Текст книги "Занимательно об астрономии"
Автор книги: Анатолий Томилин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 15 (всего у книги 19 страниц)
7. Дьявол Джона Гудрайка
Во второй половине восемнадцатого столетия в Англии жил удивительный астроном. Звали его Джон Гудрайк. Еще ребенком он сильно отличался от своих сверстников. Маленький Джон почти всегда был один. Молчаливо, сосредоточенно, не обращая внимания на кипевшую вокруг него жизнь, занимался он своими делами. Мальчик был от рождения глухонемым.
И все-таки он стал ученым! И удачливым ученым, на долю которого выпало очень интересное открытие.
В восемнадцать лет Джон Гудрайк начал самостоятельно и серьезно заниматься изучением неба. Ночь за ночью проводил он у телескопа, забывая в эти часы о своем природном недостатке. Звезды так же молчаливы и глухи, как и он. Но у них должен быть какой-то язык, на котором они разговаривают между собой. Вот таинственная звезда Алголь. С древнейших времен считалось, что с нею что-то нечисто. Даже само название Эль-Гуль, которое дали ей арабы, означало в переводе не что иное, как «Дьявол». Чем же она замечательна? На первый взгляд – ничего особенного. Звезда как звезда. Но если понаблюдать подольше, то обнаруживается странное свойство: около трех суток светит Алголь ровно, как и полагается добропорядочной звезде, а потом – раз, и подмигнет!
Гудрайк установил, что эта удивительная звезда за пять часов «подмигивания» теряет две трети своего блеска. А потом снова восстанавливает. И так каждые двое суток и еще двадцать часов сорок девять минут. Не отставая и не опережая график, как хорошо выверенный хронометр.
Долго обдумывал астроном причину странного поведения светила и выдвинул такую гипотезу: у Алголя должен быть невидимый спутник, который, вращаясь вокруг главной звезды, время от времени закрывает ее сияющий лик. Предположение Гудрайка долго оставалось в ранге гипотезы и лишь в конце прошлого века подтвердилось. Алголь действительно оказался затменно-двойной звездой. С тех пор подобных звезд открыто множество. В честь дьявольской звезды некоторые из них получили общее название «алголей».
Это небесное тело оказало нам не одну услугу. Точный, как хронометр, Алголь помог впервые измерить собственную скорость вращения звезды. Очень важно! В 1877 году английский астроном Эбни предложил великолепную идею для определения скорости вращения звезд по размазыванию линий спектра за счет эффекта Допплера. К сожалению, его предложение опередило время. Эбни поплатился за это тем, что сегодня его имя почти забыто. Лишь в 1928 году американский астроном О. Л. Струве – правнук незабвенного Василия Яковлевича – и советский астроном Г. А. Шайн полностью реализовали блестящую догадку забытого англичанина.
Алголь поистине «урожайная» звезда. Точные фотометрические наблюдения показали, что у нее есть слабо светящийся спутник, время от времени затмевающий основную звезду. Это позволило двинуть астрономический прогресс и в области двойных систем.
8. Дыхание цефеид
Еще более удивительными оказались другие «подмигивающие» звезды, типичным представителем которых является Дельта созвездия Цефея. Эти гиганты периодически меняли свой блеск. Только разгорались они почему-то быстро, а затухали медленно. При этом менялся даже спектральный класс звезды. Так, Дельта Цефея, разгоревшись, сияла, как звезда, принадлежащая к классу F4, а пригаснув – к классу G6.
Может быть, причиной колебаний яркости служит тоже темный спутник? Такую идею выдвинул в свое время А. А. Белопольский. Однако профессор Московского университета физик Николай Алексеевич Умов предложил другую гипотезу – считать цефеиды (так называли звезды типа Дельты Цефея) пульсирующими звездами. Умов заложил основы и для математической разработки своей гипотезы. И сейчас теория пульсаций для цефеид общепринята. Современная наука представляет себе их в виде гигантских пульсирующих газовых шаров, которые, сжимаясь, разогреваются и увеличивают свой блеск. Зато потом, когда наступает период расширения, температура звезды падает и, несмотря на увеличение объема, блеск ее ослабевает.
Цефеиды поделились с людьми множеством откровений. В 1912 году мисс Ливитт, наблюдая цефеиды в Малом Магеллановом облаке, установила, что чем больше блеск цефеиды, тем медленнее она пульсирует. Эта закономерность позволила определить относительные расстояния цефеид от Солнца. Правда, относительные величины мало кого устраивают. Людям подавай абсолютные: в световых годах, в парсеках… Но для этого надо знать хотя бы одно расстояние точно. Хоть до какой-нибудь единственной цефеиды. Американский астроном Шепли проделал эту работу. И мигающие гиганты стали служить верстовыми столбами вселенной.
Тридцать лет ни один астроном не позволял себе сомневаться в справедливости результатов Шепли. И вдруг в конце сороковых годов нашего столетия обнаружилось, что в действительности цефеиды ярче, чем это получалось по графику Шепли. Пришлось вносить коррективы, после которых вместо «верстовых столбов» на небе появились «столбы километровые».
Однако ошибки, допускаемые астрономами, не только не унижают их, а, наоборот, паче всего говорят о славе и беспримерности научного подвига. Ибо только тот, кто ничего не делает, гарантирован от ошибок.
9. Тайны мирид
Не все звезды меняют свой блеск равномерно. Вот, например, Мира в созвездии Кита. Ее имя не зря переводится как «Удивительная» или «Дивная». Мира вспыхивает, совершенно не заботясь о том, чтобы посмотреть при этом на часовую стрелку или календарь. Один раз в наш земной год она сияет полным блеском. Но сказать заранее, когда этот момент наступит, невозможно.
Вслед за Мирой астрономы отыскали еще массу неправильных переменных звезд, назвав их миридами. Жаль только, что назвать еще не значит изучить! Академик Г. А. Шайн, много занимавшийся процессами в долгопериодических переменных звездах, высказал мнение, что причиной изменения блеска является также пульсация, которая сопровождается извержением горячих газов из недр звезды в более холодные слои ее атмосферы.
О многом можно гадать, пока нет строгой математической теории, описывающей наблюдаемое явление. Тайны мирид ждут своей разгадки.
10. Новые времена – новые песни
Астрономы – несчастные люди. Таково твердое мнение физиков, занимающихся экспериментами. Впрочем… Астрономы – счастливые люди. Таково мнение тех же физиков, когда их собственный физический эксперимент «не идет». В чем же особенность работы астрономов?
Пожалуй, ни один мало-мальски уважающий себя исследователь не мыслит дать решение задачи без экспериментальной проверки результатов. А как быть наблюдателям звезд? Не забывайте, наблюдателям. Вот именно! До звезды не дотянешься прибором, не заставишь ее выделывать требуемые кренделя. А может быть «настоящей» наука без опыта?
Впрочем, сначала давайте договоримся, что подразумевать под словом «эксперимент». Научно поставленный опыт? Но что значит «научно поставленный»? То, что исследуемое явление многократно наблюдается в различных точно учитываемых условиях. При этом результат эксперимента считается надежным лишь в том случае, если при повторении опыта он один и тот же. У вас нет возражений против такой формулировки? Тогда вернемся к астрономии.
До тех пор пока звездное население не было хотя бы примерно разложено по полочкам, пронумеровано и приведено в систему, говорить о каких-то качественных исследованиях смысла не имело. Астрономия, честно, была наблюдательной наукой, накапливающей факты и удивления.
«Ах, как интересно!» – позволительно было восклицать человеку, проводящему ночи за окуляром телескопа. «А вот еще. Подумайте, какая неожиданность!..» – говорил он, отыскав среди звезд очередную новинку. Звезд много. И была реальная опасность, что сюрпризы никогда не кончатся. Однако начиная с XX века отношение к сюрпризам стало иное. Каждая звезда должна не столько пополнять реестр удивительного, сколько приближать людей к познанию истины. Подтверждать или отрицать теоретические построения, гипотезы.
«Король умер, да здравствует король!» – так звучал некогда откровенный лозунг фарисеев-роялистов. XX век позволяет поставить вместо имени короля Наблюдательнуюастрономию. Классификация и новые методы наблюдения породили «нового короля» – астрономию Экспериментальную. Ну не совсем пусть основанную на опыте, – скажем осторожности ради: квазиэкспериментальную.
Классификация поместила множество звезд примерно одного типа в существенно различные условия. Значит, выбрав определенную последовательность и наблюдая звезды друг за другом, мы тем самым как бы экспериментируем с одной звездой; ставим квазиэксперимент. Вот тут-то и понадобились новые методы исследования, чтобы приблизить результаты наблюдений к точности лабораторных экспериментов. Одним из них явилась фотография. Она сразу повысила точность астрономических наблюдений на целый порядок, то есть в 10 раз.
Фактически фотография вывела астрономию из разряда науки-искусства в разряд строгой науки. И как парадоксально звучит, что роль одного из «отцов» астрофотографии, положившего серьезный предел участию любителей в астрономическом прогрессе, сыграл человек, не имевший не только специального, но даже никакого систематического образования! Его имя – Эдвард Эмерсон Барнард.
Родился он в небольшом американском городке Нашвилле штата Теннесси в 1857 году. Семейство Барнардов вполне могло бы возглавить современное движение против бедности. Они пребывали в такой нужде, что девятилетний Эдвард, походив два месяца в школу, вынужден был поступить осветителем в ателье местного фотографа. На заре жизни этой непризнанной до сего дня музы обязанности осветителя были не сложными: следить за Солнцем, направляя на него большую камеру увеличителя. Ведь Солнце тогда было единственным источником света в ателье.
Творческой или, на худой конец, занимательной такую работу не назовешь. Стоило упустить Солнце, как вместо обещанного цента появлялся подзатыльник. Мальчик много читал. Как-то в руки ему попала книжка Тома Дина «Астроном-практик». Историки считают, что именно она положила начало сперва увлечению, а потом и профессии Барнарда.
В конце концов, когда ему надоело непрерывно следить за Солнцем, он по примеру предприимчивых американцев сконструировал примитивную экваториальную установку с механическим приводом. Теперь камера двигалась за Солнцем автоматически. И у парня освободилось время для чтения.
В двадцать лет, скопив денег, он покупает свой первый 5-дюймовый телескоп и скоро получает первую премию в 200 долларов за открытие новой кометы. (Неплохое средство поощрения любителей науки!) После того как Эдвард несколько раз подряд подписал чеки на сумму в 200 долларов, его пригласили работать на обсерваторию. Из любителя Барнард превратился в профессионала-астронома. Впрочем, ателье нашвиллского городского фотографа не прошло для него бесследно.
Начало XX века Эдвард Эмерсон Барнард встречает в хлопотах по совершенствованию аппаратуры для фотографирования Млечного Пути. Пожалуй, эта работа и оставила его имя в истории астрономии. Не имея возможности приобрести систематические знания, он до конца своих дней оставался наблюдателем-практиком, усовершенствовавшим и приспособившим великое множество фотоаппаратуры для астрономических целей.
В Йеркской обсерватории памятью об этом едва ли не последнем могиканине из любителей-профессионалов астрономов сохранена пачка фотографий Млечного Пути. Последняя серия снимков Барнарда сделана в 1925–1926 годах. Сейчас есть фотографии лучше. Тем более что все 50 отпечатков полувековой давности безнадежно испорчены круглой дырой в середине – следом от пули. (Хотя, с другой стороны, может быть, именно этот недостаток и сохранил им жизнь и почет в обсерваторном архиве?) Дело в том, что грузовик, на котором ехали злополучные фотографии в чикагское издательство, попал в перестрелку. Читатель, знакомый с историей, скажет: «Позвольте, но на территории Америки в те годы не было войны». Совершенно справедливо. Американцы уже давно предпочитают упражняться в военном деле вдали от собственного дома. И все-таки фотографии Барнарда попали в зону боевых действий. Только войну вели между собой не регулярные армии, а… гангстерские банды. Пуля гангстера и пробила пачку позитивов. Как знать, не этот ли факт навел в будущем руководителей «почтенных корпораций» на мысль, что наука тоже вполне подходящий объект для внимания «джентльменов удачи»?
Заканчивая раздел, подчеркнем еще раз основную мысль, что классификация и новые методы наблюдений позволили астрономам совершить качественный скачок в своих исследованиях. От бесконечных вопросов «что это?» ученые перешли сначала к робким, а потом все более настойчивым «почему?».
Под знаком «почему?» началось и проходит наше двадцатое столетие.
Глава двенадцатая
Частная жизнь Альфы Центавра
Именно несоответствия приводят к углублению знаний.
Е. Пикеринг
1. Диаграмма Герцшпрунга – Рессела
Большие открытия, как правило, начинаются с больших неувязок. В начале эпохи спектрального анализа все казалось простым и ясным. Чем слабее звезда, тем она холоднее, размер ее меньше, а следовательно, меньше и масса. Это положение логически стройно и не противоречит здравому смыслу. Но звезды упрямы. Они не хотят подчиняться земным законам. Первая неприятность произошла со спутником Сириуса.
Еще в 1844 году великий Бессель заметил, что в движении популярнейшей звезды северного неба наблюдаются какие-то странные вихляния. Будто пес на бегу легкомысленно виляет хвостом и потому все время чуточку сбивается с пути (напомним, что созвездие, к которому принадлежит Сириус, и называется Большой Пес). Впрочем, вряд ли такое сравнение пришло в голову Бесселю. Но то, что траектория искажается не сама по себе, в этом он был уверен. «Так может лететь звезда, которой постоянно кто-то мешает. Крутится вокруг нее и сбивает с пути…» – думал герр математик, принимаясь за расчеты. И скоро вычисления подтвердили его предположения. Они утверждали, что рядом с Сириусом должен лететь достаточно тяжелый спутник! Но его никто не видел.
Прошло восемнадцать лет. Испытывая новый телескоп, американский оптик Альван Кларк углядел-таки слабую звездочку рядом с Сириусом. Это был Щенок. Масса его, по расчетам, должна была быть примерно равна солнечной. Правда, не очень было ясно, почему он так Слабо светится? Сначала предположили, что холоден и потому тускл. Но в 1914 году астроном Адамс, исследуя спектр Щенка, обнаружил, что тот угрожающе похож на спектр самого Сириуса. А значит, и температура и блеск спутника не должны уступать этим параметрам основной звезды, то есть быть выше солнечных. И действительно, скоро выяснилось, что температура на поверхности окаянного Щенка не меньше 8 тысяч градусов. Но тогда почему он так слабо светится?
Так возникла неувязка с его величеством спектральным анализом. Астрономы ломали себе головы над загадкой. Вот как вспоминает об этом периоде президент Королевского астрономического общества в Лондоне Артур Стэнли Эддингтон:
«Сообщение спутника Сириуса после его расшифровки гласило: „Я состою из вещества, плотность которого в 3 тысячи раз выше всего, с чем вам когда-либо приходилось иметь дело. Тонна моего вещества – это маленький кусочек, который помещается в спичечной коробке“».
Что можно оказать в ответ на такое послание? В 1914 году большинство из нас ответило бы так: «Полно! Не болтай глупостей!»
Понадобилось десять лет, чтобы астрономы окончательно убедились в том, что открыт новый класс сверхплотных звезд – белых карликов. Щенок Сириуса научил людей находить во вселенной тела, недоступные непосредственному наблюдению; раскрыл астрономам «глаза разума», подарив человечеству триумфальный праздник «гравитационной астрономии» Ньютона.
После Сириуса невидимый спутник был обнаружен у звезды 61-й Лебедя. О нем сегодня тоже многое известно. И масса, и период обращения, и расстояние до центральной звезды. И тем не менее его тоже никто не видел. У одной из ближайших к Солнцу звезд – звезды Барнарда – предполагается темный спутник всего в полтора раза массивнее Юпитера.
Но мы начали с противоречия в стане спектроскопистов. Как только белые карлики перестали быть сенсацией, астрономы задумались над тем, какую же связь между основными характеристиками звезд теперь считать прочной? На чем основываться, сортируя светила?
Вы чувствуете, как автор упорно гнет свою линию, стремясь во что бы то ни стало вогнать звезды в тесные рамки классификации? И здесь дело не в природном педантизме. После неувязки с белыми карликами только три параметра еще крепко держались друг за друга: цвет излученияи температура поверхностиопределяли спектральный класс звезды. А как быть со светимостью? Могут ли звезды, принадлежащие к одному классу, иметь различную светимость? Или светимость – жесткая характеристика классности далеких светил? Или такой вопрос: насколько неразрывно связаны между собой светимость и поверхностная температура?
Без решения этих задачек начинать разговор о жизни звезд было бессмысленно. И вот…
В 1905 году астроном Э. Герцшпрунг, крупнейший специалист в области звездной астрономии и член нескольких академий наук мира, на Потсдамской обсерватории разделил красные звезды на две группы – большой и малой светимости. Выходило, что и цвет не являлся критерием «сортности». Пусть читателя не охватывает разочарование: «Подумаешь – разделил на две группы! Что в этом особенного?» Дело в том, что решиться разделить единую компанию красных звезд на гигантов и карликов можно, лишь имея определенный взгляд на эволюцию звезд, отчетливо представляя себе жизненный путь, который проходят эти небесные тела за миллиарды лет своего существования. Ведь далекий гигант в окуляре телескопа может почти ничем не отличаться от близкого карлика.
А пять лет спустя за океаном молодой профессор Принстонского университета Генри Норрис Рессел совершенно самостоятельно пришел к тому же выводу: среди красных звезд должны существовать два типа – гиганты и карлики.
К первому относятся молодые звезды, находящиеся в самом начале своей жизни. Плотности их ничтожны, температуры высокие, диаметры большие.
Ко второму – звезды, жизненный путь которых уже позади. Они сжались, стали плотнее перед тем, как погаснуть.
Рессел построил диаграмму, на которой по оси абсцисс отложил спектральные классы, а по ординате – светимости звезд. Картина получилась очень любопытная. Доклад Рессела о диаграмме спектр – светимость впервые был назначен на собрании Королевского астрономического общества 13 июня 1913 года. Дата вдвойне несчастливая. И тем не менее успех сообщения превзошел все ожидания. Астрономы интуитивно почувствовали, что диаграмма должна быть как-то связана с эволюцией звезд, и дружно взялись за ее изучение и доработку.
Рисунок, который вы видите на предыдущей странице, – диаграмма Герцшпрунга – Рессела в современном виде. Много мыслей и труда вложили в нее ученые всего мира, прежде чем она получилась такой. Да вы сами сейчас в этом убедитесь.
Большинство звезд составляют диагональную ветвь, идущую на диаграмме из левого верхнего угла в правый нижний. Это главная последовательность. Над диагональной ветвью расположены полосы, включающие сверхгигантов (I аи I б), желтых гигантов (II и III) и субгигантов (IV). Как это следует из самого названия, все три группы содержат светила, которые по блеску превосходят Солнце.
Ниже главной последовательности – ветвь, включающая в себя субкарлики, открытые американцем Дж. Койпером и советским астрономом П. П. Паренаго. Субкарлики отличаются от красных карликов, заполняющих правый край главной последовательности. Они плотнее и светят ярче, то есть это звезды совсем другого «сорта», чем находящиеся на главной последовательности.
Две нижние ветви состоят из белых карликов. Этих уникальных созданий оказалось довольно много во вселенной. Сейчас их открыто уже более шестидесяти, но астрономы полагают, что даже в нашей Галактике их великое множество, вот только разыскивать их не просто. И еще одно замечание. Несмотря на свое название, не все белые карлики белы. Более холодные из них – желтые, еще более холодные – красные. Есть предположение, что среди них немало даже черных белых карликов, вообще невидимых в оптические телескопы.
Главная последовательность в левой своей части содержит голубые, наиболее горячие звезды-гиганты. Потом идут белые и желтые карлики, в числе которых затерялось наше Солнце, и, наконец, небольшие, слабые красные карлики. Светимость звезд главной последовательности растет с увеличением массы. Это правило выполняется только для данной ветви.
Встречаются звезды и не входящие в основные ветви диаграммы. Слева на диаграмме расположились горячие бело-голубые звезды, открытые советским астрономом Б. А. Воронцовым-Вельяминовым. Основная масса их находится на вертикальной линии О – О.
Невольно возникает вопрос: почему звезды располагаются именно узкими полосами, а не заполняют все поле диаграммы равномерно? Чем объяснить пустые промежутки между ветвями?
Сначала астрономы всего мира считали, что звезды эволюционируют в основном вдоль главной последовательности. Рождаются красными гигантами, которые, сжимаясь, разогреваются, пока не превращаются в голубые гиганты, находящиеся в верхнем левом углу диаграммы. Затем начинают постепенно остывать, спускаются вдоль главной последовательности вправо и превращаются в красные карлики. А потом и совсем переходят на нижнюю последовательность карликов вообще.
Диаграмма Герцшпрунга – Рессела появилась одновременно с моделью атома Резерфорда, и нужно было время, чтобы люди освоились с новым подходом к знакомым явлениям. До разработки Нильсом Бором атомной теории, до работ Макса Планка ни одно даже самое остроумное предположение астрономов не могло быть доказанным. Это положение было удачно сформулировано остроумным Адамсом: «Могли ли мы надеяться понять поведение вещества в удаленных звездах, когда механизм, посредством которого пламя свечи дает свет, был нам еще не известен?»