Текст книги "Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей"
Автор книги: Александр Панчин
сообщить о нарушении
Текущая страница: 3 (всего у книги 23 страниц) [доступный отрывок для чтения: 9 страниц]
Глава 4
Натуралистическая ошибка. Натуральное и искусственное
Думаю, что все видели современные магазины «органических продуктов», ставшие в последнее время очень популярными и в России, но особенно в США и в Европе. Обычно они характеризуются двумя особенностями: кругленькими суммами на ценниках и широким разнообразием зеленых этикеток на товаре: «натуральный продукт”, “сертифицированный органик», «не содержит ГМО», “100 % БИО", “ЗДОРОВЬЕ", “экопродукт" и так далее. Журналист Леонид Каганов однажды описал, как боязнь новых технологий должна была выглядеть в прошлом.
Поморская артель “Ломоносовъ”. Только кони! Мы доставляем рыбу в столицу, не используя паровозъ!
В основе многих мифов о еде лежит тезис, что все натуральное, существующее в природе, по определению полезно, а все “искусственное", созданное человеком, несет потенциальную угрозу здоровью. Эту логическую ошибку апелляции к природе, или так называемую натуралистическую ошибку, достаточно легко продемонстрировать.
В Соединенных Штатах Америки ежегодно возникает более 40 миллионов случаев пищевых отравлений, из-за которых более ста тысяч людей попадают в больницу и более трех тысяч погибают. Думаю, что в России с количеством пищевых отравлений на душу населения дела обстоят не лучше, хотя надежной статистики я не нашел. В подавляющем большинстве случаев отравления связаны с совершенно натуральными болезнетворными вирусами и микроорганизмами, которые попадают в наш желудочно-кишечный тракт вместе с немытыми овощами, зеленью, сырой рыбой или мясом. Давайте назовем некоторых “друзей”, которых можно подцепить из еды.
Клостридии, вырабатывающие альфа-токсин и ботуло-токсин, патогенные штаммы (болезнетворные разновидности) кишечной палочки, сальмонелла, листерия, шигелла, устойчивый ко многим антибиотикам золотистый стафилококк, вирус гепатита А, норовирусы, энтеровирусы, ротавирусы, патогенные амебы, аскариды и другие круглые черви, а также паразитические плоские черви. Это далеко не полный список совершенно натуральных, встречающихся в природе патогенных организмов, “не содержащих ГМО”. Натуральная сальмонелла обнаруживается в натуральных подгнивших продуктах и вызывает натуральный понос, а иногда и натуральную смерть. С другой стороны, “искусственные” консерванты – вещества, угнетающие рост микроорганизмов, предохраняют продукт от плесени и образования токсинов микробного происхождения.
Компания Odwalla, производившая непастеризованные натуральные соки, оказалась в центре скандала, когда в 1996 году ее продукцией отравилось 67 человек, один из которых умер. Яблочный сок содержал патогенный штамм кишечной палочки. Но отказ от пастеризации (одноразового нагревания жидкости с целью убить микробов) использовался как маркетинговый ход, направленный на любителей “натуральной пищи”.
В 2011 году в Германии случилась вспышка пищевых отравлений, вызванных патогенным штаммом кишечной палочки. Тогда 3950 человек отравились, 53 человека погибли. Расследование показало, что источником инфекции послужила органическая ферма57, 58. Патогенный штамм обнаружили в ростках пажитника, который используется для приготовления многих блюд индийской кухни в качестве приправы. Эпидемиологическое исследование показало, что у тех, кто употреблял этот натуральный продукт, многократно повышался риск кровавого поноса. Мы видим, что органические продукты в данной истории оказались, мягко говоря, небезопасными.
У этого инцидента были достаточно серьезные экономические последствия. Изначально немцы ошибочно подозревали, что источником инфекции являются огурцы, импортированные из Испании, и лишь эти подозрения, впоследствии оказавшиеся ложными, обходились испанским экспортерам, согласно заявлению президента Испанской федерации экспорта фруктов и овощей, в 200 миллионов долларов в неделю. Позже Испания даже отказалась от компенсации в 150 миллионов евро, предложенной Еврокомиссией, заявив, что такая компенсация слишком мала. Отреагировала на эту историю и Россия, которая с июня по июль 2011 года запретила импорт свежих овощей из Европейского Союза.
Анализ ДНК патогенного штамма кишечной палочки показал, что у этой бактерии есть два гена, делающих ее опасной для человека. Благодаря одному гену кишечная палочка вызывает длительный, но не смертельный понос. Другой ген кодирует так называемый токсин Шиги, который вызывает кровавый понос и гемолитико-уремический синдром, характеризующийся болью в животе, рвотой, острой почечной недостаточностью, лихорадкой, а также сонливостью, судорогами и другими признаками повреждений нервной системы. Отравление токсином Шиги смертельно опасно для человека.
Оказывается, что некоторые штаммы кишечной палочки, производящие токсин Шиги, живут в коровах. Коровы, как правило, не чувствительны к токсину, но бактерии, несущие опасные гены, кодирующие токсин, оказываются в навозе. Эти гены могут перенестись в другие виды бактерий, в том числе заражающие людей. Такому переносу генов способствуют вирусы бактерий – бактериофаги. Навоз особенно часто используется на органических фермах в качестве натурального удобрения. Видимо, на органической ферме случилось смешение генов двух бактерий, и получился весьма неприятный для человека патогенный штамм.
Конечно же этот пример не доказывает, что органическая еда, созданная в рамках традиционного сельского хозяйства, опаснее обычной. Такая история могла случиться и на обычной ферме. Я лишь подчеркиваю, что “натуральное” не является синонимом “полезного” или “безопасного”. Мы обращаем так много внимания на всякие странные вещи: содержит ли продукт ГМО, красители и консерванты, натурален ли он, – но при этом забываем о самом главном. Можем ли мы отравиться? От ГМО не умер никто, а от пищевых инфекций умирают тысячи людей в развитых странах. Причем предотвратить заражение в большинстве случаев можно, соблюдая банальные правила гигиены и санитарии, правильно готовя пищу, тщательно промывая фрукты и овощи. Увы, СМИ не спешат пропагандировать полезные идеи, предпочитая просветительским наставлениям надуманные ужастики о “вреде ГМО”.
Производители “органических продуктов” хвастаются тем, что при выращивании продуктов питания предпочтение отдается традиционным удобрениям, которые противопоставляются вредным “химическим” удобрениям. Забавно, что маркировать свои продукты этикеткой “получено с использованием навоза" такие производители не спешат. Навоз, в отличие от химических удобрений, по определению богат различными микроорганизмами, а значит, растения, выращенные методами органического земледелия, могут тоже отличаться разнообразием микроорганизмов.
В 2010 году в журнале Food Microbiology был опубликован сравнительный анализ микробного состава на поверхности салата, который произрастает на обычных и органических фермах в Испании59. Оказалось, что по разнообразию и количеству микроорганизмов салат с органических ферм отличается от салата с обычных ферм: в среднем в нем больше энтеробактерий (группа, в которую попадают кишечная палочка, сальмонелла, шигелла и даже чумная палочка Yersinia pestis), псевдомонад и некоторых других бактерий. В еще одной работе, опубликованной в Canadian Journal of Microbiology, было показано повышенное разнообразие микробов в листьях базилика, выращенного органическими методами60. Авторы обращают внимание на то, что листья базилика часто употребляются сырыми, без мытья и готовки, чтобы не помять хрупкое растение, а значит, могут нести риск пищевых отравлений.
Согласитесь, из этого могла бы получиться отличная страшилка. Представьте заголовок в какой-нибудь популярной желтой газете: “Ученые обнаружили в органических продуктах родственницу чумной палочки!" В статье можно привести правдивые и одновременно наводящие панику и вводящие в заблуждение утверждения: “Как высокое разнообразие микробов в органических продуктах питания скажется на здоровье потребителя, до конца не изучено, и это нужно проверить на нескольких поколениях!" Но попробуем сохранить объективность.
Во-первых, если растения мыть, разницы в составе микрофлоры вы, скорее всего, уже не обнаружите. В упомянутых исследованиях специально сравнивали немытые растения. Во-вторых, кто сказал, что повышенное разнообразие микробов – это обязательно плохо? Есть продукты, качество которых улучшается определенными микроорганизмами: например, качество вина зависит от используемых одноклеточных грибов – дрожжей, перерабатывающих сахар в алкоголь, а кефир получают из молока при помощи молочнокислых и уксуснокислых бактерий и все тех же дрожжей. Значит, с каждым продуктом нужно разбираться отдельно. Что касается энтеробактерий, среди них хватает вполне безобидных представителей, а саму чумную палочку никто конечно же на исследованных фермах не находил. Стоит ли употреблять органические продукты – личное дело каждого, но если вы думаете, что они полезнее исключительно в силу своей натуральности и потому за них стоит платить вдвое, а то и втрое больше, то, увы, вас ввели в заблуждение.
Иллюстрации натуралистической ошибки не ограничиваются опасностью натуральных пищевых патогенов. Натуральная бледная поганка содержит более десятка различных натуральных ядовитых соединений, среди которых наиболее опасным считается альфа-аманитин, приводящий к массовой гибели клеток61. Смерть при отравлении бледной поганкой часто бывает долгой и мучительной. При этом постепенно отключаются почки, печень, легкие. Тем немногим, кому все-таки удается выжить после употребления данного гриба, обычно приходится делать пересадку жизненно важных органов.
Натуральная рыба фугу ядовита, если не приготовить ее особенным способом. При готовке из нее вынимают все внутренности, а мясо тщательно промывают, но не стоит пробовать сделать это дома: одной маленькой рыбы фугу, которая умещается на ладони, достаточно, чтобы отравить несколько человек. Японские повара, желающие готовить эту рыбу, должны пройти экзамен, в том числе съесть собственноручно приготовленное блюдо из фугу, а в древности повар, по ошибке отравивший клиента, должен был совершить ритуальное самоубийство.
Кожа золотой ядовитой лягушки покрыта натуральным нейротоксином (ядом, поражающим нервную систему), который называется батрахотоксин. Смертельная доза этого яда составляет лишь около 1–2 микрограммов на килограмм массы тела. Этот токсин предотвращает передачу импульсов по нервным волокнам, парализуя мускулатуру организма. Кроме того, он нарушает работу сердца, в конечном итоге приводя к его остановке.
Самая ядовитая змея – жестокая змея (пустынный тайпан). Взрослая особь имеет достаточно яда, чтобы убить сотню человек или 250 тысяч мышей. Яд этой змеи примерно в 180 раз сильнее яда кобры и содержит сразу несколько разных нейротоксинов, а также гемотоксины, разрушающие клетки крови, миотоксины, нарушающие работу мышц, и массу других ядов. Змеиный яд, конечно, тоже натурален.
После похода на природу, куда-нибудь в лес, особенно в Сибири, проверьте, не прицепился ли к вам клещ. Эти кровососущие существа могут поджидать вас, сидя на дереве или на высокой травинке. Некоторые из них распространяют вирус клещевого энцефалита, некоторые – бактерии рода Borrelia, возбудителей боррелиоза (болезни Лайма). Все это – совершенно натуральные заболевания, поражающие центральную нервную систему, которые в ряде случаев приводят к смерти.
Механизмы защиты от врагов отличаются у растений и животных. Если животные могут попробовать убежать или защититься с помощью рогов или клыков, то растения такой возможности не имеют. Поэтому они специализируются на других приспособлениях – на колючках, а также химическом и биологическом оружии. Самая обычная картошка или соя может содержать вещества, нарушающие работу (ингибиторы) трипсина – важного пищеварительного фермента. Трипсин производится поджелудочной железой и попадает в кишечник, где он расщепляет белки, поэтому его ингибиторы нарушают переваривание пищи62.
Долгое время среди органических фермеров пользовался популярностью ротенон – сложное органическое соединение, которое можно получать из корней некоторых растений семейства бобовых. Ротенон – натуральный пестицид, чрезвычайно ядовитый для насекомых и рыб. Оказалось, что ротенон индуцирует болезнь Паркинсона у млекопитающих, разрушая нервные клетки63–65. Кроме того, это вещество токсично для клеток плазмы крови человека66, причем бывали случаи, когда в продуктах содержание ротенона превышало предельно допустимые значения67. Сейчас многие страны начали отказываться от этого натурального пестицида.
В действительности по весу более 99 % пестицидов, употребляемых нами в пищу, имеют абсолютно натуральное происхождение – производятся растениями для защиты от вредителей в естественной среде обитания68. Некоторые из этих пестицидов безопасны в небольших количествах (и даже используются в кулинарии), другие – сильно ядовиты. Алкалоид капсаицин, придающий перцу остроту, – эффективный инсектицид. В листьях, плодах, стеблях и клубнях картофеля и других пасленовых часто содержится соланин и другие токсичные алкалоиды69.
Соланин вызывает разложение эритроцитов, тошноту, головную боль, понос, повышение температуры, а в тяжелых случаях судороги, делирий (помраченное сознание) и кому. К счастью, человечество освоило искусственные методы, позволяющие сделать картофель безопасным, – термическую обработку. Любопытно, что содержание соланина в картофеле зависит от условий выращивания и хранения, причем последние факторы нередко играют большую роль, чем гены растения. Например, если клубни картофеля оставить на солнечном свете, они зеленеют и в них накапливается больше соланина, то есть один и тот же сорт картофеля может оказывать разное воздействие на организм.
В 1968 году методами классической селекции была выведена картошка “Ленапе” (Lenape)70, но спустя пару лет после успешного выхода этого сорта на рынок оказалось, что в нем сильно повышено содержание соланина71, поэтому его коммерческое выращивание прекратили. В конце XX века история повторилась со шведским сортом “Магнум Бонум” (Magnum Bonum)72. При создании гибридов двух разных сортов картофеля непредсказуемым образом может меняться не только количество алкалоидов, но и их состав. Могут появляться и совсем новые алкалоиды73. Это лишь несколько примеров возможных негативных последствий обычной селекции, в результате которой получаются продукты, считающиеся “натуральными” и (ошибочно) безопасными.
Некоторые полагают, что природа “мудра” и не терпит вмешательства, однако именно эта “мудрость” породила описанные выше угрозы для человеческой жизни и нежелательные изменения растительных геномов. У природы нет никакого “плана”, который мы могли бы нарушить. Порой (и временами заслуженно) она хочет нас убить, а мы защищаемся как умеем – с помощью интеллекта, технологий и изобретений. Жители глухих африканских деревень на своем горьком опыте знают, насколько “хорошо” людям живется в условиях, приближенных к естественной среде обитания человека: рядом с натуральным малярийным комаром, вирусом Эбола и ВИЧ. Интеллект – наша главная адаптация к меняющимся и нередко враждебным условиям окружающей среды. Интеллект позволяет нам производить средства защиты от вредных микроорганизмов: так, искусственная вакцина от оспы спасала нас от оспы натуральной. Интеллект позволяет нам производить растения более высокого качества. Благодаря достижениям научно-технического прогресса, которые многие так пренебрежительно характеризуют термином “искусственное”, продолжительность жизни человека выросла в развитых странах с тридцати до семидесяти – восьмидесяти лет.
Сам термин “натуральность” мы используем неправильно. Человек и его творения как бы противопоставляются природе, хотя человек тоже является ее частью, продуктом биологической эволюции. Почему продукты, произведенные человеком, не натуральны, а продукты, произведенные пчелами и более нигде в природе не встречающиеся, например мед, – натуральны? Почему, когда люди занимаются генной инженерией – это плохо, но когда ею занимаются бактерии, живущие в почве и переносящие свои гены в растения, или вирусы, встраивающие свои генетические последовательности в геномы всевозможных живых организмов, – это считается естественным и безопасным?
Современных “натуральных” продуктов не существовало бы, если бы человек не вмешивался в эволюционные процессы и не направлял их. Кукуруза, капуста, арбуз, дыня – все это результаты селекции, искусственного отбора, который на протяжении многих поколений менял растения и их наследственную информацию, чтобы те могли стать растениями культурными. На самом деле генетически модифицированные организмы – такие же натуральные, как селекционные сорта растений. Это не повод считать их абсолютно безопасными, ведь и натуральное может представлять угрозу для здоровья, но это повод относиться к ним так же, как к обычным организмам, без двойных стандартов. Почему ГМО натуральны, станет понятно по мере ознакомления с основами работы генетического аппарата клеток в последующих главах книги.
Глава 5
Грамматика жизни. ДНК, гены, геномы
В основе передачи наследственной информации у любых живых организмов, будь то люди, животные, растения, грибы или бактерии, лежит двухцепочечная молекула ДНК74. Каждая из двух цепей – полимер, состоящий из четырех типов мономеров, нуклеотидов аденина (A), тимина (T), цитозина (C) и гуанина (G). Например, вот короткая последовательность одной цепочки ДНК из семи нуклеотидов: GATTACA (это также название известного фантастического фильма). Напротив нуклеотида А одной цепи во второй цепи молекулы ДНК всегда стоит Т, а напротив G – всегда C. Это свойство называется комплементарностью и помогает молекуле ДНК размножаться в ходе процесса, который называется репликация.
Во время репликации двойная спираль расплетается на две одинарные цепи, и к каждой из них достраивается зеркальная, комплементарная копия, нуклеотид за нуклеотидом (А напротив Т, G напротив C и так далее). В результате мы получаем две одинаковые двухцепочечные молекулы, которые при клеточном делении разойдутся к разным полюсам клетки и достанутся двум ее потомкам. Процесс построения осуществляет фермент ДНК-полимераза, названный так потому, что он берет одиночные нуклеотиды (мономеры) и создает из них нить (полимер).
Структура молекулы ДНК была открыта в 1953 году молекулярными биологами Фрэнсисом Криком и Джеймсом Уотсоном. В начале того же года американский химик и впоследствии лауреат двух Нобелевских премий Лайнус Полинг предложил неправильную структуру молекулы ДНК с тремя спиралями75, то есть до Уотсона и Крика структура молекулы ДНК не была очевидной даже для выдающихся ученых. Тем интереснее, что советский ученый Николай Кольцов из самых общих соображений предположил, что наследственная информация должна храниться в виде огромной молекулы, сделанной из двух зеркальных цепей, еще в 1927 году!
Совокупность молекул ДНК какого-нибудь организма называется геномом. У бактерий и архей, образующих группу прокариот – организмов, клетки которых не содержат ядра, – геном обычно представлен одной двухцепочечной молекулой ДНК, замкнутой в кольцо. Иногда у прокариот есть еще несколько дополнительных кольцевых молекул ДНК меньшего размера – плазмид. У эукариот, организмов с клеточными ядрами, к которым принадлежат растения, грибы и животные, а также некоторые одноклеточные простейшие, геном обычно больше, чем у бактерий, и представлен несколькими линейными молекулами ДНК – хромосомами.
В качестве примера рассмотрим геном человека. В его состав входят 22 неполовые хромосомы и половые хромосомы Х и Y. В большинстве наших клеток неполовые хромосомы присутствуют в двух копиях – одна достается нам от мамы, а другая от папы, то есть всего хромосом 46. У мужчин присутствует по одной копии половых хромосом – Х и Y а у женщин две Х-хромосомы. У человека изменение количества хромосом, как правило, либо несовместимо с жизнью (в большинстве случаев), либо приводит к отклонениям вроде синдрома Дауна (когда у человека три 21-х хромосомы). Чего бы там ни говорил один отечественный министр культуры, у народа России (к счастью) лишней хромосомы нет.
Кроме того, отдельный геном имеется у митохондрий – особых структур внутри наших клеток, у которых есть собственная оболочка (мембрана). Митохондрии как будто маленькие отдельные организмы, которые способны размножаться внутри клеток и имеют ряд важных функций, например производство молекул, используемых в качестве источника энергии во многих клеточных процессах.
Одинарный набор хромосом человека насчитывает примерно три миллиарда нуклеотидов, “букв" – это размер его генома. Двойной набор хромосом – это примерно шесть миллиардов нуклеотидов. Если их сшить вместе и вытянуть в нить, получится молекула длиной примерно два метра, которая тем не менее столь тонка и так плотно упакована, что помещается в клеточном ядре, размер которого всего несколько микрометров (один микрометр – это одна миллионная метра).
Наиболее изученный тип функциональных последовательностей ДНК – гены, кодирующие белки. С таких генов считывается молекула матричной РНК (мРНК) в ходе процесса, который называется транскрипция, что переводится как “переписывание". РНК, как и ДНК, состоит из четырех типов мономеров, но вместо нуклеотидов тимина (T) в состав РНК входят нуклеотиды урацила (U). Молекула мРНК – одноцепочечная, комплементарная той цепи молекулы ДНК, с которой она “переписана”. Она играет роль инструкции для синтеза какого-нибудь белка (протеина). Белки, в свою очередь, могут выполнять очень разные функции: “сшивать” клетки вместе, чтобы те образовывали ткани, осуществлять всевозможные химические превращения, регулировать работу генов и так далее.
Представьте, что у вас есть кулинарная книга (геном), которая содержит множество рецептов (генов). Вы можете сделать ксерокопии отдельных рецептов и разослать их поварам. Книга у вас одна, а копий рецептов и поваров много. Такие рецепты в данной аналогии – РНК. Ну а белки – продукт деятельности поваров: различные блюда. В клетках роль поваров выполняют структуры, называющиеся рибосомами, – молекулярные фабрики для синтеза белков. Процесс синтеза белков называется трансляцией (“переводом").
Белки, как и молекулы ДНК и РНК, являются полимерами, только белки состоят не из нуклеотидов, а из аминокислот. Последовательность аминокислот белка определяется последовательностью кодонов – троек нуклеотидов молекулы РНК, а правило соответствия кодонов аминокислотам называется генетическим кодом. Например, у большинства живых организмов кодон GCC кодирует аминокислоту аланин, а кодон AUG – метионин. Последовательность нуклеотидов AUGGCCGCC кодирует последовательность из трех аминокислот: метионин, за которым следуют два аланина.
Три нуклеотида в кодоне и четыре разные буквы генетического алфавита позволяют создать 43, или 64, разных кодона, то есть с их помощью можно закодировать 64 аминокислоты. Но в стандартном генетическом коде присутствует всего 20 аминокислот, то есть одна и та же аминокислота кодируется сразу несколькими различными кодонами. Это свойство генетического кода называется вырожденностью. Стоп-кодонов, командующих рибосоме остановить синтез белка, в стандартном генетическом коде тоже несколько, а точнее три: UGA, UAG, UAA. Слева приведена схема стандартного генетического кода. В круге первом расположены 4 возможные первые буквы кодона (A, C, U, G). Напротив каждой большой буквы расположены 4 буквы поменьше – вторые буквы кодона. В следующем круге расположены третьи буквы кодона. В четвертом круге напротив группы кодонов показана аминокислота, которую они кодируют.
Иногда в СМИ можно услышать не совсем корректное выражение “генетический код мутировал". На самом деле мутации происходят не в генетическом коде, а в молекулах ДНК, в геноме, в результате чего меняются нуклеотидные последовательности. Мутации можно сравнить с заменой буквы в отдельном слове. Например, фраза “Маша ехала на мотоцикле" превращается во фразу “Саша ехала на мотоцикле", если одна буква М “мутировала" в букву С. Изменение генетического кода намного серьезнее – это как изменение алфавита. Представим, что во всем тексте буквы М внезапно превратились в буквы К. Теперь у нас “Каша ехала на котоцикле". Понятно, что такие изменения приводят к значительным последствиям и делают практически любой достаточно длинный текст бессмысленным. Поэтому изменения генетического кода происходят крайне редко. Но происходят!
Небольшое отклонение от стандартного генетического кода есть у некоторых инфузорий. Один или даже два стоп-кодона стандартного генетического кода могут кодировать у этих одноклеточных организмов аминокислоту глутамин76, 77. В случае некоторых организмов можно сделать небольшое искусственное изменение генетического кода. Например, ученым удалось взять кишечную палочку и сделать так, чтобы один из ее трех стоп-кодонов начал кодировать аминокислоту78. Ну а в природе еще одним любопытным исключением является генетический код митохондрий, отличающийся от стандартного кода сразу несколькими кодонами. Если не учитывать митохондрии, у большинства организмов генетический код один и тот же: у человека он такой же, как у червяка, утконоса или огурца, или даже у кишечной палочки. А вот геномы у этих организмов различаются очень сильно. Тот же алфавит, но другой текст.
Но что стоит за генетическим кодом? Почему напротив того или иного кодона ставится определенная аминокислота? Аминокислоты доставляются в рибосому молекулами, которые называются транспортными РНК. К одной части транспортной РНК прикреплена аминокислота, а другая ее часть содержит нуклеотиды, комплементарные кодону, который кодирует аминокислоту. Кодоны различаются, поэтому и транспортные РНК бывают разными.
Теоретически мы могли бы поменять одновременно и генетический код, и кодоны в генах, кодирующих белки, причем сделать это таким образом, чтобы все белки остались прежними. Насколько мы можем судить, это не имело бы значительных последствий для организма: генетический код не обязан быть таким, какой он есть. Совершенно разные организмы имеют одинаковый генетический код потому, что все живое произошло от общего предка, у которого генетический код был таким же, как у нас с вами.
Только представьте: в течение нескольких миллиардов лет на нашей планете одноклеточные организмы эволюционировали в многоклеточные формы жизни, которые смогли выйти на сушу, появился и вымер тираннозавр, а вместе с ним масса других гигантских рептилий, возникли приматы, в том числе и предки современного человека. С тех пор успела возникнуть и развалиться Римская империя, мы прошли через темные века Средневековья в эпоху Просвещения, создали двигатель внутреннего сгорания, самолеты, освоили ядерную энергетику, изобрели компьютеры и даже отправили человека на Луну. Все это время происходили колоссальные изменения в геномах живых организмов, но генетический код всех этих организмов оставался неизменным, постоянным, неразрушимым.
Незыблемость генетического кода очень удобна для генных инженеров. Допустим, мы хотим, чтобы бактерия синтезировала какой-нибудь растительный белок. Берем соответствующий ген из растения, переносим в кольцевую молекулу ДНК – плазмиду, а ее внедряем в клетку бактерии. В большинстве случаев бактерия будет производить белок идентичный тому, что производится в растении. Если бы генетический код у растений и бактерий отличался, мы бы получили какой-то другой белок, с другим набором аминокислот и другими свойствами или вовсе полную ерунду. В таких условиях генная инженерия была бы гораздо более трудным занятием.
Когда был прочитан геном маленького круглого червя Caenorhabditis elegans, то есть когда была установлена последовательность нуклеотидов его молекул ДНК, оказалось, что у него около 20 тысяч генов79. Геном человека тогда еще не был прочитан, и количество генов в нем оставалось под вопросом. Ученые даже устраивали тотализаторы, в ходе которых пытались угадать, сколько генов будет обнаружено. Назывались цифры вплоть до сотен тысяч, но верхней границей было значение 3 миллиона – примерно столько генов позволял хранить в себе размер нашего генома в три миллиарда нуклеотидов (при среднем размере гена около тысячи нуклеотидов).
Идея тотализатора по поводу числа человеческих генов пришла в голову доктору Эвану Бирни в баре при лаборатории в Колд-Спринг-Харбор незадолго до завершения проекта “Геном человека”. Победу присудили трем ученым. Пол Дир из Британского совета по медицинским исследованиям поставил на дату своего рождения (27.04.1962-27462), Ли Роуэн из Института системной биологии в Сиэтле поставила на 25947, а Оливер Джейлон из французской компании Genoscope поставил на 26500. Когда доктора Дира спросили, как ему удалось предсказать число генов человека, он ответил: “Дело было в баре, глубокой ночью. Наблюдая за поведением пьющих людей, я подумал, что оно мало отличается от поведения мух-дрозофил, у которых 13500 генов, а потому мне показалось, что удвоенного числа мушиных генов людям вполне достаточно".
Позже оказалось, что некоторые предполагаемые гены человека на самом деле не работают (являются псевдогенами), и сейчас считается, что у человека 20–25 тысяч функциональных генов80. Довольно обидный факт для “венца творения". Особенно если учесть, что полно организмов как с большим по размеру геномом, так и с большим числом генов. В первом случае примером послужит двоякодышащая рыба Protopterus aethiopicus, чей геном в 40 раз больше человеческого81, а во втором – рис Oryza sativa, у которого более 30 тысяч генов82. Возможно, венцом творения правильнее называть Trichomonas vaginalis – одноклеточного возбудителя трихомониаза, распространенного заболевания, передающегося половым путем. По современным оценкам, Trichomonas vaginalis имеет около 60 тысяч генов83.
Некоторые биологи составили достаточно правильное и обоснованное представление о количестве генов у человека задолго до того, как был прочитан его геном. Еще в 1972 году эволюционный биолог Сусуму Оно писал в своей статье “Столько мусорной ДНК в нашем геноме"84, что у нас должно быть около 30 тысяч генов. Эту феноменально близкую к правде цифру Оно получил сорок лет назад из соображений о том, как часто происходят вредные мутации – изменения ДНК, негативно сказывающиеся на потомстве у людей, мышей и других организмов. Если бы у нас было 3 миллиона важных генов, то многие из них неизбежно портились бы в каждом поколении. А вот 30 тысяч, согласно расчетам Оно, мы могли бы содержать в нашем геноме без серьезных рисков. Но из этого следовало, что большая часть генома человека не несет жизненно важных функций или попросту является “мусором". Мутации в таких участках безвредны. В пользу принципиального существования мусора в ДНК можно добавить такой не совсем корректный, но интуитивно понятный аргумент: если бы каждый нуклеотид в любом геноме был функционален, то зачем луку геном в пять раз больший, чем наш с вами?