линии индивидуальным одно-, двух-, трехзначным кодом и применяется в тех случаях, когда имеется возможность установить устройство защиты в щитке, колодце, т. е. как можно дальше от охраняемого телефонного аппарата (в идеальном случае – на выходных клеммах АТС).

Система охраняет линию «за собой». При этом все посылки вызова, пришедшие с АТС, беспрепятственно допускаются к телефону), но для подключения к линии (ведения разговора, набора номера) на диске телефона (клавиатуре) необходимо набрать индивидуальный код.

Схема системы приведена на рис. 5.31.


Рис. 5.31. Устройство защиты телефона

Устройство собрано на дискретных общедоступных элементах и ИМС серии 561 с микропотреблением в статическом режиме. Вся схема питается от телефонной линии. В режиме ожидания потребление не превышает 10..20 мкА, в режиме приема вызова или обработки кода – 150…200 мкА.

В состав устройства входят:

– узел обработки импульсов вызова на элементах DD1.1, DD1.2;

– узел приема кода на элементах DD1.3, DD1.4;

– ключ включения телефона А1;

– дешифратор кода А2;

– узел питания на элементах VD7, R3, С6, VD8;

– узел питания напряжением 60 В на элементах VD10, R8, VD9, VD11-VD13.

Рассмотрим работу системы защиты.

Исходящая связь

При снятии трубки с телефона, подключенного в любом месте охраняемой части линии, в телефоне будет отсутствовать сигнал готовности станции (425 Гц).

После набора соответствующего кода на диске (клавиатуре) телефона и обработки его узлом приема кода DD1.3, DD1.4 на выходе 4 дешифратора А2 появится уровень логической «1», который через ключ А1 подключит телефон к линии (если код набран правильно).

Если код набран неправильно, система защиты блокируется на время 15…30 с, после чего можно повторить набор кода. При включении ключа А1 телефон работает в обычном режиме, обеспечивая набор номера и связь. Система вновь входит в режим охраны через 10…20 с после того, как трубка будет опущена на аппарат.

Входящая связь

Любая посылка вызова частотой 25 Гц и напряжением 90…120 В, пришедшая от АТС, напрямую на телефон не поступает, так как ключ А1 в исходном состоянии заперт. После обработки сигнала вызова элементами DD1.1, DD1.2 с небольшой задержкой, определяемой номиналами элементов С2, СЗ, на выходе 4 DD1.2 появится логическая «1», которая через диод VD5 открывает ключ А1 только на время вызова. При снятии трубки с телефонного аппарата входной узел запирается через диод VD4, и далее для подключения телефона к линии и ведения разговора необходимо вновь набрать индивидуальный код.

Таким образом, система защиты блокирует подключение к охраняемому участку линии любых телефонных аппаратов без знания кода. Дешифратор может быть выполнен одно-, двух-, трехзначным.

Размер платы 100х60 мм, подключение к линии осуществляется тремя разъемами. Единственным условием является использование телефонных аппаратов II и III группы сложности (с потреблением от линии не более 50…80 мкА).

Простейшее защитное устройство

В тех случаях, когда вы хотите защититься от несанкционированного подключения к телефонной линии более простым способом, можно воспользоваться схемой, представленной на рис. 5.32.


Рис. 5.32. Простейшее защитное устройство

Это устройство блокирует как набор номера, так и вызывной сигнал. Его удобно выполнить в виде отдельной вилки, подключаемой вместо телефонного аппарата (например, при длительном вашем отсутствии).

Блокировка параллельного телефона

Предлагаемое релейно-конденсаторное устройство позволяет исключить прослушивание телефонного разговора с параллельно включенного телефонного аппарата. Работа его основана на использовании постоянного тока, протекающего через телефонный аппарат при снятой телефонной трубке (рис. 5.33).


Рис. 5.33. Блокировка параллельного телефона

Контакты К2.1 и К1.1 – нормальнозамкнутые. Конденсаторы С1 и С2 обеспечивают прохождение переменной составляющей тока при вызове и во время разговорного соединения. При выборе номиналов конденсаторов важно не допустить, чтобы резонансная частота колебательного контура обмотка реле-конденсатор была равной 25 Гц (частота сигнала вызова) и 450 Гц (частота сигнала зуммера станции.

В качестве реле К1 и К2 подойдут любые с током срабатывания 25–30 мА, имеющие нормальнозамкнутую контактную пару, например РЭС4Э.


    Ваша оценка произведения:

Популярные книги за неделю