355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Томилин » Занимательно об астрономии » Текст книги (страница 18)
Занимательно об астрономии
  • Текст добавлен: 24 сентября 2016, 04:13

Текст книги "Занимательно об астрономии"


Автор книги: Анатолий Томилин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 18 (всего у книги 19 страниц)

4. Отречение Фрэда Хойла

Гипотеза «большого взрыва» с ее выводом о непрерывном изменении свойств вселенной удовлетворяла не всех ученых. Слишком велик был соблазн предполагать мир вечным и неизменным. Но как совместить с его неизменностью доказанное разбегание галактик? И астрономы Хойл, Бонди и Голд выдвигают любопытнейшую идею.

Они предположили, что по мере расширения вселенной в ней непрерывно и повсеместно рождается новая материя. И к тому времени, когда две галактики разлетаются на удвоенное расстояние, между ними, как птица Феникс, возникает третья. И снова предельные расстояния сохранены, плотность материи в одном и том же объеме неизменна.

Этот процесс, по мнению авторов гипотезы, должен происходить так медленно, что его невозможно обнаружить никакими приборами, находящимися в распоряжении человечества.

Решить спор гипотез могло только сравнение далекого прошлого с настоящим. Есть ли изменения? Если они есть, значит вселенная развивается, если изменений нет – она вечна и неизменна. Однако хорошенькое дело – съездить в прошлое. И все-таки в астрономии это оказалось возможным. Не забывайте, что астроном-астролог – это почти синоним колдуна, волшебника. Если к этому добавить еще возможности современной физики, то астрономия становится воистину наукой чудес.

Астрономы видят прошлое. Видят в буквальном смысле этого слова. От удаленных галактик лучи света летят к нам миллиарды лет. То есть мы видим эти миры такими, какими они были на заре образования нашей Земли. Так почему не сравнить их с близлежащими? Похожи ли они? Если да – вселенная неизменна. Нет – стоит задуматься.

Решение любой задачи прежде всего сводится к ее постановке. Это полдела. Но в нашем случае подводила как раз вторая половина. От галактик, удаленных от нас на миллиарды парсеков, в объективы телескопов Земли попадают такие бледные струйки света, что разглядеть строение далеких небесных объектов – попытка безнадежная для оптической астрономии. Вы заметили, как тонко автор подчеркнул возможности радиоастрономии. И она не заставила себя долго упрашивать. Мы снова вернулись к сенсационным квазарам. Все они прежде всего характеризуются невероятным «красным смещением» и расстояниями. Большинство из них мы видим такими, какими они были еще до образования Земли и всей солнечной системы.

В бесконечной дали «старой вселенной» квазаров множество. Рядом с нами – ни одного! Не говорит ли это настойчиво в пользу перемен, происшедших с нашим миром на протяжении космических веков? А значит…

Автор убежден, что теперь проницательный читатель и сам, без помощи английского профессора, сделает нужный вывод. И только для того, чтобы закончить историю и оправдать название раздела, автор готов добавить. В 1965 году крупнейший английский астроном Фрэд Хойл ударил себя в грудь и на весь мир, подобно Тарасу Бульбе, возопил: «Я тебя породил, я тебя и убью!» Ученый выступил с отказом от своей гипотезы «непрерывного творения».

Помолчим немного. Потому что на это каждому потребовалось бы немало мужества…


Глава четырнадцатая
Полет к звездам

Никто не начинает путешествия без надежды вернуться.

Старинная поговорка


1. Первые ступени

Космическая эра началась 4 октября 1957 года. Вряд ли стоит еще и еще раз описывать подробности этого дня. Они стали каноническими. Важнее сам факт: в космос, на орбиту Земли, Советским Союзом был запущен первый в мире искусственный спутник.

Пройдемся по первым ступеням пока еще немногочисленных этапов освоения выхода в космическое пространство. Нам это нетрудно сделать, потому что многие из них отмечены цветами нашей страны.

2 января 1959 годапервая космическая ракета «Мечта» ушла с советского космодрома в сторону Луны и стала первой искусственной планетой солнечной системы.

12 сентября 1959 годавторая космическая ракета «Луна-2» доставила на поверхность спутника Земли первый вымпел с изображением герба Советского Союза. Первый заявочный столб в космосе.

12 февраля 1961 годамногоступенчатая ракета вывела на орбиту второй советский тяжелый спутник Земли, с которого в тот же день стартовала управляемая с Земли космическая ракета. Она вывела на траекторию к Венере автоматическую межпланетную станцию «Венера-1».

12 апреля 1961 годав космос взлетел Юрий Алексеевич Гагарин.

1 ноября 1962 годасоветская автоматическая станция «Марс-1» отправилась к нашему внешнему соседу – планете Марс.

10 ноября 1968 годасоветская автоматическая станция «Зонд-6» полетела к Луне, обогнула ее и вернулась на Землю не просто камнем из пространства, а используя аэродинамические свойства самого корабля. Первый планетолет.

23 июля 1969 года.Специальная кабина американского космического корабля «Аполлон-11» прилунилась на поверхности естественного спутника Земли, и на Луну впервые ступила нога человека.

Первым вышел из кабины астронавт Нейл Армстронг. За ним последовал и его товарищ по полету Эдвин Олдрин.


Это ступени этапов. За каждой из них – длинный ряд отработок, совершенствований, целая лестница закрепления результатов. Применяя оптимистическую экстраполяцию этих начинаний, легко поддаться искушению высчитать год и день отправки первого межзвездного корабля. Давайте и мы попробуем составить «гороскоп астронавтики».

2. Расстояние, время, скорость, относительность

Земля – песчинка космоса: привычное сравнение для уничижения рода человеческого. А что, если действительно представить себе нашу планету уменьшенной до размеров песчинки? Можно, правда, пойти по другому пути. Представить себя выросшим до размеров этакого «супермикромегаса», для которого Земля – песчинка. В принципе разницы никакой – все в мире относительно, а кое-кому из читателей, может быть, второй вариант придется больше по вкусу.

Так или иначе Земля – песчинка. Масштаб 1:180 миллиардам. Тогда Солнце своими размерами не превзойдет горошину. А расстояние между песчинкой и горошиной не должно быть больше метра. Тут же, в пределах нескольких шагов, лежат орбиты планет, на которые уже припланетились первые земные планетолеты. Но нас интересуют звезды. Каким будет в наших масштабах расстояние… ну, хоть до ближайшей – Проксимы Центавра?

Не оглядывайтесь вокруг, не влезайте на дерево, не садитесь на велосипед. Следующая «горошина» затерялась примерно в 220 километрах от нашей «песчинки», поди найди! Сотни километров – и песчинки с горошинами. А ведь это Проксима! Ближайшая! До нее, астрономы считают, рукой подать, всего 40 420 000 000 000 000 километров – пустяк. В том же масштабе расстояние до самой популярной соседней галактики – Туманности Андромеды, равно… радиусу земной орбиты! И все это опять для песчинок с горошинами.

Такие расстояния заставляют задумываться. Ведь для того чтобы современной ракете преодолеть путь до Проксимы Центавра, ей придется лететь 76 тысяч лет. Право, такое долгое путешествие по однообразной космической пустыне может и поднадоесть. Единственный способ сократить расстояние, а следовательно, и сроки полетов – увеличивать скорость. Но до каких пор? Очевидно, до максимально возможной. А это – скорость света!


Луч мчится от Проксимы Центавра до Земли 4,29 года. Скорость света – физический предел – 300 тысяч километров в секунду. Больше не бывает.

Ну, а если цель поездки отстоит от Солнца, например, на 160 световых лет, как Спика из созвездия Девы, или Бетельгейзе – на 650 световых лет, как быть тогда? Ведь одной человеческой жизни на такую поездку все равно не хватит. А значит, отдаленным звездам вряд ли дождаться скоро земных туристов!

И тут мы вступаем в царство относительности. Земные законы в этом царстве трещат по всем швам, а привычные физические формулы приобретают релятивистскую поправку. (Впрочем, раз уж мы заговорили о звездном туризме, то не следует ли говорить не «релятивистский», а «релятивистический»? Ведь пустил же какой-то грамотей термин «туристический» вместо «туристский».)

А теперь пришло время взглянуть на эти формулы. К ним придется привыкнуть пассажиру звездолета, ничего не поделаешь. А приводятся они здесь еще по двум причинам: во-первых, сами по себе они поучительны и наглядны, способствуя тем самым поднятию эрудиции; во-вторых, без формул сейчас не обходится ни одна книжка вообще, даже если в ней говорится о воспитании щенка легавой собаки. Наконец, немаловажную роль сыграло и то, что приводимые уравнения встречаются сегодня не менее часто, чем фольклорные фрески в общественных местах. И потому привести их в книжке автору ничего не стоит.


Начинать, конечно, надо с того, что самым драматическим и захватывающим утверждением теории относительности является так называемый «парадокс близнецов». Смысл его в том, что, когда скорость ракеты приближается к световой, часы участников полета начинают безнадежно отставать от земных. При этом, правда, все авторы стыдливо обходят вопрос о справедливости данного утверждения для ускорений и замедлений движения, для полетов по прямой или по замкнутой кривой. Не будем и мы считать себя умнее других. В конце концов на звезды пока никто всерьез не собирается, а Эйнштейн, увы, умер.

Итак, в ракете, которая, стартовав с Земли, летит с субсветовой скоростью, время тянется по закону:

А на покинутой и безутешной Земле время, то самое Т 0, бежит куда быстрее. И чем ближе подбираемся мы к скорости света, тем медленнее течет ракетное время, грозясь в пределе остановиться вовсе. Но зато при скорости звездолета, равной 0,996 от скорости света С, то есть 298 500 километров в секунду, 10 земных лет превращаются для астронавтов в один год!

Это же прекрасно!

Это открывает перед нами не только звезды нашей системы, но и всю вселенную. Только погоняй звездолет – и пусть себе календарь на Земле отщелкивает столетия в секунду. Надо только поскорее построить такой быстроходный корабль.

3. Когда построят звездолет?

Скорость движения ракеты определяется вылетающими из сопла частицами сгоревшего топлива. Если же из ракетных дюз заставить вырваться световые кванты или фотоны, то скорость ракет будет приближаться к физическому пределу! Значит, строить надо только фотонный звездный корабль!

Чтобы не занимать места на описание принципа действия и конструкции звездолета, автор предлагает читателю сделать это самостоятельно. Тем более что, если уважаемый читатель и присочинит что-либо от себя, большой беды не будет. Впрочем, мы забегаем вперед.

Для оценки сроков, когда возможным станет осуществление такого строительства, надо прежде всего прикинуть объем лайнера, то есть вычислить минимальную полезную массу звездолета. Сюда войдет все, чем комплектуется космический корабль, включая и живой вес экипажа. Все, за исключением горючего.


Последним «криком техники» на Земле являются, пожалуй, танкеры-гиганты водоизмещением 100 тысяч тонн. Звездному кораблю предстоит дальний и долгий путь, поэтому возьмем его размеры, не жадничая, тоже 100 тысяч тонн! Тем более что горючего понадобится, наверное, довольно много. Кстати, о горючем. Заботы о нем – не наше дело. Считаем, что физики получили супер-экстра-горючее, которое без остатка переходит в излучение, научились его хранить в магнитных или каких-либо других бутылках и построили для этого горючего двигатель, способный переваривать энергию, примерно равную энергии миллиона атомных бомб, ежесекундно и при этом оставаться целым. Наша задача – определить, «сколько горючего надо», и залить его в баки. Ах, черт возьми, снова вмешивается Эйнштейн! По мере приближения скорости к световой, начинает расти масса. Вот ее уравнение:

Разгоняясь, ракета будет тяжелеть и тяжелеть. Значит, увеличится и расход горючего. Его придется подбрасывать в топку сначала в десять, потом в сто, потом в тысячи раз больше. А ведь предстоит еще торможение при прибытии на место. Потом снова разгон и снова торможение на обратном пути. Короче говоря, по самым скромным расчетам, для разгона космического корабля массой в 100 тысяч тонн до скорости 0,995 С, вес топлива должен примерно в миллион (!) раз превзойти полезную массу конструкции и составить 100 000 000 000 тонн. Еще немного – и реактивный двигатель проще всего будет приделать прямо к земному шару.

Э, да я вижу, наш отряд строителей сильно поредел. Испугались первых трудностей? Позор! То ли еще будет дальше.

Мы продолжим мечтать. Мечтать – это так прекрасно, так возвышенно!!! В конце концов не все ли равно, как будут обойдены конструктивные трудности? Важно верить, что это сделано будет! Тем более что идея прекрасна! Тогда – верхом на идею, и вперед!

Старт!

4. Рифы космоса

Нет ни одного истинного приключенческого космически-фантастического романа, герои которого не встретились бы нос к носу с метеоритом. В ином случае пустынный космос не даст никаких острых ситуаций, и жанр погибнет. (Автор говорит об этом со знанием дела, так как, написав несколько фантастических опусов, он неоднократно исправно сталкивал своих героев с метеоритами самых разных размеров.) И это не шутка. Многие даже не подозревают, какую опасность представляют собой метеориты, беспорядочно носящиеся за пределами атмосферы.

В 1932 году метеорит пробил атмосферу и, счастливо избежав полного сгорания, долетел до Земли. Выбрал место падения – Токио и… запутался в кимоно молодой японки. Хорошо, что этот опыт не распространился на страны Европы в наши дни. Юбки современных девушек вряд ли обеспечили бы космическому гостю благополучную посадку.

Известны случаи, когда метеориты падали на крыши почему-то в основном соборов. Метеориты причиняли ущерб скотоводству, убивая иногда домашних животных. А однажды небесный камень грохнулся прямо в корыто прачки. Это было еще до широкого внедрения стиральных машин и механических прачечных.

Именно за счет космического мусора, сыплющегося на поверхность нашей планеты, Земля ежедневно прибавляет в весе от десяти до ста тысяч тонн.

Скорость метеоритов, с которыми встречается Земля, различна. Она колеблется от 11 до 80 километров в секунду. Если такой камешек диаметром полсантиметра угодит в спутник, то он разворотит дыру даже в обшивке из стали толщиной в 12 миллиметров. Правда, расчеты вероятности такой встречи не могут не придать отваги даже пессимистам. В ближнем космосе встреча корабля с таким метеоритом (массой примерно в 3,5 грамма) может произойти не чаще одного раза в 30–40 тысяч лет! Можно предположить, что в межзвездных просторах вероятность встречи еще меньше. Правда, с уменьшением размеров метеорита эта вероятность растет примерно в квадратичной зависимости.

Так, при диаметре частицы вещества в 1 миллиметр две встречи подряд уже разделяются интервалом всего в 350–400 лет. При диаметре 0,5 миллиметра неприятность возможна уже через каждые 15 лет. А встречи с песчинками размером в 0,25 миллиметра могут происходить каждые четыре года.

Все вышеприведенные рассуждения касались обычных спутников или, в лучшем случае, межпланетных кораблей, путешествующих по солнечной системе. Но ведь мы летим к звездам! Опять Эйнштейн, и опять неприятности. Формула кинетической энергии тела, летящего со субсветовой скоростью, выглядит так:

где m o– масса покоя. Очень интересные расчеты сделал советский физик Сергей Михайлович Рытов. Он рассматривает встречу звездолета, мчащегося со скоростью 260 тысяч километров в секунду, с микроскопической пылинкой массой в один миллиграмм. Энергии, выделившейся при столкновении, достаточно, чтобы в буквальном смысле этого слова «испарить» 10 тонн железа. Но это еще не самое страшное. Хуже то, что при таких скоростях энергия атомных частиц в движущихся навстречу кораблю микрометеоритах значительно больше энергии связи атомов в кристаллической решетке. Значит, метеорит врежется в корпус корабля не как единый кусок вещества, способный прострелить звездолет насквозь, а как шквал тяжелых космических частиц. Проникнув в металл обшивки всего на несколько сантиметров, они там, в глубине, отдадут всю свою огромную энергию, вызвав тепловой взрыв.

Так одна-единственная крупинка вещества массой в один миллиграмм взорвет весь огромный корабль.

Но будем оптимистами. Ведь встреча с такой частицей возможна раз в полтораста лет. Авось проскочим. Ведь в основном-то пустота пуста! По современным данным, средняя плотность межзвездного пылевого вещества в Галактике около 10 -10грамма в кубическом километре – ничтожна. Но при скорости в 260 тысяч километров в секунду каждый квадратный метр лобовой поверхности звездолета за час пройдет около 1800 кубических километров и встретит при этом наверняка 0,00018 миллиграмма распыленного вещества. Если микрометеорит массой в 1 миллиграмм испаряет 10 тонн железа, то крупица в две тысячные доли миллиграмма уж два-то килограмма корпуса наверняка сожрет. И так ежечасно. Невидимая, почти неощутимая космическая пыль будет, как наждаком, точить корпус звездолета такими темпами, что от всей полезной массы в 100 тысяч тонн через пять с небольшим лет не останется ни грамма.

А ведь мы забыли еще межзвездный газ. Водорода в пространстве больше, чем пыли. В среднем – один атом на один кубический сантиметр.

Для звездолета с субсветовой скоростью этот разреженный газ превратится в густой поток быстрых частиц высокой энергии. Ударяясь о корпус корабля, они породят ливень жестких рентгеновых лучей, от которых спрятаться можно будет только за толстенными бетонными стенами. Иначе наши астронавты погибнут, не успев насладиться необычными видами, которые откроются перед ними в иллюминаторах корабля. А посмотреть будет на что, вы в этом убедитесь, прочитав следующий раздел главы.


Однако чтобы закончить этот «жизнерадостный» перечень неожиданностей и препон, которые смелым людям нужно будет преодолеть, автор призывает бодро воскликнуть в духе Маргариты Алигер: «И все-таки я верю!..» Жаль только, что вера в науке то же, что дрова в двигателе космической ракеты.

Хотя не исключено, что придет время, и человечество, если ему удастся до этого времени дожить, вырвется к звездам. Но произойдет это таким способом, до понимания которого нам так же далеко сегодня, как современникам Гиппарха было далеко до наших с вами рассуждений.

5. Проблемы релятивистской астронавигации

Одним из самых противных испытаний, которым подвергается летчик, а сейчас космонавт, как это показывают в кино, является карусель. Мы, летчики недавнего прошлого, в свое время называли ее «вертушкой» или «сепаратором». Тех, кто не проходил испытания на центрифуге, отстраняли от полетов. Мудрый читатель, конечно, знает, что так тренируется вестибулярный аппарат. И хотя у представителей воздушной специальности оный аппарат, безусловно, оттренирован, летать вверх ногами или кувыркаться во всех мыслимых степенях свободы никому удовольствия не доставляет. Мы не говорим уже о том, что направить кувыркающуюся ракету точно в цель – дело в высшей степени безнадежное.

Для предотвращения неприятностей воздушные (и безвоздушные) транспортные средства снабжаются ограничителями свободы.

На корабле «Восток», вынесшем за пределы воздушной оболочки Земли первого человека, стоял целый комплекс оптико-гироскопических систем ориентирования. Гироскоп задавал направление одной из осей; автоматы, занимающиеся поиском Солнца, поворачивали корабль относительно центра тяжести и удерживали его в заданном направлении. Первый полет Ю. Гагарина прошел успешно.

Иначе было с автоматической межпланетной станцией «Венера-1». Станция держала связь с Землей при помощи остронаправленной антенны. Такие антенны представляют собой параболоиды вращения разных диаметров и посылают радиоволны узким пучком. Поддерживать точное направление помогала сложная система астроориентации. И вот примерно в середине полета радиосвязь со станцией прервалась. В чем дело?

Выяснить причину помогла старинная дружба, связывающая советских астрономов и их английских коллег. Англичане уже давно помогают нам вести наблюдения за нашими космическими летательными аппаратами, пользуясь уникальной аппаратурой на обсерватории Джодрелл Бэнк. Так вышло и на этот раз. После того как у всех нас лопнуло терпение вместе с надеждами снова услышать голос «Венеры-1», англичане все еще упорно ждали. И национальная черта не подвела. Правда, плюс к английскому терпению у них был и лучший в мире по тем временам радиотелескоп. Факт тот, что английские астрономы поймали снова нашу станцию. Но поймали так кратковременно и вскользь, что стало ясно: вышла из строя система ориентации и станцию мотает в разные стороны.

Средства астронавигации при межпланетных перелетах – это едва ли не главное (наряду с тремястами тысячами других не менее главных деталей, составляющих начинку современной ракеты). Отклонение от курса на доли процента уведет даже межпланетный корабль далеко от цели. А как будет чувствовать себя штурман звездолета, набравшего субсветовую скорость? Что, опять Эйнштейн? Нет, на этот раз мы хоть и воспользуемся выводами специальной теории относительности, но это будет касаться той ее части, которая была подготовлена раньше Лоренцем. Здесь речь идет о преобразованиях Лоренца, связывающих координаты и время неподвижной системы (х, у, z и t) с соответствующими величинами для летающего звездолета (х′, у′, z′ и t′). Если направить ось х по курсу корабля, то формулы для преобразования примут вид:

Из-за этих преобразований для наблюдателя, движущегося со скоростью, близкой к скорости света, привычные координаты неподвижных звезд неузнаваемо изменятся. Перед носом ракеты звезды словно сбегутся, столпятся в кучу по курсу звездолета, а за кормой, наоборот, далеко разойдутся друг от друга.

По расчетам профессора С. М. Рытова, при скорости в 260 тысяч километров в секунду вся передняя полусфера звездного неба сместится вперед и заполнит конус с углом раствора всего в 30 градусов. И чем ближе будет скорость к световой, тем теснее будут толпиться звезды перед носом корабля. Так, при достижении скорости, равной 0,95 С, передняя полусфера сожмется уже в конус с углом раствора всего 18 градусов.


Но этого еще мало. Изменится спектральный состав излучения звезд. Помните эффект Допплера и наш эксперимент с лодкой, идущей против волн? Так вот, звезды, расположившиеся впереди по курсу звездолета, «поголубеют», а оказавшиеся за кормой по той же причине начнут «краснеть». При этом яркость впереди лежащих светил возрастет, а оставшихся сзади – уменьшится.

Представьте себя на минутку в положении штурмана. Поседеешь, ей-богу! А до штурмана – конструктору в пору повеситься.

Если и теперь упрямый читатель не сделал для себя определенных выводов, к которым его бережно вел автор, то последнему остается только широко развести руками. Ему, автору, самому до смерти бы хотелось полететь. Желание-то у него есть. Но вот насчет возможностей… Нет, мы начали нашу последнюю главу широким заголовком: «Полет к звездам…» и поставили многоточие. Пришла пора снять точки, написать слово НЕВОЗМОЖЕН и закрыть кавычки.

А как же фантастика?..

Во-первых, автор должен заявить со всей ответственностью, что лично он фантастику любит! Не меньше любит он и приключенческую литературу и даже, стыдно признаться, детектив. Порукой тому не только его собственные рассказы, но даже эта книга, которую он изо всех сил старался строить по детективным канонам: «Вот-вот откроется окончательная истина… Ан нет!.. И снова дежурные гипотезы, погоня за доказательствами, ошибки и движение вперед».


Автор уже много раз оправдывался в том, что он далек от мысли подвергать сомнениям основные принципы и принципиальные возможности. Ему только хотелось бы предостеречь читателя от слишком поспешного «инженерного» подхода к решению некоторых «фотонных» проблем, а с другой стороны – от чрезмерной горячности в восклицаниях: «Верую!» Правда, а как же быть все-таки с литературой?

Так ведь и тысячу лет назад существовали сказки об огнедышащих драконах и летающих колесницах. Думаете, в них так уж и верили? Вряд ли. Но от этого сказки не становились менее интересными. Помните: «Сказка – ложь, да в ней намек, добрым молодцам урок»?

Вот автор и призывает, читая фантастические романы, отыскивать в них «намек», а не техническое решение проблем будущего.


    Ваша оценка произведения:

Популярные книги за неделю