355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Лаздин » Электричество в жизни рыб » Текст книги (страница 5)
Электричество в жизни рыб
  • Текст добавлен: 12 октября 2016, 06:48

Текст книги "Электричество в жизни рыб"


Автор книги: Александр Лаздин


Соавторы: Владимир Протасов

Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 5 (всего у книги 6 страниц)

Выделено четыре типа агрессивно-оборонительных сигналов, сопровождаемых соответствующими позами. Разряд постоянной относительно высокой частоты следования импульсов (100—500 в 1 с) расшифровывается воспринявшей его особью как сигнал о наличии соперника и вызывает атаку при его приближении на расстояние не более 20 см. Подобные разряды рыбы этого вида используют также для локации.

Разряд, генерируемый вблизи соперника, воспринимается как сигнал «поддержания атаки». При этом рыбы располагаются боком друг к другу так, что хвост одной находится у головы другой и создаваемые ими поля направлены в область тела с наибольшей концентрацией электрорецепторов. Таким образом достигается наибольшее обоюдное стимулирующее воздействие.

Разряд, прекращающийся на короткий период (менее чем на 1,5 с), а затем возобновляющийся с новой силой,– сигнал, предшествующий броску на соперника. Разряд, прерывающийся на 1,5 с и более,– сигнал, приостанавливающий сражение. Его обычно генерирует более слабая рыба, которая как бы просит пощады. Описанные сигналы были изучены в лабораторных и природных условиях.

Таким образом, электрические рыбы широко используют агрессивно-оборонительные электрические сигналы. Следует отметить, что и неэлектрические рыбы – цихлидовые, макроподы, щуки, окуни, угри и т. д.– сопровождают агрессивно-оборонительные отношения характерной разрядной деятельностью.

Межполовые опознавательные сигналы.Некоторые факты говорят об использовании рыбами электрической сигнализации для различения особей противоположного пола. Так, черноморский звездочет в период размножения генерирует характерные разряды. Их напряжение и длительность увеличиваются у самок по мере созревания гонад, достигая максимума в последних стадиях зрелости; у самцов напряжение разрядов в это время становится минимальным, а длительность – максимальной.

Еще более четко различаются межполовые опознавательные сигналы у шиповатого ската: у самок их напряжение максимально весной и летом (в период нереста), а у самцов – летом и осенью. При этом характер разрядов и самок, и самцов меняется по мере полового созревания рыб.

Биоэлектрические поля стаи рыб.Стайное поведение рыб изучали многие исследователи. Одни вскрывали механизм этого явления, другие пытались понять биологическое назначение стаи в жизни рыб. Однако многие вопросы стайного поведения еще не ясны. Например, какой механизм обусловливает целостность стаи при очень быстрых поворотах? В естественных условиях стаи бывают настолько велики, что объяснить их одновременные повороты зрительной передачей информации невозможно Это нельзя объяснить и звуковой сигнализацией, так как сигналов такого типа у стайных рыб нет.

Сотрудники лаборатории ориентации рыб Института эволюционной морфологии и экологии животных им А. Н. Северцова Академии наук СССР предположили, что биоэлектрические поля используются в стайном поведении. Однако напряженность полей, создаваемых разрядами неэлектрических рыб, незначительна (для большинства видов она составляет около 10 мкВ на 1 см на расстоянии 5—10 см от рыбы) Такие поля неэлектрические рыбы не воспринимают. Если это так, то имеют ли их биоэлектрические поля биологическое значение, или они представляют собой только побочный результат деятельности мышц и нервов?

Интересные данные получены в опытах по выяснению зависимости амплитуды и длительности биоэлектрических разрядов, образующих поля, от количества рыб. Вначале опыты проводились со стайкой тетрагоноптерусов (длина рыбы 5—7 см) в аквариуме размером 11 x 35 x 40 см. Разряды регистрировались с помощью двух пар электродов и шлейфового осциллографа. В аквариум последовательно подсаживали 40 рыб. Чтобы рыбы совершали маневры в стае (одновременные повороты), их пугали резко движущейся тенью. Запись разрядов производилась в диапазоне частот 50—1000 Гц.

Полученные данные показали, что с увеличением количества рыб в стае амплитуда разрядов возрастала, но незначительно [8]8
  При суммировании разрядов значительно возрастает плотность тока.


[Закрыть]
, а длительность значительно: если у одной-двух особей сигнал длился 6—12 мс, то в стае из 40 рыб 150—280 мс. В опытах на молоди угря по мере увеличения количества рыб от 1 до 80 амплитуда электрических разрядов возрастала в 14 раз.

В дальнейшем опыты по суммированию биоэлектрических полей в стае проводили в естественных условиях на гольянах и дальневосточных гольцах. Было подтверждено, что с увеличением количества рыб в стае амплитуда и длительность разрядов возрастают. Именно поэтому разряды стаи рыб удается записать на значительно большем расстоянии, чем разряды одной особи: если разряды одного гольяна можно зарегистрировать на расстоянии до 30—40 см, а гольца – до 1 м, то разряды стаи гольянов из 100 особей фиксируют на расстоянии до 2,5 м, а стаи гольцов – до 3,5 м Естественно, что величина амплитуды суммированных электрических полей зависит не только от количества рыб в стае, но и от активности и синхронности генерирования ими разрядов.

В 1967 г. биоэлектрическое поле стаи атеринок было зарегистрировано на расстоянии 12—15 м. Стая состояла примерно из 500—600 особей, в поперечнике равнялась 2,5 м и двигалась относительно монолитно.

Суммированное биоэлектрическое поле стаи имеет напряженность, соответствующую чувствительности рыб. Повышению чувствительности рыб к полю стаи способствует также длительное непрерывное воздействие на них импульсов суммированного разряда.

Эти данные послужили основанием для гипотезы об использовании рыбами биоэлектрического поля стаи в целях ориентации. Предполагается, что стая с помощью своего биоэлектрического поля осуществляет электролокацию, а также и ориентируется в пространстве благодаря изменению параметров поля при его взаимодействии с магнитным полем Земли. Существование биоэлектрического поля стаи позволяет объяснить ее мгновенные повороты и целостность. Величина напряженности поля стаи, по-видимому, несет рыбам информацию о количестве составляющих ее особей.

В связи с образованием вокруг стай рыб биоэлектрического поля ученых заинтересовала возможность электропеленгации рыб и использования ее в практических целях. Электрические разряды рыб регистрируют двумя способами: по напряжению и току. Электрического угря и ската можно по потенциалам разрядов обнаружить на расстоянии 10 м, африканского слоника – 2 м, а неэлектрических рыб – вьюна и ставриду – 20—30 см; по силе тока рыб можно обнаружить на расстоянии, большем примерно в 5—10 раз. На современном уровне развития техники электропеленгация одиночных промысловых рыб невозможна, за исключением крупных рыб, например осетров, лососей, сомов, создающих биоэлектрические поля большой напряженности. Однако вполне реальна электропеленгация больших стай рыб с высокой напряженностью их электрических полей.

Электрическая навигация

Мысль о возможности ориентации животных по магнитному полю Земли высказал еще в 1855 г. Миддендорф. Имеются данные о чувствительности к магнитному полю Земли насекомых, улиток, водорослей [9]9
  О влиянии магнитного поля на различные организмы. См.: Холодов Ю.Человек в магнитной паутине. М., «Знание», 1972.


[Закрыть]
. Говоря о возможности использования рыбами магнитного поля Земли для целей навигации, естественно поставить вопрос, а могут ли они вообще воспринимать это поле.

На магнитное поле Земли в принципе могут реагировать как специализированные, так и неспециализированные системы. В настоящее время не доказано, что у рыб имеются чувствительные к этому полю специализированные рецепторы.

Как воспринимают магнитное поле Земли неспециализированные системы? Более 40 лет назад было высказано предположение, что основой таких механизмов могут быть токи индукции, возникающие в теле рыб при их движении в магнитном поле Земли. Одни исследователи считали, что рыбы во время миграций используют электрические индукционные токи, возникающие в результате движения (течения) воды в магнитном поле Земли. Другие полагали, что некоторые глубоководные рыбы используют индукционные токи, возникающие в их теле при движении.

Рассчитано, что при скорости движения рыбы 1 см в секунду на 1 см длины тела устанавливается разность потенциалов около 0,2—0,5 мкВ. Многие электрические рыбы, обладающие специальными электрорецепторами, воспринимают напряженность электрических полей еще меньшей величины (0,1—0,01 мкВ на 1 см). Таким образом, в принципе они могут ориентироваться на магнитное поле Земли при активном перемещении или пассивном сносе (дрейфе) в потоках воды.

Анализируя график пороговой чувствительности гимнарха, советский ученый А. Р. Сакаян сделал вывод, что эта рыба чувствует количество протекающего в ее теле электричества, и высказал предположение о способности слабоэлектрических рыб определять направление своего пути по магнитному полю Земли.

Сакаян рассматривает рыбу как замкнутый электрический контур. При движении рыбы в магнитном поле Земли по ее телу в результате индукции в вертикальном направлении проходит электрический ток. Количество электричества в теле рыбы при ее перемещении зависит только от взаимного расположения в пространстве направления пути и линии горизонтальной составляющей магнитного поля Земли. Следовательно, если рыба реагирует на количество электричества, протекающего через ее тело, она может определить свой путь и его направление в магнитном поле Земли.

Таким образом, хотя вопрос об электронавигационном механизме слабоэлектрических рыб еще окончательно не выяснен, принципиальная возможность использования ими токов индукции не вызывает сомнений.

Электрические рыбы в значительном большинстве – «оседлые», немигрантные формы. У мигрантных неэлектрических видов рыб (тресковые, сельдевые и др.) электрических рецепторов и высокой чувствительности к электрическим полям не обнаружено: обычно она не превышает 10 мВ на 1 см, что в 20 000 раз ниже напряженности электрических полей, обусловленных индукцией. Исключением являются неэлектрические рыбы (акулы, скаты и др.), имеющие особые электрорецепторы. При движении со скоростью 1 м/с они могут воспринимать индуцированное электрическое поле напряженностью 0,2 мкВ на 1 см. Электрические рыбы чувствительнее неэлектрических к электрическим полям примерно в 10 000 раз. Это говорит о том, что неэлектрические виды рыб не могут ориентироваться на магнитное поле Земли, используя токи индукции. Остановимся на возможности использования рыбами биоэлектрических полей при миграциях.

Практически все типично мигрирующие рыбы – стайные виды (сельдевые, тресковые и др.). Исключение составляет только угорь, но, переходя в мигрантное состояние, он претерпевает сложный метаморфоз, что, возможно, сказывается на генерируемых электрических полях.

В период миграции рыбы образуют плотные организованные стаи, движущиеся в определенном направлении. Небольшие косячки этих же рыб не могут определить направление миграции.

Почему же рыбы мигрируют в стаях? Некоторые исследователи объясняют это тем, что по законам гидродинамики движение рыб в стаях определенной конфигурации облегчается. Однако существует и другая сторона этого явления. Как уже говорилось, в возбужденных стайках рыб биоэлектрические поля отдельных особей суммируются. В зависимости от количества рыб, степени их возбуждения и синхронности излучения общее электрическое поле может значительно превышать объемные размеры самой стаи. В подобных случаях напряжение, приходящееся на одну рыбу, может достигать такой величины, что она способна воспринимать электрическое поле стаи даже при отсутствии электрорецепторов. Следовательно, рыбы могут использовать электрическое поле стаи в целях навигации благодаря его взаимодействию с магнитным полем Земли.

А как ориентируются в океане нестайные рыбы-мигранты – угри и тихоокеанские лососи, совершающие длительные миграции? Европейский угорь, например, становясь половозрелым, направляется из рек в Балтийское море, затем в Северное море, попадает в Гольфстрим, движется в нем против течения, пересекает Атлантический океан и приходит в Саргассово море, где он размножается на большой глубине. Следовательно, угорь не может ориентироваться ни по Солнцу, ни по звездам (по ним ориентируются во время миграций птицы). Естественно возникает предположение, что, так как большую часть своего пути угорь проходит, находясь в Гольфстриме, он использует для ориентации течение.

Попробуем представить, как ориентируется угорь, находясь внутри многокилометровой толщи движущейся воды (химическая ориентация в этом случае исключается) [10]10
  Химическая ориентация имеет значение для молоди угря и тихоокеанских лососей, когда они в конце своих миграций отыскивают реки (врожденный инстинкт). См.: Райт Р,Наука о запахах. «Мир», 1966.


[Закрыть]
. В толще воды, все струйки которой перемещаются параллельно (подобные потоки называются ламинарными), угорь движется в одном направлении с водой. В этих условиях его боковая линия – орган, позволяющий воспринимать локальные потоки воды и поля давления,– работать не может. Точно так же, плывя по реке, человек не ощущает ее течения, если не смотрит на берег.

Может быть, морское течение не играет никакой роли в механизме ориентации угря и его миграционные пути случайно совпадают с Гольфстримом? Если так, то какие же сигналы окружающей среды использует угорь, чем он руководствуется при ориентации?

Остается предположить, что угорь и тихоокеанский лосось используют в своем ориентационном механизме магнитное поле Земли. Однако специализированных систем для его восприятия у рыб не обнаружено. Но о ходе опытов по выяснению чувствительности рыб к магнитным полям оказалось, что и угри, и тихоокеанские лососи обладают исключительно высокой чувствительностью к электрическим токам в воде, направленным перпендикулярно оси их тела. Так, чувствительность тихоокеанских лососей к плотности тока составляет 0,15*10 -2мкА на 1 см 2, а угря – 0,167*10 -2на 1 см 2.

Была высказана мысль об использовании угрем и тихоокеанскими лососями геоэлектрических токов, создаваемых в воде океана течениями. Вода – проводник, движущийся в магнитном поле Земли. Возникающая в результате индукции электродвижущая сила прямо пропорциональна напряженности магнитного поля Земли в данной точке океана и определенной скорости течения.

Группа американских ученых на трассе движения угря провела инструментальные замеры и расчеты величин возникающих геоэлектрических токов. Выяснилось, что плотности геоэлектрических токов составляют 0,0175 мкА на 1 см 2, т. е. почти в 10 раз выше чувствительности к ним рыб-мигрантов. Последующие опыты подтвердили, что угри и тихоокеанские лососи избирательно относятся к токам с подобной плотностью. Стало очевидно, что угорь и тихоокеанские лососи могут использовать для своей ориентации при миграциях в океане магнитное поло Земли и морские течения благодаря восприятию геоэлектрических токов.

Советский ученый А. Т. Миронов предположил, что при ориентации рыбы используют теллурические токи, впервые обнаруженные им в 1934 г. Механизм возникновения этих токов Миронов объясняет геофизическими процессами. Академик В. В. Шулейкин связывает их с электромагнитными полями в космосе.

В настоящее время работами сотрудников Института земного магнетизма и распространения радиоволн в ионосфере АН СССР установлено, что постоянная составляющая полей, образуемых теллурическими токами, не превышает напряженности 1 мкВ на 1 м.

Советский ученый И. И. Рокитянский предположил, что, поскольку теллурические поля являются индукционными полями с разными амплитудами, периодами и направлениями векторов, рыбы стремятся уходить в места, где величина теллурических токов меньше. Если это предположение правильно, то в период магнитных бурь, когда напряженность теллурических полей достигает десятков – сотен микровольт на метр, рыбы должны уходить от берегов и с мелких мест, а следовательно, и с промысловых банок в глубоководные районы, где величина теллурических полей меньше. Изучение взаимосвязи поведения рыб с магнитной активностью позволит подойти к разработке способов прогнозирования их промысловых скоплений в определенных районах. Сотрудники Института земного магнетизма и распространения радиоволн в ионосфере и Института эволюционной морфологии и экологии животных АН СССР провели работу, в которой при сопоставлении уловов норвежской сельди с магнитными бурями была выявлена определенная корреляция. Однако все это требует экспериментальной проверки.

Как уже говорилось выше, у рыб существуют шесть систем сигнализации. А не пользуются ли они еще каким-нибудь чувством, пока не известным?

В США в газете «Новости электроники» за 1965 и 1966 гг. было опубликовано сообщение об открытии У. Минто особых «гидронических» сигналов новой природы, используемых рыбами для связи и локации; причем у некоторых рыб они регистрировались на большом расстоянии (у макрели до 914 м). Подчеркивалось, что «гидроническое» излучение нельзя объяснить электрическими полями, радиоволнами, звуковыми сигналами или другими ранее известными явлениями: гидронические волны распространяются только в воде, их частота колеблется от долей герца до десятков мегагерц.

Сообщалось, что сигналы были открыты при исследовании звуков, издаваемых рыбами. Среди них выделены частотно-модулированные, используемые для локации, и амплитудно-модулированные, излучаемые большинством рыб и предназначенные для связи. Первые напоминают короткий свист, или «чириканье», а вторые – «щебетанье».

У. Минто и Дж. Хадсон сообщили, что гидроническое излучение свойственно практически всем видам, но особенно сильно эта способность развита у хищников, рыб со слаборазвитыми глазами и у охотящихся ночью. Ориентационные сигналы (сигналы локации) рыбы испускают в новой обстановке или при исследовании незнакомых объектов. Сигналы связи наблюдаются в группе особей после возвращения рыбы, побывавшей в незнакомой обстановке.

Что же побудило Минто и Хадсона считать «гидронические» сигналы проявлением не известного ранее физического явления? По их мнению, эти сигналы не акустические, потому что их можно воспринимать непосредственно на электроды. В то же время «гидронические» сигналы нельзя отнести и к электромагнитным колебаниям, по мнению Минто и Хадсона, так как в отличие от обычных электрических они состоят из импульсов, не имеющих постоянного характера и длящихся несколько миллисекунд.

Однако с такими взглядами трудно согласиться. У электрических и неэлектрических рыб сигналы очень разнообразны по форме, амплитуде, частоте и длительности, в связи с чем такие же свойства «гидронических» сигналов не говорят об их особой природе.

Последняя «необычная» особенность «гидронических» сигналов – их распространение на расстояние 1000 м – также может быть объяснена на основании известных положений физики. Минто и Хадсон не проводили лабораторных экспериментов на одной особи (данные таких опытов свидетельствуют, что сигналы отдельных неэлектрических рыб распространяются на небольшие расстояния). Они регистрировали сигналы от косяков и стай рыб в морских условиях. Но, как уже говорилось, в подобных условиях может суммироваться напряженность биоэлектрических полей рыб, и единое электрическое пола стаи удается уловить на значительном расстоянии.

На основании изложенного выше можно сделать вывод, что в работах Минто и Хадсона необходимо различать две стороны: фактическую, из которой следует, что неэлектрические виды рыб способны генерировать электрические сигналы, и «теоретическую» – бездоказательное утверждение, что эти разряды имеют особую, так называемую гидроническую природу.

В 1968 г. советский ученый Г. А. Остроумов, не вдаваясь в биологические механизмы генерации и приема электромагнитных сигналов морскими животными, а исходя из фундаментальных положений физики, произвел теоретические расчеты, которые привели его к заключению, что Минто и его последователи ошибаются, приписывая особую физическую природу «гидроническим» сигналам. В сущности, это обычные электромагнитные процессы.

Электрические рыбы и бионика

Идеи различных изобретений человек, как правило, находил в окружающей его природе. Так, в первых проектах летательных аппаратов копировалось крыло птицы или летучей мыши. К изобретению самозатачивающихся инструментов привело исследование зубов грызунов. Создаются искусственные покрытия для подводных лодок, копирующие кожу дельфина, которая позволяет ему передвигаться в воде с большой скоростью при относительно небольших мышечных усилиях.

Помимо копирования биологического прототипа при конструировании различных систем возможно (и, видимо, наиболее целесообразно) использование самого принципа действия, разработанного природой в процессе эволюции. Работы в этом направлении привели к возникновению одной из самых молодых наук – бионики, в настоящее время быстро развивающейся.

Бионика – это наука о системах, копирующих функции живых организмов, о системах, которым присущи специфические характеристики природных систем или которые являются их аналогами. На практике бионика – это наука об использовании знаний о живых системах при решении тех или иных технических проблем.

Особенности реакций рыб на различные поля электрического тока послужили основой для разработки различных устройств, управляющих поведением рыб. Еще в 1919 г. ученые высказали мысль, что лов рыбы с применением электричества открывает широкие перспективы в ведении прудового хозяйства. Вначале использовалось лишь оглушающее действие электрического тока. В дальнейшем стали применяться агрегаты, привлекающие или отпугивающие рыбу благодаря создаваемым в воде электрическим полям различных параметров.

В настоящее время такие агрегаты с успехом используются на практике в пресноводных водоемах: реках, прудах, озерах, водохранилищах. Один из способов электролова – оснащение обычных сетных орудий лова (например, тралов) электродами, привлекающими рыбу в зону действия орудия. Так работают, например, отечественные электротраловые суда ПЭТС-150Б, ведущие лов на Рыбинском и Цимлянском водохранилищах с 1965 г. Во внутренних водоемах ГДР с 1967 г. применяется электрифицированный трал, в основном предназначенный для лова угря.

Кроме электролова с использованием различных сетей, существует так называемый бессетевой электролов, основанный на использовании анодной реакции рыб для их привлечения, концентрации, частичного обездвиживания в результате электронаркоза. Рыба извлекается из воды с помощью механического устройства или рыбонасоса. Таким образом работает, например, отечественная установка ЭЛУ-1 для электролова, размещаемая на двух лодках С помощью специальной аппаратуры вырабатывается постоянный ток напряжением до 520 В, который поступает на систему электродов (анод и катод), подвешенную в воде. Привлеченную током рыбу выбирают сачками.

Аналогичная установка ЭЛУ-2 отличается тем, что работает на постоянном импульсном токе и может использоваться в водоемах с более широким диапазоном электропроводности воды. Бессетевой электролов рыбы с помощью рыбонасосов впервые был применен на лове камчатских лососевых на реках Озерной и Явиной.

В СССР применяется также батарейный агрегат «Пеликан», предназначенный для лова рыбы, сконцентрированной на глубине 1,5—2 м; его производительность – более 1—2 ц рыбы в час. Аналогичные агрегаты разработаны и в других странах.

В рыбном хозяйстве применяются и так называемые электрозаградители, отпугивающие или останавливающие рыбу. С помощью таких установок рыбу заставляют двигаться в определенном направлении. В этом случае электрическое поле, как правило, неподвижно и расположено поперек движения реки. Рыба, оказавшаяся в зоне действия поля, останавливается или уплывает обратно.

Устройство, создающее электрическое поле для отпугивания акул, разработано в США. Прибор устанавливается на траулере и ежесекундно излучает мощные импульсы длительностью 10 м/с через два буксируемых электрода. Малогабаритная модификация этого прибора, собранного на транзисторах, используется водолазами (электроды помещаются в скафандр). Источником тока в нем служат обычные сухие батареи, емкость которых рассчитана на 8—10 ч работы. Эксперименты показали, что акулы не приближаются к водолазу, снабженному подобным прибором, ближе, чем на 2 м. Прибор собран на транзисторах и заключен в водонепроницаемый корпус из эпоксидной смолы.

Сотрудниками Государственного научно-исследовательского института озерного и речного хозяйства (ГосНИОРХ) разработана электрорыбозаградительная установка, предназначенная для отпугивания рыбы от гидротехнических сооружений: турбин гидростанций, оросительных каналов, в которых рыбы травмируются и гибнут. Установка состоит из большого количества электродов – стальных труб, забитых в грунт. На электроды поступает прерывистый переменный ток.

По такому же принципу работают электрогоны, используемые при лове рыбы. В качестве примера рассмотрим электрогон типа ЭРГ 1/8-4. Он представляет собой однородную систему электродов, поддерживаемых на плаву полиэтиленовыми поплавками. На тележке, движущейся вдоль берега реки, установлен бензиновый двигатель с генератором мощностью 4 кВт, вырабатывающим ток напряжением 230 В. Через преобразователь и трансформатор ток по кабелю длиной 100 м поступает на электроды. Рыбаки, находящиеся по обоим берегам, тянут систему электродов вдоль реки, сгоняя рыбу в невод, установленный ниже по течению. Такой электрогон применяют на водоемах шириной до 50 м и глубиной до 2 м.

Методы лова, основанные на использовании электрических полей, имеют следующие преимущества: они универсальны (их можно применять для лова различных видов рыб с помощью разнообразных орудий лова) и эффективны (обеспечивают избирательность вылавливаемых рыб по виду и размеру, позволяют автоматизировать процессы лова).

Однако электродов в морских условиях находится пока еще в стадии экспериментов. Это вызвано большим расходом энергии даже при использовании полей импульсного тока. Тем не менее электролов морских рыб весьма перспективен, и в данном направлении ведутся многочисленные исследования и разработки. Так, в ГДР создана установка для электролова рыбы в море. Основа установки – импульсный генератор, вырабатывающий электрические импульсы; определены форма и частота, необходимые в различных условиях лова. Они подаются по кабелю на электроды, которыми оснащен трал, и создают электрическое поле. Действие поля распространяется на рыбу, находящуюся в его зоне, и препятствует ее уходу из орудия лова. Мощность импульсного генератора 75 кВт. В зависимости от напряжения электрическое поле может вызывать у рыб реакцию отпугивания или наркоза и даже гибель от шока. Эта установка позволяет вести лов на глубинах до 700 м. Уловы океанских траулеров ГДР, оснащенных такими установками, увеличились в среднем на 30%.

В СССР первые практические результаты бессетевого электролова с помощью рыбонасоса в морских условиях были получены в 1963 г. при ловле сайры. Рыбу сначала привлекали на свет. Затем создавали поле постоянного тока: катодом служил корпус судна, а анодом, к которому сайра подходила в результате анодной реакции,– всасывающие устройства рыбонасоса (рис. 18).

Основные препятствия на пути промышленного освоения такого способа лова – малая зона, в которой можно вызывать у рыб анодную реакцию. Опыты в этом направлении продолжаются, и установки бессетевого лова совершенствуются. Было, например, применено комбинированное воздействие на рыб полей импульсного и переменного непрерывного токов.

В 1971 г. на судне ГДР «Айсберг» специалисты ГДР и СССР проводили испытания устройства для электролова, в котором рыбонасос использовался совместно с сетным мешком (рис. 19). Это позволило вести лов на различных глубинах и отказаться от громоздких шлангов рыбонасоса.

Рис. 18. Схема бессетевого электролова рыбы с применением света

1-3– подводные электрические лампы, 4– шланг рыбонасоса, 5– анод импульсного тока, 6– анод постоянного тока

Широкое промышленное внедрение различных способов электролова в море станет возможным в ближайшие годы.

Большое практическое значение имеет сопоставление биологических систем электролова, используемых электрическими рыбами, с существующими в настоящее время аппаратами промышленного электролова промысловых рыб. Приемы лова, используемые сильноэлектрическими рыбами, характер образуемых или импульсов и полей отработаны в процессе эволюции и, по-видимому, являются оптимальными. Отличие действия электрических полей рыб по сравнению с полями агрегатов, созданных человеком, заключается в следующем Все электроловильные агрегаты характеризуются пассивным режимом работы, т. е параметры образуемых ими электрических полей неизменны. Однако чувствительность рыб разных видов к электрическому току и их реакции на действие электрических полей различны. Разнообразны также результаты воздействия одного и того же электрического поля на рыб определенного вида, но разных размеров. Воздействие на рыб электрических полей зависит, как уже говорилось, от температуры воды, ее электропроводности, содержания кислорода, времени года, физиологического состояния, а также от характера электрического поля.

Рис 19. Схема электролова рыбы с погружным насосом

1– катод,

2– анод,

3– источник импульсного и постоянного тока,

4– рыбонасос,

5– мешок для накапливания

Таким образом, на поведение рыб при действии на них электрических полей влияют многочисленные факторы, которые в процессе лова могут изменяться. Между тем это не учитывалось при разработке существующих генераторов для электролова рыб. В этом отношении природа пока опережает человека. Электрические рыбы, использующие свои электрические поля для тех же целей, «работают» качественно иным образом – в активном режиме.

Все сильноэлектрические рыбы устанавливают активный контакт со своей жертвой (или врагом). Этот контакт осуществляется с помощью различных механизмов; зрения, слуха, осязания на расстоянии (использование органов боковой линии), а также пассивного пли активного (локационного) электрического чувства. Электрические рыбы – угорь, сом, скаты, некоторые звездочеты – на расстоянии следят за поведением своих жертв или врагов и, оценив их и свои возможности, применяют биоэлектрические поля определенной мощности, конфигурации и периодичности излучения. В результате достигаемый эффект бывает, как правило, оптимален. Так, сом, не имеющий электролокационной системы, оценивает свою жертву, активно двигаясь и излучая сильные электрические разряды. Разряды стимулируют жертву, заставляя ее активно двигаться и создавать потоки воды, благодаря чему сом получает информацию о жертве с помощью органов чувств боковой линии. В соответствии с размером жертвы он использует разряды определенного характера.

Таким образом, основное принципиальное отличие искусственных систем электролова от природных – отсутствие контроля над состоянием и поведением объекта лова и управления работой электрогенератора. Иными словами, отсутствуют обратная связь и система управления по заданной программе. Кибернетический подход при разработке электрических устройств для привлечения или отпугивания рыб, несомненно, перспективен. Такие устройства позволят вылавливать рыбу определенного вида и не травмировать других рыб.


    Ваша оценка произведения:

Популярные книги за неделю