355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Бич » Природа времени: Гипотеза о происхождении и физической сущности времени » Текст книги (страница 15)
Природа времени: Гипотеза о происхождении и физической сущности времени
  • Текст добавлен: 3 октября 2016, 22:34

Текст книги "Природа времени: Гипотеза о происхождении и физической сущности времени"


Автор книги: Анатолий Бич



сообщить о нарушении

Текущая страница: 15 (всего у книги 21 страниц)

с ΔtSt =V/H (3.3)

Анализ этого уравнения показывает, что V зависит от расстояния, которое преодолевает свет за время Δt, т. е. от cΔt (и оттого, как замедляется за это же время темп времени St).

Иными словами, это означает, что К зависит только от расстояния, на котором от Земли находится галактика, ведь – это момент времени в настоящем (в наше время) и потому для всех событий, которые мы фиксируем относительно Земли, эта величина постоянная, т. е. с Δt и St; зависят только от t1

Так что же открыл в 1929 г. Эдвин Хаббл?

Он показал, что кажущаяся скорость удаления от Земли далеких космических систем зависит прежде всего от расстояния до объекта.

А от этого, т. е. оттого, сколько времени фотон был в полете, и зависит, на какую величину замедляется время и, следовательно, какова будет величина красного смещения.

Хаббл опередил нас на 70 лет… Он открыл, по существу, что красное смещение зависит от замедления времени, ибо показатель красного смещения определяется зависимостью:

Z= ΔtSt, (3.4)

т. е. Z зависит только от того, сколько времени фотоны были в полете, и оттого, насколько за это время изменился темп времени Вселенной (St).

В свою очередь, St зависит оттого, с какой интенсивностью и по какому закону изменяется во Вселенной соотношение ее внутренней энергии (или энергии излучения) и массы вещества (или плотности энергии вещества).

Что касается численной величины St, то из уравнения (3.4) она может быть легко определена, если для ряда космических объектов окажутся известны показатели красного смещения и расстояния до них, но, конечно, определенные любым способом, независимым от доплеровского Z (На роль таких объектов, вероятно, подходят пульсары – для них как будто умеют определять расстояния без использования Z).

Вот какое выдающееся открытие сделал Хаббл, но трактовал его неверно (да простят меня астрофизики…).

И тут специалисты должны с возмущением нас остановить, а после обретения дара речи сказать: «Хорошо, согласимся на секунду, предположим, что красное смещение – это следствие вселенского замедления времени, но как же тогда объяснить, что в спектрах излучения некоторых галактик обнаруживается не красное, а синее смещение? Что же, время то замедляется, то ускоряется?»

Нет, конечно же, нет! В масштабах Вселенной время только замедляется. В отдельных локальностях – у конкретных материальных систем собственное время может и замедляться, и ускоряться, и оставаться неизменным, и все это при участии, в общем случае, таких различных факторов, как скорость, внутренняя энергия или гравитация. И, конечно, местные изменения темпа времени, естественно, должны налагаться на вселенский процесс замедления времени.

Что касается синего смещения, то действительно, у небольшой части ближних к нам галактик наблюдается такой эффект.

Мы не должны забывать, что все тела Вселенной находятся в движении относительно друг друга. Среди галактик есть такие, что сближаются с Землей. Например, галактика с красивым названием Туманность Андромеды летит навстречу нам со скоростью 300 километров в секунду.

В этом и подобных случаях эффект Доплера (который, конечно же, никто отменить не в состоянии) перекрывает эффект от хроносомного красного смещения. Недаром все галактики с синим смещением – это ближайшие к нам звездные системы, ведь хроносомное красное смещение на близких расстояниях проявляется слабо, очень слабо или совсем не проявляется. (Обратите внимание на любопытное совпадение: также, как и у эйнштейновских сил отталкивания, эффект от снижения темпа времени усиливается с увеличением расстояния.)

Допустим, согласится оппонент, но ученые еще установили, что чем меньше светимость звезд, тем с большей скоростью они от нас «убегают». Тут в чем дело? Этот контраргумент совсем слабый. Понятно, что светимость звезд зависит от различных факторов: от массы звезды, от ее размера, от наличия в ней тяжелых металлов… Но, при всех прочих равных условиях, слабее светит тот объект, который находится дальше от Земли. Чем более продолжительное время фотоны находятся в полете, тем больше увеличиваются длины волн в связи со вселенским замедлением времени. Таким образом, чем дальше объект, тем значительнее хроносомное красное смещение и тем больше иллюзорная скорость иллюзорного удаления от нас космического объекта.

И тут грамотный противник нашей гипотезы приведет едва ли не самый грозный довод против нас. И конечно же, это реликтовое излучение, которое как будто бы прямо свидетельствует о том, что был Большой взрыв, и, следовательно, о том, что в результате взрыва галактики разлетаются. В самом деле, реликтовое, или фоновое, излучение было экспериментально обнаружено. Причем его открытие не лишено интриги.

«Ученые давно подозревали, что в современную эпоху должны остаться следы» ранней горячей стадии развития Вселенной в виде электромагнитного излучения… с низкой температурой. По существу, такое предсказание американский ученый Гамов с коллегами сделали еще в конце 40-х годов… Довольно любопытно, что предсказание Гамова никто не принял всерьез…

В начале 60-хгодов к тем же выводам, что и Гамов, пришли… физики из Принстона. Однако первой реликтовое излучение зарегистрировала не принстонская группа. Открытие произошло случайно в начале 1965 г. Его сделали сотрудники научно– исследовательской фирмы «Белл телефон лабораторис» в Холмделе (шт. Нью-Джерси, США), когда пытались определить величину «радиошума Галактики». На оборудовании, созданном сугубо для коммерческих целей, было сделано выдающееся научное открытие.

Большинство астрофизиков сегодня убеждены, что открытие (изотропного фонового излучения с температурой 3,5 °К) служит прямым доказательством того, что в прошлом произошел Большой взрыв» {50}.

Проф. Нарликар пишет, что не все согласились с тем, что фоновое излучение – это обязательно «след» Большого взрыва, и приводит несколько альтернативных гипотез. Часть из них основана на предположении, что «фонить» могут частицы межгалактической пыли либо молекулы газа, или альтернатива даже увязывается с «испарением маленьких черных дыр», но, кажется, все эти объяснения не подвергают сомнению саму неизбежность Большого взрыва.

Завершает свой обзор альтернативных предложений Нарликар так: «Любая физическая модель, которая претендует на то, чтобы объяснить происхождение микроволнового фонового излучения, должна количественно объяснить его сегодняшнюю наблюдаемую интенсивность» {50}.

Сегодня считается общепринятым, что открытие реликтового излучения – это последний крупный и решающий мазок, завершивший стройную картину модели расширяющейся Вселенной.

И конечно, фоновое излучение – это очень сильный аргумент против нас. Я, наверное, просто был бы в панике, если бы заранее и совершенно случайно не был готов… возражать. Мне просто повезло прочитать случайно то, что многие прочитают только сейчас.

Я с удовольствием предоставляю слово проф. Тасманийского университета из Австралии Сэмюелю Уоррену Кэри {51}: «Реальное существование фонового радиоизлучения Вселенной доказано (но. —А.Б.), его связь с исходным Большим взрывом остается только умозрительной. Я же считаю, что фоновое излучение – это неизбежное проявление того, что получило название парадокса Ольберса. [30]30
  30 Генрих Вильгельм Ольберс (1758–1840), бременский физик и астроном-любитель, открыл несколько астероидов и комет.


[Закрыть]

В 1826 г. Ольберс обратил внимание на один парадокс (о нем знали еще в XVI веке, например Томас Диггере. – А.Б.): если бы звезды были распределены в бесконечной Вселенной равномерно, то луч зрения в любом направлении обязательно натыкался бы на звезду и все небо было бы залито ярким светом. Поглощающее межзвездное вещество не могло бы защитить нас, так как в конечном счете оно излучало бы столько же, сколько получало. Однако этого нет, в чем тут дело?»

Кэри продолжает: «Именно Хабблу принадлежит открытие, что галактики разбегаются со скоростями, пропорциональными их расстояниям от нас… В самом деле, свет самых далеких из наблюдаемых галактик смещается ко все более длинным волнам за пределы красного конца видимого спектра в инфракрасную область. Но на таком удалении они становятся уже такими тусклыми, что не различимы в оптический телескоп, а различать еще более удаленные галактики оказывается не под силу и радиотелескопам – Вселенная как бы исчезает.

Это связано только с ограничениями нашей техники наблюдений… Промежутки между световыми лучами, приходящими к нам от отдаленных галактик… становятся все меньше и меньше, и удаляющееся облако галактик превращается в микроволновую однородную завесу. Это и есть сплошной светящийся небосвод по Ольберсу, только не ослепительный и обжигающий, а как фоновое излучение… с температурой менее 3 К. Это излучение идет от обширного облака галактик, столь тесно расположенных в поле зрения, что они не разрешаются антенной. Они находятся от нас на самых разных расстояниях и имеют различную величину красного смещения, поэтому их общее излучение должно быть однородно распределенным по всему спектру и, следовательно, быть таким же, как излучение черного тела». Проф. У. Кэри поэтически завершает: «Я называю эту узкую «щель», позволяющую заглянуть в самые отдаленные области Вселенной, «окном Ольберса» {51}.

Прекрасное объяснение, и, если мы заменим в нем взаимное удаление галактик на замедление темпа времени во Вселенной, то все встанет на свои места. Фоновое излучение образуется благодаря тому, что от самых отдаленных галактик свет неразличим нами как отдельные излучения – это сплошной фон. Ну а то, что, чем дальше галактика, тем больше красное смещение, это, как мы понимаем, связано с различными темпами времени во Вселенной в различные космологические эпохи (чем дольше летит фотон, тем в более отдаленную эпоху он начал свой путь, и т. д.).

Будем считать, что это альтернативное объяснение – еще один кирпичик, еще один вклад в строительство, в результате которого, может быть, когда-нибудь модель линейно расширяющейся Вселенной будет заменена на модель Вселенной с линейно (?) замедляющимся временем.

Есть, однако, два очень непростых момента…

Как только мы начинаем склоняться к признанию модели стационарной Вселенной, так сразу же вновь возникает вопрос о стабильности Вселенной. Причем считается, что эта проблема актуальна для любой модели нерасширяющейся Вселенной. И для той, в которую верил Ньютон, и для Вселенной Эйнштейна (до 1917 г.).

Размышляя над этой проблемой, я однажды вдруг поймал себя на мысли, которая вряд ли делает мне честь. Я подумал тогда: а есть ли вообще проблема? Не надумана ли сама проблема? Не сушили ли свои светлые головы «лучшие умы» над решением задачи, которая не стоит того?

И конечно же, я понимаю, что думать так не очень хорошо, это значит, что я не вижу в проблеме чего-то, что видели Ньютон, Эйнштейн и сотни специалистов. Они видели, и поэтому мучились, ну а мне не дано. Ситуация в общем-то совершенно банальная.

Но давайте все-таки вместе пройдем по пути моих сомнений.

И Ньютон, и Эйнштейн (и другие) полагали, что если во Вселенной нет сил, которые бы нейтрализовали силы всемирного тяготения, то Вселенная обречена – она тогда просто обязана очень скоро за счет взаимного притяжения масс сбиться в кучу.

Как вы помните, Ньютон полагал, что этого не происходит потому, что каждое тело испытывает притяжение от всех других тел Вселенной. Атак как массы распределены равномерно (в больших масштабах), то общая составляющая сил, действующих на любое тело, уравновешена и по силе, и по направлению.

Слабость этого замечательного объяснения, мне кажется, в том, что «все массы Вселенной» находятся где-то далеко, а некоторые тела – близко, и вот эти относительно близкие объекты и должны были бы со временем соединиться, что, в свою очередь, дало бы начало новому объединению, т. е. стабильность вряд ли сохранилась бы надолго.

Эйнштейн вынужден был ввести в свое уравнение «мифические» силы отталкивания. И все это из опасения, что без неких сил, противостоящих всемирному притяжению, все тела попадают друг на друга…

Но в том-то и дело, что все тела Вселенной на самом деле только тем и занимаются, что падают, – все и всегда. Под действием первоначального импульса, не имеющего ничего общего ни с Большим взрывом, ни с божественным первоначалом, все тела падают, и силы, сообщившие им импульс и направления, самые разнообразнейшие, и действуют они в любые произвольные моменты времени и в произвольных направлениях. Во Вселенной нет низа и верха: куда тело толкнул импульс, туда оно и падает. Но, падая, оно обладает массой-энергией, а следовательно, инерцией («второй закон Ньютона можно толковать как правило измерения масс, а масса – это количественная мера инертности тела»).

Так вот, динамические катаклизмы и наличие инерции у всех движущихся тел и создают то самое противодействие всемирному тяготению, которое так хотелось обнаружить «лучшим умам». (В этом моем утверждении и кроется непонимание чего– то «другого», что понимали великие физики.)

Все тела падают, но падать – это еще не значит упасть. Каждое тело, оказавшись в поле тяготения другого, более массивного тела, может либо действительно «упасть» на него, либо по инерции преодолеть силы притяжения и пролететь мимо, либо оказаться захваченным этим полем и начать вращаться вокруг него, что во Вселенной и происходит. За миллиарды лет большая часть «тех», кому суждено было упасть, уже «упали». Большинство образовавшихся систем находятся во временно стабильном состоянии и охвачены разного рода вращениями. Эти вращения и мешают Вселенной быстро сколлапсировать. Инерция и конечные центробежные силы как следствия динамических процессов – это и есть альтернатива всемирному притяжению.

Но, все-таки, – возразите вы, – никакая инерция не способна навсегда удержать на орбите, например, Луну. Рано или поздно стабильность нарушится, и она… улетит в космос или упадет на Землю. Возможно. Ну и что из этого? Пусть улетает или падает, пусть даже и Земля еще через миллиарды лет упадет на Солнце или улетит от него, а Солнечная система столкнется с туманностью Андромеды. Что из этого? Ведь Вселенная огромна, и если в одном месте тела «падают» друг на друга, то в другом, наоборот, взрываются, как сверхновые, или испаряются, как черные дыры. Посмотрите на чудесные снимки Крабовидной туманности… Вероятно, на многие миллионы световых лет уже разлетелись нейтрино, электроны, атомы тяжелых металлов и, может быть, обломки вещества, а ведь это остатки звезды и… планет, а то и разумных существ. И возможно, эти существа были столь разумны, что очень любили по ночам смотреть на звездное небо и рассуждать об опасности сил всемирного притяжения… А теперь летят в последний путь с чудовищной скоростью 1500 км в секунду.

Возможно, мне скажут так: «Вселенная огромна, где-то массы объединяются, и это как бы предпосылки к коллапсу, а где-то плотные тела превращаются в пыль, газ, излучение, и это, конечно, противодействие коллапсу». «Но, – возразят мне, – все дело в том, что это не гарантирует баланса сил (процессов, явлений) и, следовательно, не гарантирует постоянства стабильности, т. е. вечной стабильности».

Если вы скажете что-либо подобное, настанет моя очередь долго и внимательно смотреть на вас. В таких представлениях просматривается какой-то пережиток. О какой вечности идет речь? Не об абсолютной же неизменности! Постоянного ничего не может быть, любое явление (процесс), однажды начавшись, обязательно – рано или поздно, через долю секунды или через миллионы световых лет – обязательно либо само себя исчерпает, либо прекратит свое существование под влиянием внешних воздействий. Но это с одной стороны, а с другой – материю (энергию) уничтожить нельзя. (Можно только переместить с одного места на другое.)

А вывод из всего этого только один: Вселенную нужно рассматривать как систему, находящуюся в динамическом временном равновесии, она будет существовать, вероятно, вечно, но будет и вечно менять формы своего существования, переживая в своей эволюции такие пороговые превращения, которые будут делать ее непохожей на прежнюю, как непохожи лед на воду, вода – на пар, пар – на элементарные частицы или как цветущий персиковый сад непохож на электромагнитное поле, – они отличаются, но ведь и то, и другое, и… пятое – это материя.

Так о какой же стабильности Вселенной может идти речь? Только о стабильности относительной, ограниченной хоть и гигантскими, но определенными рамками времени, только о стабильности, при которой Вселенная, следуя какой-то тенденции, неизбежно и неуклонно изменяется. Напрасно «лучшие умы» искали альтернативу тяготению, она есть, и в то же время она не нужна.

Изменение Вселенной также неумолимо и фундаментально, как… энтропия или как замедление времени, которые, в свою очередь, вероятно, являются только частными проявлениями еще более глобальной тенденции.

Сегодня концепция стационарной Вселенной совершенно подавлена величием концепции расширяющейся Вселенной. По – давлена, но не уничтожена. Позвольте привести только одно альтернативное, но авторитетное мнение: «Большой взрыв… – просто вымысел, фантазия. Как и большинство моделей Вселенной, данная концепция принимает в виде аксиомы, что все ее вещество существовало с момента возникновения. Что свидетельствует об этом? Ничто: это совершенно необоснованное допущение. Миф о Большом взрыве надо отвергнуть и по более серьезной причине. Согласно этой теории, вся масса целой Вселенной, т. е. сырье для последующего построения 100 миллиардов галактик, появилась мгновенно на пустом месте – из ничего. Это нарушает первую аксиому физики – закон сохранения… Любой вопрос о том, что предшествовало этому началу или какова его природа, уже не рассматривается физикой, и она не может дать на него ответ. Законы физики появились вместе с рождением Вселенной, но эти законы не рассматривают сам акт творения. Физика уклоняется от проблемы творения, пряча его как сор под половик… Такая физика не имеет корней. Я считаю это неприемлемым. Для меня законы природы, в том числе законы сохранения, должны быть универсально справедливы…» {51}.

И совсем последний (надеюсь) упрек, который можно предъявить мне. Я, выдвигая гипотезу о замедлении времени в масштабах Вселенной, воспользовался рассуждениями проф. Нарликара, а ведь он исходил из того, что Вселенная расширяется. Получается, я сделал вывод, исходя из предпосылок, которые этим же выводом и отвергаются. И тот, кто в этом меня упрекнет, будет, конечно, прав. Но эту ошибку «легко» исправить. Забудем о Большом взрыве и о «разбегании» галактик. По существу, Нарликар говорил о том, что во Вселенной плотность энергии излучения уменьшается быстрее, чем уменьшается плотность вещества. Для того чтобы обосновать такое явление, совсем не обязательно, чтобы первоначальная сверхплотная частица взрывалась.

Достаточно возникновения новых масс при стабильном превышении плотности энергии вещества над плотностью энергии излучения. Достаточно устойчивой тенденции относительного снижения энергонасыщенности Вселенной. Это не значит, что должен нарушаться закон сохранения энергии. Просто с течением времени часть энергии переходит в наиболее консервативную фазу своего существования – в вещество (в массу). Даже в такой материальной системе, как обозреваемая Вселенная, материя по какой-то причине может переходить из одного состояния в другое.

Возможно, снижение энергонасыщенности Вселенной следует из закона возрастания энтропии… «смысл его в том, что свободная пригодная для использования энергия может только уменьшаться. И это характерное свойство нашего мира…»{43}

Завершая подраздел, должен сказать, что ученые и раньше предпринимали попытки найти альтернативное доплеровскому объяснение красному смещению. К этому активно подталкивала надежда разрешить многие труднообъяснимые факты в поведении некоторых космических объектов. В 70-е годы поток альтернативных предложений практически иссяк, но проблемы остались.

Например, ученые могут, «определив массу и размер галактик по свечению звезд, найти их потенциальную энергию. Можно по красным смещениям определить скорости звезд, входящих в состав галактик, проблема, однако, в том, что обычно эти скорости превышают допустимое значение величин, при которых галактики существуют как гравитационно связанные системы.

Отсюда следует вывод, что либо галактики разлетаются, разрушаясь у нас на глазах, либо неверно были определены звездные массы. Для того чтобы системы оставались связанными, их массы должны быть больше в 5 или 10 раз.

И ученые активно включились в поиск скрытых масс, предполагая, что это могут быть и нейтрино, и черные дыры, и объекты с массой менее 0,1 массы Солнца, и пр., пр. Как пошутил американский физик Дж. Силк, поскольку пока о скрытой массе ничего не известно, кроме того, что она есть, она может быть чем угодно, даже состоять из журналов «Астрофизик джорнэл».

Вы понимаете, в чем тут дело? Скорости звезд, определенные по доплеровским красным смещениям, ошибочны, ибо при этом не учитывается в их красном смещении доля хроносомного красного смещения. А она есть – сколько процентов, 100 или меньше, – это другое дело.

Нужно, конечно, искать скрытые массы. Но, даже обнаружив неведомые массы, вряд ли удастся обойтись без мало аргументированных допущений – противоречия вновь проявят себя. А некоторые наиболее энергонасыщенные галактики тем временем будут по-прежнему «разлетаться, разрушаясь у нас на глазах», и только по одной причине – завышено Z.

Возможны два варианта. Если Вселенная расширяется и одновременно темп ее времени понижается, то фиксируемое сегодня красное смещение порождено одновременно двумя этими явлениями. Тогда показатель красного смещения фактически состоит из суммы доплеровского и хроносомного показателей (и, соответственно, скорости звезд в галактиках должны быть уменьшены). Если Вселенная стационарна, то показатель красного смещения является только функцией вселенского замедления времени и расстояния до объекта.

В этом плане очень характерны многие парадоксальные проявления квазаров.

В1963 г. Голландский астроном Мартин Шмидт отождествил спектры наблюдаемых уже некоторое время загадочных объектов с обычными линиями водорода, кислорода и магния, только необыкновенно сильно сдвинутых в красную сторону. Понятно, что «согласно современной космологической гипотезе, это могло означать только одно – чудовищные расстояния до объектов и огромные скорости их удаления».

С этого момента начались у астрономов проблемы с квазарами. Например, поскольку мы их наблюдаем, их светимость должна быть больше светимости самых больших галактик, но в то же время яркость квазаров оказалась переменной, а это значит, что размеры их всего несколько световых недель, т. е. это довольно компактные образования, расход энергии у которых должен был бы быть столь высок, что квазары должны были бы полностью превращаться в излучения менее чем за 100 тысяч лет. (И это при том, что масса их в миллионы раз больше массы Солнца.) Однако согласно современным космологическим представлениям квазары стары, как Метагалактика. (Это противоречие ученые не могут убедительно объяснить в течение почти 37 лет.)

Парадоксальными, т. е. необъяснимыми или плохо объяснимыми, представляются сегодня свойства некоторых квазаров и активных ядер отдельных галактик.

Объект 3C273 движется со скоростью «всего» 0,158 с, т. е. 48*103 км/с, а ведь скорости звезд в галактиках не могут превышать 103 км/с, ибо уже при такой скорости объект покидает галактику. Красное смещение Z>2 не редкость для квазаров: максимально известное Z = 3,378 принадлежит квазару PKS 2000– 330. При этом скорость «убегания» этого объекта близка к скорости света – 0,88 с[31]31
  31 В литературе встречаются свидетельства, что определение скоростей отдельных звезд в некоторых квазарах дает порядок величин около 10 с.


[Закрыть]

Для объяснения этих и других парадоксальных явлений у квазаров и некоторых ядер галактик были выдвинуты различные гипотезы, например наличие у квазаров магнитного поля определенной конфигурации и ориентации относительно наблюдателя и постоянный выброс из центра квазара околосветовых электронов, излучающих узконаправленный на Землю луч света. Сам квазар при этом предполагается невидимым.

Вы видите, сколько нужно напридумывать специальных условий, чтобы объяснить парадокс?

Или гипотеза о том, что квазаров как таковых вовсе и нет, что это просто обычные галактики, между которыми и Землей находится массивное тело, гравитационное поле которого искажает изображение галактики и, тем самым, увеличивает реальную яркость квазара в несколько раз.

Открытие парных квазаров не облегчило жизнь астрономам – появились противоречия, связанные с корреляцией их свойств.

Возникают новые объяснения, но появляются и новые противоречия (и старые сомнения), а квазары, между тем, как бы продолжают лететь почти со скоростью света и как бы «продолжают разрушаться у нас на глазах», и активные ядра галактик продолжают улетать из своих галактик. И вот, что показательно (и чего никак не могут объяснить астрофизики), квазары и некоторые ядра галактик, «убегая» из своих гравитационно-связанных систем, летят с околосветовыми скоростями почему-то только в одном направлении – прочь от Земли. И об этом как будто свидетельствуют огромные величины хаббловского (доплеровского) красного смещения. А между тем, вследствие, как считают ученые, огромных скоростей, а значит, и огромных кинетических энергий, присущих этим загадочным созданиям, они должны были бы вылетать из своих систем в любом произвольном направлении. В том числе и по направлению к Земле. Но если так, то наряду с красным смещением участи квазаров и активных ядер галактик должно наблюдаться не красное, а синее смещение. Ничего подобного, однако, за 37 лет ученые так и не обнаружили. Словно все «они» назло нам сговорились улетать только в направлении от Земли. И это еще один неразрешимый парадокс.

А мёжду тем, с позиций нашей гипотезы объяснение есть, причем относительно простое. В рамках представлений о локально– когерентном времени квазары и подобные объекты не находятся на чудовищных расстояниях – на пределе наблюдаемой Вселенной и не являются древнейшими созданиями, а следовательно, не летят с околосветовыми скоростями.

Беда астрономов в том, что, скованные по рукам и ногам единственно узаконенным объяснением красного смещения – доплеровским, они вынуждены для обоснования ложной предпосылки подыскивать все новые и все более изощренные допущения.

Более правдоподобное объяснение заключается в том, что квазары (и ядра некоторых галактик) обладают огромной внутренней энергией и, соответственно, темп их собственного времени огромен. Потому и доля хроносомного эффекта в красном смещении их спектров столь значительна по сравнению с красным смещением их равноудаленных соседей(см. формулу 3.1).

Фотоны, излучаемые столь активными космическими объектами в связи с огромной кинетической энергией, обладают огромной инертной массой. В следствие этого они значительно ощутимее участвуют во взаимодействиях (в том числе – гравитационных) по сравнению с менее тяжелыми фотонами, излучаемыми относительно спокойными телами. Они быстрее и значительнее уменьшают амплитуды своих колебаний (уменьшается частота). Соответственно, быстрее и значительнее увеличиваются длины волн. Возможно, в этом и заключается физический смысл появления аномально больших величин красного смещения в спектрах излучения квазаров. В этом причина парадоксальности их кажущихся свойств.

Предлагаемая гипотеза позволяет расширить круг объясняемых явлений и среди ближайших к нам космических объектов. Вот что пишет Ю. Белостоцкий: «…на известных нам планетах Солнечной системы темп течения времени, вероятно, может характеризоваться темпом (скоростью) течения каких-либо реальных процессов. В этой связи представляет интерес сообщение о результатах исследования американскими космическими аппаратами Венеры и Марса. Обнаружено, что на Венере темп процесса выдачи телеметрической информации резко замедлен, а на Марсе скорость течения химических реакций резко увеличена. «Например, приводятся данные о том, что «реакции, которые на Земле длились две недели, здесь завершились за двое суток!» {22,23}

С позиции нашей гипотезы сообщения о таких и подобных парадоксах не кажутся необъяснимыми. У различных космических тел может быть различный темп собственного времени. Об этом наглядно свидетельствует анализ формулы (2.1).

А в частности, замедленный ход времени на Венере, вероятно, связан с тем, что Венера является единственной из ближних планет, осевое вращение которой направлено в сторону, противоположную вращению Солнца и других планет {25}. Грубо говоря, линейная скорость вращения Венеры вокруг Солнца и линейная скорость вращения планеты вокруг своей оси направлены в противоположные стороны, в связи с чем центробежная составляющая силы притяжения Венеры к Солнцу будет мала, а значит, знаменатель (в формуле 2.1) относительно велик. И это одна из возможных причин, почему темп времени на Венере понижен по сравнению с ходом времени на Земле. Существенными причинами, влияющими на собственное время планет, являются также наличие и параметры их собственных магнитных полей.

Откажется ли когда-нибудь человечество от расширяющейся Вселенной? Сегодня это представляется совершенно невероятным, но у человечества в запасе – вечность. И кто знает, на какие зигзаги способна наука будущих столетий. А вот Эйнштейн напрасно так быстро отказался от своей модели стационарной Вселенной, напрасно так быстро уступил напору этих энергичных и талантливых парней: де Ситтера, Фридмана и Хаббла. Ведь он был прав!.. Почти…


    Ваша оценка произведения:

Популярные книги за неделю