Текст книги "Энергия будущего"
Автор книги: Александр Проценко
Жанр:
Прочее домоводство
сообщить о нарушении
Текущая страница: 8 (всего у книги 14 страниц)
В водородной бомбе термоядерное топливо зажигают взрывом атомной бомбы, в которой источник энергии – деление ядер. Но ведь мы должны получить не взрыв, а управляемый синтез? А что, если воспользоваться электрическим током?
Эта мысль у физиков возникла одной из первых.
Ведь нагреваем же мы таким образом спирали электроплиток и лампочек! А в некоторых экспериментах при пропускании тока через очень тонкие металлические проволочки температура достигает десятков тысяч градусов.
Известно, что если к электродам, между которыми находится газ, приложить напряжение, то произойдет пробой, газ ионизируется, затем превратится в плазму, через которую потечет электрический ток (пробой), и из-за электрического сопротивления в ней будет выделяться тепло. С помощью такого так называемого омического нагрева можно достичь высокой температуры.
Первые шаги
Проведенный физиками первоначальный анализ условий осуществления УТС, с которым мы познакомились в общих чертах, привел к довольно оптимистичному выводу. Вот краткое его изложение.
Нужно использовать в качестве топлива смесь дейтерия с тритием и с помощью вакуумных насосов создать в камере термоядерного реактора вакуум, плотность частиц в котором была бы равна 10^14-10^15 единиц на кубический сантиметр. Окружить этот объем магнитным полем, которое удерживало бы в нем плазму.
Затем пропустить через плазму электрический ток, который и нагреет ее до 40 миллионов градусов.
При этой температуре ядра дейтерия и трития станут соударяться и сливаться, образуя атомы гелия и выделяя термоядерную энергию.
Кажется, все достаточно просто. В самом деле, ведь и магнитное поле не нужно создавать специально. Оно возникнет само по себе, когда через плазму потечет ток, точно так же, как оно возникает вокруг любого проводника с током. Это же поле, взаимодействуя с плазмой, и будет удерживать ее в зоне горения и не допускать к стенкам камеры.
На самом деле все оказалось гораздо труднее!
Будем справедливы, эта кажущаяся простота была настолько заманчивой, что могла обмануть не только людей, впервые знакомящихся с этой проблемой, она смутила и физиков-теоретиков, и инженеров, рассчитывавших условия проведения процесса, и физиков-экспериментаторов, начавших срочно сооружать установки для осуществления термоядерной реакции в лабораторных условиях.
Вот как выглядели эти установки. Камеру, в которой должна идти термоядерная реакция, выполнили из изоляционного материала в виде полого цилиндра с электродами в торцах. На них и подавалось напряжение.
Для получения сильного электрического тока применили большую батарею конденсаторов. При быстром ее разряде можно получать ток очень большой силы.
Скажем, если накопить всего 0,1 киловатт-часа и разрядить в несколько миллионных долей секунды, то потечет ток такой силы, что разовьет мощность в разряде, равную примерно 100 миллионам киловатт.
Итак, есть камера-цилиндр и источник электроэнергии. Можно начинать эксперимент. Создается вакуум, и цилиндр заполняется азотом. Почему этим элементом?
Это вызвано соображением осторожности. Хотя теория и предсказывает, что при заполнении камеры дейтерием ничего страшного не должно произойти, все же, поскольку речь идет о термоядерной реакции, лучше сначала сделать пробу на азоте.
Электрическая энергия накоплена. Разряд! Вспышка света! Взрыв! Нет, цилиндр не разорвался, только разряд был эффектным, подобным взрыву. Все произошло так, как и предполагали теоретики. При протекании тока образовалась плазма. Магнитное поле сжало ее в плазменный сверкающий шнур.
Опыт повторяется. Затем проводится третий, четвертый... и каждый раз меняются условия проведения эксперимента. Наконец можно ввести в камеру и термоядерное сырье – дейтерий. Реакция может пойти и при взаимодействии одних его ядер. Вводить радиоактивный элемент тритий пока нежелательно: обеспечение безопасности слишком усложнит эксперимент.
Снова разряд, вспышка, оглушительный выстрел, опять плазменный шнур. И что же? Была ли термоядерная реакция? Как определить это простейшим образом?
Высвободилась ли в результате реакции энергия?
Мы еще не говорили, в каком виде она в такой реакции выделяется; очевидно, что в форме кинетической энергии новых элементов, образующихся при синтезе. Например, в случае реакции дейтерия с тритием – это должен быть атом гелия с энергией 3,5 Мэв (1,7 * 10^-19 кВт-ч). Об этой энергии, которую несут продукты синтеза, шла речь выше, когда мы говорили о мощности, выделяемой в объеме плазмы. За счет ее и должна поддерживаться температура. Однако в первых лабораторных опытах она могла быть (в действительности так и было) очень малой, настолько малой, что ее невозможно было обнаружить на фоне той энергии, которая вводилась в плазму электрическим разрядом. Но, кроме новых ядер, при синтезе дейтерия и трития освобождается еще и нейтрон с гораздо большей энергией, равной 14 Мэв (6,8 * 10^-19 кВт ч).
В реакции синтеза дейтерий – дейтерий (Д – Д) также освобождаются нейтроны. Наличие этих частиц при разряде говорит о протекании в камере термоядерной реакции, и остается лишь их обнаружить. Задача эта не такая уж сложная, поскольку для определения этих частиц существуют специальные приборы высокой чувствительности.
Итак, в очередной раз в камере с дейтерием производится электрический разряд, и приборы регистрируют нейтронный импульс!
Неужели все так просто? Обычный газовый разряд – и термоядерная реакция синтеза в наших руках!
Физикам, воодушевленным этой удачей, казалось, что они на пороге овладения термоядерной реакцией. Да и действительно трудно не воодушевиться в такой ситуации. "Вперед, к еще более мощным приборам и установкам", – стали дружно призывать физики-оптимисты.
"Не слишком ли просто и легко дается решение такой сложной проблемы? Нет ли здесь незамеченной ошибки?" – осторожно возражали более осмотрительные их коллеги. Постепенно разгорались дебаты. Попробуем вникнуть в их суть. Но условимся не считать тех и других хорошими или плохими. Дело в том, что в науке возникает так много тупиковых проблем и идей и так много исследований дают отрицательные результаты, что сказать сразу, что лучше – оптимизм или пессимизм, почти невозможно. А теперь послушаем, о чем же идет разговор.
П. (пессимист). У меня нет никакой уверенности, что эти нейтроны возникли действительно в результате термоядерной реакции.
О. (оптимист). Почему?
П. Потому что нейтроны могут образоваться и в результате какого-либо другого процесса.
О. Какого именно?
П. Сами ионы дейтерия могли быть ускорены под действием приложенной разницы потенциалов и соударяться с ионами дейтерия, прилипшими к стенкам камеры или к электродам. Тогда нейтроны не результат термоядерной реакции, то есть общего разогрева плазмы, а следствие процесса ускорения.
О. Да, но тогда источники нейтронов располагались бы вблизи электродов, как это бывает в обычном процессе ускорения, а не оказались бы равномерно распределенными по всему объему.
П. Это правильно, но давайте еще раз проверим на опыте.
Ставился очередной опыт, и он снова показывал, что источники нейтронов распределены по всему объему плазмы и часто вылетают из ее центра. Но пессимист не успокаивался.
П. Но ведь количество нейтронов, наблюдаемое нами, чересчур велико для тех температур, которые возникают в таком разряде!
О. Так это просто замечательно! Значит, будет проще осуществить термоядерный реактор!
П. А как быть с теорией, устанавливающей строгую зависимость образования нейтронов от температуры плазмы?
О. Теорию придется подправить. Ведь мы обнаружили, что ускорительного процесса нет!
Под "давлением" пессимистов вновь один за другим ставились опыты. Оказалось, что победили сомнения пессимиста. Нейтроны возникали действительно в результате ускорительного процесса, но не совсем обычного.
Чем же было вызвано появление большого количества нейтронов при сравнительно низких температурах плазмы?
Обнаружилось, что плазменный шнур во время разряда подвержен целому ряду различных неустойчивостей. К примеру, он как будто внезапно перетягивался поперек сечения, являя собой очень тонкую нить. В момент появления такой перетяжки именно здесь возникал огромный осевой электрический потенциал, во много раз превышавший напряжение, приложенное к электродам цилиндра. Под действием этого потенциала и происходило ускорение отдельных ионов дейтерия и рождение нейтронов, которые, конечно же, не были термоядерными. Впоследствии их назвали нейтронами неустойчивости, или ложными.
Так, или приблизительно так, были сделаны первые шаги в освоении УТС на установках Института атомной энергии, где в 1952 году были зарегистрированы эти первые лженейтроны.
В тот же период подобные опыты по самосжатому разряду проводились в Англии.
В США для экспериментов в Лос-Аламосской лаборатории У. Так создал камеру в виде бублика-тора, заполненного газом. При разряде конденсаторной батареи через катушку, надетую на этот тор, внутри его индуцировался ток в десятки тысяч ампер.
Один из скептиков, услышавший, каких результатов хотят добиться с помощью этого устройства, назвал его в шутку "импоссиблитроном" (Impossiblytron), то есть невозможнотроном. Тогда У. Так, отвечая ему и желая отразить свой оптимизм в названии, нарек первую экспериментальную модель "перхэпсатроном"
(Perhapsatron), то есть возможнотроном. С таким названием эта установка и вошла в историю борьбы за управляемый термоядерный синтез.
Так первые идеи, первые эксперименты, первые радости и разочарования породили первые неожиданности.
Главной была неустойчивость – этот бич плазмы. Первая атака на нее оказалась неудачной. Но, как разведка боем, она вскрыла много уязвимых мест плазмы, прояснила много ранее туманных вопросов, стала трамплином для дальнейшего развития теории...
Как видите, всего несколько страничек заняло описание экспериментов по самосжатому разряду. На чтение этих живых воспоминаний читатель потратил минуты.
В жизни на это ушли годы раздумий теоретиков, дни и ночи работы экспериментаторов, инженеров, техников, рабочих. Академик Л. Арцимович, руководивший тогда исследованиями УТС, и его сотрудники за эти работы были удостоены Ленинской премии.
Начался новый этап борьбы за управляемый термоядерный синтез.
МЕДЛЕННО? НЕТ, БЫСТРО!
Самое прекрасное, что мы можем испытать, – эта ощущение тайны.
Она есть источник всякого подлинного искусства и всей науки.
Альберт Эйнштейн
Взорвав водородную бомбу, человек осуществил термоядерный синтез. Оставалось выполнять главную задачу в термоядерной проблеме – научиться управлять этим процессом, контролировать скорость термоядерного взрыва.
Чтобы взять его под контроль, можно идти двумя путями. С одним мы уже познакомились. Его идея – замедлить течение реакции, растянуть ее во времени.
По этому принципу и создаются устройства с магнитным удержанием плазмы. Такова наша установка Токамак. По замыслу его создателей в термоядерный реактор загружается топливо. С помощью внешних источников энергии оно разогревается и горит несколько минут, чтобы уступить место следующей порции топлива.
На протяжении всего времени горения плазма удерживается с помощью магнитных полей.
Но возможен и другой способ управления этим процессом. Суть его в том, что в реакторе осуществляются термоядерные взрывы гораздо меньшей мощности, нежели в водородной бомбе. В сущности, это микровзрывы. Важно, чтобы устройство, в котором они имеют место, во-первых, выдерживало эти микровзрывы, а во-вторых, "успевало" переводить их энергию в полезную энергию. Отсюда задача – найти способ мгновенного разогрева топлива до термоядерной температуры, и тогда оно взорвется. Затем, непрерывно осуществляя эти микровзрывы, переводить выделяющуюся энергию в удобные для нас формы.
Спрессованный свет
Для управления термоядерным процессом советские физики Н. Басов и О. Крохин в 1964 году предложили для разогрева плазмы использовать лазер.
Чтобы разобраться в сути их предложения, придется сначала ознакомиться с тем, как работает и какими свойствами обладает устройство, названное лазером.
Интересно, что о его прообразе писатели-фантасты заговорили несколько десятков лет назад. Вспомним хотя бы роман А. Толстого "Гиперболоид инженера Гарина".
Не предвидя, конечно, создания известного современному человечеству удивительного прибора, имеющего совершенно иное назначение, автор романа писал: "Первый удар луча гиперболоида пришелся по заводской трубе – она заколебалась, надломилась посередине и упала... Был виден завод, раскинувшийся на много километров. Половина зданий его пылала, как карточные домики. Луч бешено плясал среди этого разрушения".
Лазер называют еще квантовым генератором света.
Родился он в конце 50-х годов нашего века. Главная роль в создании этого источника светового излучения принадлежит советским ученым – Н. Басову, А. Прохорову и американцу Таунсу.
Чем же интересен этот источник света и каковы его особенности?
Одно из присущих ему замечательных качеств – мощность. Чтобы читатель получил о ней представление, воспользуемся таким примером нить обычной лампы накаливания станет испускать такой же яркости свет, как небольшой квантовый генератор, если ее температуру довести до 10 миллиардов градусов, то есть сделать в миллион раз горячее поверхности Солнца.
Несмотря на то что количество энергии, которое лазер "выстреливает" в импульсе, невелико, скажем 0,03– 0,05 ватт-часа, удельная мощность импульса может быть очень высокой – до 1017-1020 ватт в кубическом сантиметре. Для сравнения напомним, что в ядерных реакторах деления удельная мощность колеблется в пределах ог 10 до 1000 ватт в кубическом сантиметре, а в термоядерном – 100 ватт.
Другое замечательное качество лазера, или, точнее, светового излучения, создаваемого им, – это способность концентрировать энергию в фантастически малых объемах. Используя в лабораторных условиях относительно небольшую энергию, скажем равную одной килокалории, можно получить плотность энергии в кубическом сантиметре десять миллионов килокалорий, то есть в миллион раз больше той, какую можно достичь с применением самых эффективных современных взрывчатых веществ.
За счет чего достигается такая концентрация энергии?
Солнце, электрическая лампочка и другие источники излучают свет в виде независимых друг от друга разных по длине волн. Получается это потому, что испускающие свет атомы и электроны при нагревании движутся хаотически. Эти независимые, беспорядочно колеблющиеся волны света невозможно объединить в один узкий пучок. Этим объясняется расширение луча прожектора с расстоянием.
Если же создать устройство, которое заставляло бы атомы излучать световую волну определенной одинаковой длины и не беспорядочно, а согласованно во времени, оно обеспечило бы мощный, нерасходящийся, как говорят, когерентный луч света. Именно таким устройством и является лазер.
Как он работает?
В его рабочее (активное) вещество, которым может быть стекло, газ, жадность, с помощью специальных импульсных электроламп вводится энергия. Молекулы активного вещества тотчас переводятся в возбужденное состояние и излучают свет. Само активное вещество является резонатором – оптической системой из двух параллельных зеркал, обращенных друг к другу отражающими поверхностями. Это может быть рубиновый стержень размером с карандаш с зеркальными торцами. Для вывода излучения из резонатора в намеченном направлении одно из зеркал делается отражающим полностью, а другое частично. Через него и может пройти излучение.
Эта система представляет собой усилитель, который действует так.
Первоначально слабое излучение, вызванное импульсной лампой, проходит через активную среду и вызывает дополнительное высвечивание молекул, находящихся в возбужденном состоянии. Это уже немного усиленное теперь излучение, отражаясь от зеркал и вновь проходя через среду, вызывает излучение следующих молекул и так далее. В результате происходит лавинообразная цепная реакция, приводящая к вспышке лазера.
Перемещая зеркала, можно нарушать условия отражения света, то есть как бы выводить из строя резонатор. Это делается для того, чтобы можно было возбуждать молекулы активной среды до максимально допустимой величины и лишь затем снова "вводить резонатор в строй", заставляя его молекулы в импульсе отдавать энергию.
И еще несколько слов о необыкновенных свойствах лазеров. Эти источники света, несмотря на мощные импульсы, не раскаляются, и их можно считать холодными.
Расходимость лазерных пучков световых волн в конечном счете зависит от точности изготовления и размеров этих приборов. При колоссальныхмощностях потоки излучения подчиняются в пространстве законам геометрической оптики. Поэтому, используя обычные линзы, их можно концентрировать на очень малых мишенях, сравнимых с длиной волны излучения. При этом плотность мощности может достигать 1014-1016 ватт на квадратный сантиметр.
Выше приводилось выражение: "потоки излучения лазера"; а это не совсем верно. На самом деле, лазерный луч представляет собой сгусток энергии, длина которого может быть, скажем, 30 сантиметров, а иногда и меньше.
Оторвавшись от лазера, этот спрессованный сгусток света распространяется по законам оптики. Свет идет в виде сгустка, потому что длительность отдельной вспышки в лазере очень мала: 10^-9-10^-11 секунды.
Пожалуй, вот и все, что необходимо для понимания связи квантового оптического генератора и термоядерной реакции.
Вторая жизнь открытия
Теперь можно вернуться к уже упомянутому предложению Н. Басова и О. Крохина об использовании лазера для получения термоядерной реакции.
В принципе физическая сх.ема осуществления лазерного термоядерного синтеза достаточно проста. На яебольшой шарик (теперь это мишень) замороженной дейтериево-тритиевой смеси направляют этот луч. Шарик мгновенно разогревается. Вскоре его температура достигает нескольких десятков миллионов градусов, то есть того предела, за которым начинается интенсивная термоядерная реакция. Увы, начавшись, она тут же прекратится, так как взрыв термоядерного топлива – ядер дейтерия и трития, превратившихся в плазму, – разбросает это топливо в разные стороны.
Удержать вещество шарика, доведенного до четвертого состояния, невозможно. При плотности вещества в кубическом сантиметре этого шарика 1022-1023 ядер давление плазмы в тысячи раз превысит те силы, которые сегодня можно создавать с помощью магнитных полей для удержания вещества мишеней от преждевременного разлета.
Но, оказывается, для осуществления реакции в такой плотной плазме вовсе не обязательно магнитное удержание. Ведь в ней все произойдет так быстро, что большинство пар дейтерий – тритий успеет прореагировать, образовав ядра гелия за очень короткое время, еще до того, как шарик прекратит свое существование. Какое же это время?
Скорость разлета плазмы при температуре, например, в сто миллионов градусов, равная скорости звука в плазме при этой температуре, составляет около тысячи километров в секунду. Значит, путь, равный размеру шарика, скажем, в несколько миллиметров, плазма пройдет за миллиардные доли секунды. За это время от центра шарика, где в первую очередь и начинается термоядерная реакция, волна разрежения вещества дойдет до верхних наружных слоев, плотность ядер топлива в единице объема станет малой и реакция затухнет.
Характер протекания этого взрыва показывает, что всю энергию лазерного луча, необходимую для возбуждения термоядерной реакции, надо успеть внести за время, по крайней мере не большее, чем время разлета плазмы, образовавшейся из первоначальной прореагировавшей части шарика-мишени. Возможно ли это?
Да, мы об этом уже говорили. Лазер как раз такое устройство, которое позволяет создавать очень короткие импульсы энергии длительностью в 10^-9-10^-11 секунды.
Стоит сказать еще об одном условии, необходимом для осуществления термоядерной реакции. Какое количество энергии, которую должен внести лазерный импульс в шарик за этот короткий миг, чтобы разогреть его до необходимой температуры? Эта энергия, по нашим житейским представлениям, невелика: для шарика весом в один грамм (такой вес и нужен для того, чтобы реакция прошла успешно) эта величина колеблется в пределах от 30 до 300 киловатт-часов.
Действительно, не очень-то много. Однако, если вспомнить, что энергия, выстреливаемая лазером в импульсе, составляет всего несколько сотых долей ваттчаса, то ясно, что одним лазером ничего поделать нельзя. Значит, для получения импульса с минимальной для начала реакции величиной энергии, хотя бы в 30 киловатт-часов, придется "взять в упряжку" миллионы лазеров! Практически такая задача совершенно невыполнима. Перед этой фантастикой отступили даже наиболее оптимистично настроенные ученые. И казалось, что работа зашла в тупик. Это был один из самых трудных переломных моментов в исследованиях по лазерному термоядерному синтезу. Но тут группа ученых "выдала" довольно простую идею. Вот ее смысл: до нагревания шарика необходимо сильно увеличить его плотность с помощью энергии того же лазера. Это позволит тогда существенно уменьшить необходимую для зажигания реакции энергию лазера.
Сама идея безударного адиабатического сжатия, безусловно, не только хорошо известна и применяется специалистами, но и изложена во множестве учебников и монографий. Тем не менее в применении к проблеме лазерного термоядерного синтеза она оказалась принципиально новым техническим решением.
Чтобы сжать шарик из термоядерного топлива и увеличить его плотность в десятки тысяч раз, нужно создать на его поверхности давление, равное, например, давлению в центре Солнца. Полагают, что за счет сил гравитации оно гам равно ста миллиардам атмосфер.
Сто миллиардов атмосфер! Сопоставим эту величину с привычными мерками. Всяческими механическими ухищрениями или детонацией взрывчатых веществ достигают только около миллиона атмосфер. За счет сферического взрывного обжатия можно это давление увеличить еще примерно в 10 раз.
Собственно лазерное излучение создает на поверхности шарика огромное давление в 100 миллионов атмосфер! Но этого еще мало! Нужно больше. Необходимое давление получается "автоматически": при взаимодействии луча лазера с поверхностью шарика вещество поверхности шарика взрывается и начинает разлетаться, создавая импульс давления, направленный внутрь шарика, то есть сжимает шарик. Этот импульс гораздо больше того, что создается самим лучом. Те, кто интересовался работой реактивных двигателей, знают, что при равной мощности двигатель с материальным рабочим телом, например водородом, создает большую тягу (то есть давление), чем фотонный (световой). Значит, сжатие шарика, создаваемое реактивным действием плазменной струи испаряющегося вещества, больше, чем действие лазерного луча. Вследствие этого эффекта давление светового луча на поверхности шарика увеличивается еще в 100 раз. Наконец оно может возрасти почти на столько же за счет применения взрывного обжатия шарика.
В конечном счете лазер может создать в шарике из топлива давление, сравнимое с давлением в центре Солнца.
Существует, однако, на этом пути серьезное препятствие. Если пытаться брать данную крепость, что называется, "в лоб", одним ударом лазерного луча, то почти ничего не получится, так как плотность шарика увеличится всего в несколько десятков раз. Ее возрастанию помешает быстрый нагрев шарика, а с ростом его температуры станет расти его внутреннее давление (или упругость). А это будет препятствовать дальнейшему сжатию, и разогретый шарик, не успев как следует сжаться, начнет расширяться. В противовес этому было предложено не простое, а "безударное адиабатическое"
сжатие.
Приближенно его можно осуществить, если, меняя во времени мощность лазерного луча, произвести вначале обжатие шарика медленное, чтобы скорость сжатия на начальном этапе была меньше скорости звука в шарике и в нем не создавались бы ударные волны. Отсюда "безударное" сжатие, то есть отсутствие ударных волн, которые в противном случае, уходя вперед от фронта сжатия, разогревали бы шарик. Так как они не возникают почти до конца сжатия, то шарик не разогревается, поскольку в него не вносится тепло (адиабатическое сжатие). Затем на последнем этапе можно сильно увеличить мощность луча и разогреть шарик. При таком сжатии плотность в нем ядер возрастет в несколько тысяч раз и сможет достичь 1000-2000 граммов на кубический сантиметр.
Такая плотность в шарике из дейтериево-тритиевой смеси существенно меняет характер протекания термоядерной реакции. Поскольку количество ядер в единице объема возрастет, они начнут сталкиваться, как говорится, на каждом шагу. При увеличении плотности вещества в десять тысяч раз, в сто миллионов раз возрастет скорость термоядерной реакции, которая зависит от квадрата плотности вещества. А это означает, что за то время, пока шарик удерживается инерциальными силами, успевает сгореть большое количество термоядерного топлива даже при меньшей температуре разогрева. Выделившаяся при этом энергия во много раз превысит энергию лазерного луча, затраченную на разогрев и сжатие шарика.
Так, используя очень небольшую часть энергии лазера на уплотнение шарика, можно создать гораздо лучшие условия для осуществления термоядерной реакции, то есть значительно снизить требования к величине энергии, которую должен дать лазер для возбуждения термоядерной реакции.
Вспомните, если ранее в случае чисто теплового нагрева (без сверхсжатия) энергия, передаваемая лазером в импульсе, должна была находиться в интервале 30-300 киловатт-часов, то, воспользовавшись сверхсжатием, можно уменьшить ее в тысячу раз.
Задача существенно упростилась. Передача в концентрированном виде такой энергии с помощью системы лазерных устройств – это уже технически разрешимая проблема.
Есть термоядерные нейтроны!
В начале 60-х годов после создания лазеров и проведения первых теоретических исследований по их применению для термоядерного синтеза была начата подготовка к проведению экспериментов.
Многие формулы, схемы, чертежи требовали проверки на реальных физических моделях. Однако целесообразность развертывания работ по термоядерному синтезу, даже экспериментальных, вызывала сомнения и различное отношение. Скажем, специалисты Ливерморской лаборатории (США) считали, что полученные теоретические результаты по сжатию мишеней обнадеживающи, работы по ним следует продолжать Ученые же Лос-Аламосской лаборатории (США) утверждали, что лазерная техника не соответствует еще уровню, при котором было бы целесообразно положение работ и постановка экспериментов по лазерному термоядерному синтезу.
Расчеты Н. Басова и О. Крохина (Физический институт АН СССР – ФИАН) таковы, что будто бы подтверждают принципиальную возможность нагрева плазмы до термоядерных температур при облучении твердой мишени лазером.
Эти точки зрения разных физических коллективов сейчас мы можем сопоставить, а тогда они не были вза имоизвестны. Только опубликование в 1964 году статьи Н. Басова и О. Крохина о возможности достижения термоядерных температур с помощью лазеров положило начало программе работ в этом направлении во многие странах и дало им мощный толчок.
К этому времени на территории ФИАНа в двухэтажном кирпичном здании, получившем название лазерного павильона, был подготовлен к работе в те годы самый мощный в мире лазер с энергией около 0,01 ватт-часа (40 джоулей) и длительностью импульса 2,5 -10^-9 секунды.
Группа молодых физиков института надеялась, применив его для облучения газообразного дейтерия, получить термоядерные нейтроны – доказательство осуществления термоядерной реакции. Уж очень велико было их желание первыми получить термоядерные нейтроны. И это желание понятно. Ведь в основном поело статьи Н. Басова и О. Крохина в эксперименты по проблеме начали включаться многие исследовательские лаборатории США, Франции, ФРГ, Японии. И было бы очень отрадно, если бы и первые успешные результаты были бы получены самими авторами предложенного эксперимента.
Из работ академика А. Прохорова и профессора П. Пашинина было известно, что при искровом пробое газа лазерным лучом и его ионизации можно нагреть электроны плазмы примерно до 10 миллионов градусов.
Во многом история этого первого эксперимента напоминает историю с ложными нейтронами в опытах по самосжатому разряду.
Вот схема эксперимента в ФИАНе. Рядом с камерой с газообразным дейтерием, в которую направлялся луч лазера, размещался счетчик нейтронов. В случае возникновения в камере термоядерной реакции рождался пучок нейтронов. Он и заставил бы счетчик срабатывать и зажигать лампочку на панели прибора.
При первом же опыте лампочка засветилась. Неужели появились нейтроны? Слишком легкой казалась эта победа. Начались проверочные опыты. Линзу лазера закрыли непрозрачным экраном так, чтобы после вспышки луч вообще не попадал в камеру с дейтерием. Эксперимент повторили, и лампочка снова зажглась. Все стало ясно: она включалась вовсе не потому, что появлялись термоядерные нейтроны, а в результате электромагнитных наводок. С ними пришлось вести упорную борьбу. Но они были ликвидированы. Физики вступили в длительный этап повторяющихся экспериментов. Вот как участник этих опытов описывает случай, имевший место во время исследований.
В одном из экспериментов лампочка сработала. Невзирая на позднее время сразу позвонили академику Л. Арцимовичу. Он и его сотрудник В. Коган проявляли неослабевающий интерес к попыткам лазерщиков освоить новую специальность и всячески помогали дружескими советами. Академик тотчас приехал, сел на стул и приковал свой взгляд к заветной лампочке.
Вспышки лазера следовали одна за другой, но аппаратура не проявляла признаков активности. Время перевалило уже за полночь. Но в павильоне горит свет, работают насосы, на стеклянных деталях вспыхивают отблески лазерного света. Лев Андреевич, уставший после напряженного двенадцатичасового рабочего дня, слегка задремал, сидя на с гуле. Потом, очнувшись, оценил обстановку и сказал: "Знаете, ребята, я пойду домой, а как только у вас что-нибудь получится, сразу звоните!
Обязательно звоните, в любое время ночи!"
Ему не позвонили ни в эту ночь, ни в следующую. Ожидаемый звонок прозвучал лишь через три года.
Уже в 1968 году в ФИАНе были зарегистрированы первые настоящие термоядерные нейтроны на мишени из дейтерида лития. Летом 1969 года в Лимейле (Франция) было получено от 100 до 1000 термоядерных нейтронов на импульс. В 1970 году подобные эксперименты были проведены в одной из лабораторий США, в Сандия. За последние годы в СССР и США были проведены эксперименты, в которых на один импульс получали от 107 до 109 нейтронов.