Текст книги "Энергия будущего"
Автор книги: Александр Проценко
Жанр:
Прочее домоводство
сообщить о нарушении
Текущая страница: 13 (всего у книги 14 страниц)
Несколько лет назад в экологической науке появился новый термин "дезертификация" – превращение земель в пустыни. Ежегодно она охватывает по разным причинам 50 тысяч квадратных километров. По утверждению большинства специалистов, главную ответственность за такое нарушение нормальных природных условий несет человек, ибо пустыни возникают из-за плохо контролируемой ирригации, а также нерационального использования пастбищ, слишком интенсивной обработки почвы и вырубки леса. Вот где скрывается зародыш дезертификации. Но есть много средств, способных ее предотвратить, и все они требуют применения энергии.
Серьезные проблемы возникают и с водообеспечением людей, земель, промышленности на юге европейской и азиатской частей нашей страны. Для их решения необходимо строительство могучих гидротехнических сооружений. И опять речь идет об энергии. Вот и чудится, что современный человек, подобно пассажирам мифологического судна, очутился между Сциллой и Харибдой.
Сможет ли атомная энергетика стать тем Одиссеем, который выведет человека в "чистые воды"? Пока атомная энергия – наилучший помощник человека, обещающий решение труднейших проблем, стоящих перед ним.
Рубикон энергетики
Каковы же пределы развития энергетики? Есть ли у нее свой Рубикон, который нельзя переходить?
Среди ее отрицательных последствий первым названо засорение воздушного бассейна. В атмосферу Земли ежегодно выбрасываются сотни миллионов тонн различных веществ. Вот сколько их: твердых веществ – 130 миллионов тонн; двуокиси серы – 180-200; окиси углерода – 350-400; окислов азота – 60-65; углеводородов – 80-90 миллионов тонн. Выходит, что вся наша атмосфера представляет собой аэрозоль, так как содержит массу взвешенных частиц.
Источники аэрозольных частиц, проникающих в атмосферу, разнообразны. Это и сажа от сжигания угля и мусора, и некоторые отходы черной металлургии.
В целом ежегодно воздух насыщается многими миллионами тонн различных веществ. Массу аэрозольных частиц поставляют химические предприятия в процессе превращения газов в твердые тела. Так, при образовании сульфатов из двуокиси серы в воздух за тот же срок уходят 150 миллионов тонн частиц. Всего из-за деятельности человека в год в атмосферу вносится 350– 400 миллионов тонн пыли. По сравнению с ее естественными источниками это еще не так много. Из-за различных природных процессов: землетрясений, деятельности вулканов, пыления почвы, попадания в атмосферу морской соли, пожаров и химических реакций – в атмосфере образуется в Ю раз больше пыли. Казалось бы, оснований для беспокойства пока еще нет. На самом деле оно имеет причины. Основные источники образования пыли расположены вблизи тех мест, где люди живут, отдыхают и работают. Там и повышена ее концентрация.
Исследователи установили, что в кубическом сантиметре парижского воздуха более 100 тысяч пылинок, а над Тихим океаном – всего 500. В две тысячи раз меньше! Это крайний случай. Тем не менее считается, что запыленность в сельской местности в среднем всего лишь в 10 раз меньше, чем в городе.
Энергетика является мощным источником ежегодного поступления в атмосферу 140-160 миллионов тонн очень вредного газа – двуокиси серы. Это следствие сжигания угля и нефти. Поступление двуокиси серы из природных источников эквивалентно 600 миллионам тонн. Значит, человеческая деятельность ответственна за четвертую часть серы, проникающей в биосферу.
Содержание в атмосфере окислов азота на 90 процентов определяется природными источниками. Но наибольшие возмущения в состав атмосферы вносит окись углерода, образующаяся в энергетических установках.
Основная часть этого вредного газа выделяется двигателями внутреннего сгорания. А это составляет около трех четвертых всего количества окиси углерода.
Вес атмосферы земного шара, состоящей в основном из азота и кислорода, равен 5 триллионам тонн (5*10^12 тонн). Поэтому поступление в нее всего каких-то сотен миллионов тонн в год различных газов, казалось бы, не может существенно изменить ее состав. И в самом деле, в результате различных физико-химических реакций, происходящих в атмосфере и при ее взаимодействии с поверхностью Земли и океанов, в ней поддерживается некоторая постоянная и небольшая концентрация вредных газов. Скажем, на миллиард частей воздуха приходится всего 1-4 части двуокиси азота или серы.
Но это только кажется, что данная величина маленькая.
В действительности она недалека от предельно допустимой для человека 30 частей серы на миллиард частей воздуха. Концентрация двуокиси серы в городах в среднем составляет уже около 15-20 частей, то есть в 20 раз больше средней по земному шару, что говорит о приближении к пределу допустимого. А во многих городах она, увы, еще выше. Так, в 1964 году в Чикаго она была уже равна 150 частям на миллиард, то есть в 5 раз превышала предельно допустимую.
Загрязнение атмосферы ведет к ухудшению здоровья, потере трудоспособности, гибели людей. Не всегда заметно, что причина заболеваний кроется в составе атмосферы. Но статистика и чрезвычайные ситуации рельефно отражают действительное положение дел. Вот одна из таких ситуаций. 5 декабря 1952 года перед взором жителей Лондона произошло нечто невероятное: солнце совершенно исчезло с небосвода. Необычайно плотный смог – смесь дыма, тумана и вредоносных газов – держался над английской столицей 3-4 дня. По официальным данным, за это время умерло более 4 тысяч человек. Английские специалисты определили, что воздух над столицей содержал несколько сот тонн дыма и двуокиси серы.
Автомобильный транспорт повышает концентрацию окиси углерода и азота до 10-20 частей на миллион частей воздуха. При определенных условиях под действием солнца в воздухе происходит длинная цепочка реакций и образуется фотохимический смог. Им в настоящее время "заражены" почти все крупные города многих зарубежных стран – Нью-Йорк, Чикаго, Бостон, Детройт, Милан. В Токио июльский смог 1970 года привел к отравлению 8 тысяч человек. Более 400 человек пострадало 24 мая 1974 года от отравления ядовитым смогом в Токио и прилегающих к нему районах. Там при наступлении жарких и безветренных дней уже несколько раз концентрация вредных для здоровья газов поднималась выше допустимых пределов. По токийскому радио и телевидению можно услышать такие сообщения:
"Внимание! Говорит токийский центр по контролю за загрязнением воздуха. Предупреждаем жителей квартала Кото, Эдогава и Котсусина. В воздухе повысилось количество вредных веществ. Внимание! Срочно прекратить школьные занятия на открытом воздухе, детей вернуть в классы. Как можно меньше находиться на улице. Пользуйтесь автомобилями только при крайней необходимости..." Только в 1972 году такие тревожные сообщения объявлялись 176 раз – смог угрожал жителям удушьем.
Население Советского Союза избавлено от смога; и все же есть еще города, в которых превышены предельно допустимые концентрации по некоторым газам.
Нужно сказать, что ситуация с двуокисью седы усложняется тем, что еще нет эффективных способов очистки лродуктов сгорания угля и нефти.
Увеличение содержания в воздухе серы вызывает не только заболевания и смертность, но и приводит к ряду других нежелательных последствий, таких, как повышенная коррозия металлических конструкций, приносящая миллиардные убытки, кислотность дождевой воды, замедляющая рост лесов и развитие культурных растений. Есть и менее печальные последствия. Ученые из Бирмингемского университета (Англия) заявили, например, что процент натуральных блондинок (наверное, и блондинов) с каждым годом снижается. Причина – увеличение в воздухе серы, которая вызывает потемнение волос.
Пожалуй, на этом примере стоит остановиться и сказать, что один Рубикон энергетика уже перешагнула или стоит на его берегу. Нельзя ей дать перейти его.
Среди отрицательных явлений, связанных с развитием энергетики, обращает на себя внимание повышение температуры окружающей среды. В первую очередь тепловые сбросы сказываются на температуре водоемов.
Нужно сказать, что воздействие энергетики (в общем случае всей промышленности) на природу изучено пока недостаточно. Незнание же, как известно, порождает полярные точки зрения на многие проблемы, по которым хотелось бы иметь более определенные суждения, Так, по поводу подогрева воды в водоемах одни специалисты говорят, что он вреден, и называют этот процесс тепловым загрязнением, вызывающим нарушение биологического равновесия. Но вот в конце сентября 1977 года в центре ядерных исследований Карлсруэ (ФРГ) собралось одно из самых представительных совещаний: свыше 100 специалистов из различных стран.
В конце концов они пришли к довольно неожиданному выводу, что нагревание вод не должно иметь вредных последствий, наоборот, одновременное, мол, повышение температуры и содержания кислорода в воде создает благоприятные условия для развития микроорганизмов, разлагающих вредные вещества.
Совещание в ядерном центре не было случайным. Дело в том, что атомные электростанции имеют более низкий КПД, чем электростанции на органическом топливе.
Это означает, что в АЭС для выработки одного и того же количества электроэнергии не только используется больше тепла, но и больше его сбрасывается в окружающую среду.
Вопреки выводам совещания в Карлсруэ многие специалисты считают, что, по-видимому, в некоторых случаях подогрев воды в водоемах вреден. В связи с этим конструкторы стремятся разрабатывать АЭС, потребляющие минимальное количество воды. Такие АЭС будут полезны и даже необходимы там, где вообще нет воды или ощущается ее большой недостаток. Так можно избежать повышения температуры водоемов.
В настоящее время неизбежно общее повышение и температуры атмосферы в местах нахождения электростанций, промышленных предприятий или крупных индустриальных районов. А это приводит к возникновению нежелательных воздушных потоков, изменению влажности воздуха и солнечной радиации – в общем, к изменению микроклимата. Правда, плотность искусственной энергии, обусловленной деятельностью человека, пока еще невелика: всего 0,02 ватта на квадратный метр поверхности Земли. Мощность же солнечного излучения почти в 10 тысяч раз больше. И конечно, такое искусственное энерговыделение не может вызвать возмущений атмосферы планеты. Но уже есть районы, где плотность искусственного энерговыделения существенно выше и вызывает опасение. Например, на территории Японии она равна 2 ваттам на квадратный метр поверхности, то есть почти один процент от солнечного, а в Рурском промышленном районе ФРГ она выше уже в 10 раз (20 процентов от солнечного). Ясно, что такие источники энергии могут серьезно влиять на микроклимат в прилегающих райрнах.
Метеорологи считают, что дальнейший рост искусственного энерговыделения в районах, подобных Руру, Бельгии, юго-востоку США, скажем, на один порядок может вызывать не только значительное изменение микроклимата, но и нарушения в генеральной циркуляции атмосферы всей планеты. Таков еще один рубеж для энергетики, при приближении к которому нужно задуматься, как же быть с климатом.
Очень широко, особенно в последние годы, обсуждается вопрос об общем перегреве Земли в результате деятельности человека. Часто пишущие об этой проблеме прибегают к чрезмерному упрощению. В результате появляются статьи под устрашающими заголовками:
"Энергетика – стоп!", "Время ледников приходит" или уже упоминавшаяся "Ожидается мезозой".
Действительно, расчеты, проведенные многочисленными учеными, показывают, что повышение доли искусственного тепла до 2-3 процентов от солнечного может вызвать изменение теплового баланса Земли и ее климата. Однако, как пишет академик Е. Федоров, доля искусственного тепла, равная 2-5 процентам, – это 30 – 75 единиц Q в год. Как мы видели ранее, такого уровня энергетика за счет известных сейчас источников энергии достигнет лишь через 200-500 лет. Но многие исследователи справедливо отмечают, что такое изменение теплового баланса в атмосфере Земли, какое вызывается при 2-5-процентной доле искусственных источников энергии, может возникнуть значительно раньше и произойдет оно за счет изменения прозрачности атмосферы.
Говорилось уже, что при сгорании органического топлива ежегодно в атмосферу поступает около 20 миллиардов тонн углекислого газа. Концентрация его в атмосфере возрастает со скоростью 9*10^-5 процента в год.
В 1960 году она равнялась 314 частям на миллион частей воздуха, а к 1980 году поднялась до 332. Такие концентрации углекислого газа не влияют на здоровье людей. Но хорошо известно и другое – он в атмосфере действует как стекло в парнике или оранжерее: пропуская солнечные лучи к поверхности Земли, он не выпускает обратно в космос "отраженное" тепловое инфракрасное излучение, имеющее другую длину волны. Этим и создается так называемый парниковый эффект, давший повод и основание многим говорить о перегреве Земли, таянии ледников и повышении уровня океанов.
На самом деле все не так просто. Действительно, многочисленные расчеты показывают, что, например, повышение концентрации углекислого газа вдвое, чего можно ожидать лет через 50, при неизменных других условиях в земной атмосфере может привести к повышению температуры на 1-3 градуса. С другой стороны, при запылении атмосферы за то же время ее температура может снизиться на те же 1-3 градуса. Кстати, на роль запыленности в тепловом балансе планеты также существуют различные точки зрения. Так, одни специалисты именно этим эффектом объясняют ледниковый период, вызванный попаданием Земли в плотное облако космической пыли. Другие считают, что влияние пыли на снижение температуры гораздо слабее, а ее отражательная способность меньше отражательной способности поверхности нашей планеты.
Пока за сорок лет, прошедшие с 1940 года, средняя температура нашей атмосферы не только не возросла, а, напротив, упала на полградуса.
Ответить на вопрос – до каких же пор можно развчвать энергетику, чтобы выделяемое антропогенное тепло не привело к общему разогреву атмосферы, сейчас нельзя. Называемые некоторыми специалистами 3– 5 процентов его от солнечной энергии, существующей на поверхности Земли, мало обоснованы. Однако их нельзя называть и безответственными. Ведь это первые оценки, скорее прикидки, и они полезны как предупреждающие о том, что над проблемой надо думать. Ведь 5 процентов – это 75 Q! Сравните: энергетика сейчас дает всего 0,3 Q. В связи с высказанным возникает и такой вопрос:
правомерно ли вообще утверждать, что поступление в атмосферу дополнительного антропогенного тепла обязательно приведет к общему равномерному потеплению атмосферы?
Нет, отвечает академик Е. Федоров.
"Отнюдь не следует считать, что поступление в атмосферу дополнительного антропогенного тепла обязательно приведет к общему равномерному потеплению атмосферы и соответственно таянию ледников, повышению уровня океанов и т. д. Конечные последствия могут быть иными". Кроме изменения баланса тепла, нужно учитывать множество других факторов, влияющих на температуру атмосферы: глобальные изменения циркуляции в атмосфере, облачности, течений в океане, распределение концентрации углекислого газа и т. п. Поэтому главная проблема, которая должна волновать человека,– это изменение климата Земли, а климат может меняться и частично уже меняется не только потому, что увеличивается количество тепла, вызванного деятельностью человека. Нарушение генеральной циркуляции атмосферы и другие явления, от которых может измениться климат, способны возникнуть и при нарушении мирового водного баланса. Например, при использова-нии для орошения большой части стока рек увеличится испарение воды на континентах и перераспределится энергетический баланс атмосферы. Играет роль и изменение отражательной способности больших участков земной поверхности при посадке на обширных площадях культурных растений или просто замене их вида.
Разнообразный род деятельности человека приводит, а в дальнейшем в еще большей степени будет приводить к изменению климата в различных районах Земли.
Именно это "непланируемое" изменение и вызывает наибольшую тревогу и опасность для людей.
Увеличение потоков тепла и солнечной радиации, уменьшение осадков в засушливых районах и обратная картина в местностях с достаточным количеством тепла и влаги могут привести к серьезным нарушениям в сельском хозяйстве. При изменении климата неизбежны перестройка жилищ, коммунального обеспечения, изменения характера производственной деятельности. Сам человек также достаточно чувствителен к перемене климатических условий.
Поскольку такое непреднамеренное воздействие на климат неизбежно, нужно научиться и планомерно изменять его в нужных направлениях. Задача чрезвычайно трудная, но небезнадежная.
Уже сделаны первые шаги в воздействии на развитие облачности и образование осадков. Рассеяние низких переохлажденных облаков и туманов, применение искусственной кристаллизации капель воды для предотвращения града используются уже в течение нескольких лет в СССР и ряде стран. Эксперименты по воздействию на ураганы проводятся сейчас учеными США. Есть достаточно и других способов воздействия на климат или предотвращения его изменения. О некоторых из них мы расскажем позже.
Конечно, такие разработки потребуют дополнительных, иногда значительных затрат материалов, труда и энергии. Но, обладая достаточным ее количеством, люди смогут справиться с нарушениями климата, происходящими в результате их жизнедеятельности. Нужно только, чтобы эта энергия была достаточно "чистой", не засоряющей землю химическими, аэрозольными и радиоактивными выбросами.
Чистая энергия
Если энергетика должна принять на себя основную долю ответственности за вызываемое ею нарушение теплового баланса водоемов, атмосферы, а в будущем и климата всей Земли и отдельных ее районов, то ответственность за химическое загрязнение атмосферы, за общее вредное воздействие на природу нужно возложить и на другие отрасли промышленности. Такое разделение вины необходимо не для того, чтобы ссылаться друг на друга, а чтобы решать эту проблему комплексно, принимая необходимые меры во всех звеньях народного хозяйства. Посильны ли эти меры для человека? Можно ли добиться чистоты атмосферы и как это сделать?
Сначала коснемся химического загрязнения. Основные его источники: сжигание угля и нефти на электростанциях, в котельных, в различных печах металлургической, химической промышленности и в двигателях внутреннего сгорания. Из защитных мер сейчас наиболее действенны установки на источниках загрязнения различных фильтров по улавливанию пыли и газов. С улавливанием пыли дело обстоит просто – есть относительно недорогие фильтры, позволяющие эффективно улавливать до 95-97 процентов этих частиц. Наблюдения последних лет показывают, что запыление атмосферы растет медленнее, чем развиваются энергетика и промышленность, медленнее, но все же растет. А при усовершенствовании фильтров, по-видимому, с этой проблемой справиться удастся легко, не особенно удорожая производство энергии.
Хуже обстоит дело с газами. Для улавливания многих из них еще не найдено удовлетворительных решений.
В принципе эта задача, конечно, решается, но практически она требует существенных затрат материальных ресурсов и опять-таки энергии.
При использовании в качестве топлива угля можно предварительно проводить его облагораживание – удалять примеси, порождающие выброс вредных газов. Другой путь – газификация угля или переработка его в синтетическое жидкое топливо, например метанол. Конечно, все это требует затраты энергии. Если ее получать, опять сжигая уголь, то снова неизбежны вредные выбросы.
Вот тут и может помочь атомная энергия. Количество этих выбросов существенно уменьшается, если при переработке угля в качестве источника тепла использовать именно ее. Кстати, в некоторых странах для газификации углей уже планируются и разрабатываются ядерные реакторы.
Совершенствование двигателей внутреннего сгорания также приводит к постепенному уменьшению вредной загазованности воздуха. Однако это лишь полумеры, для транспорта нужно отыскивать и внедрять новые виды энергоносителей: электроаккумуляторы, водород. Использование в двигателях водорода резко понижает количество вредных выбросов из них, так как основной продукт при сжигании водорода в атмосфере – это вода. Но на добычу его также потребуется дополнительный расход энергии.
Итак, химическое загрязнение атмосферы можно предотвратить, только затратив дополнительное количество энергии. Выглядит это так, словно круг замкнулся:
чтобы уменьшить вредное воздействие энергетики, нужно затратить дополнительную энергию, а она сама является источником загрязнений.
На самом деле круг можно разорвать. Начну с того, что количество энергии, которую нужно затратить на уменьшение загрязнений, вызываемых энергетикой, относительно невелико. Кроме того, и это, пожалуй, главное, можно и нужно шире использовать более чистые виды энергоисточников. Какому же из них отдать предпочтение?
К сожалению, до сих пор такой обстоятельный сравнительный анализ еще не был сделан. Не потому, что им не считали нужным заняться, а потому, что провести его с учетом всех факторов чрезвычайно сложно. В чем эта сложность?
Приведу такой пример. Гидроэлектростанция, построенная на реке, безусловно, полезна: она вырабатывает электроэнергию и помогает регулировать сток рек.
В то же время ее появление наносит ущерб природе и в конечном счете человеку, ибо водохранилища ГЭС отнимают иногда большие луговые площади и пахотные земли. А это приводит к ухудшению обеспечения человека продуктами питания; часто погибает и большая часть рыбного населения; изменение водного режима отражается на климате. Можно назвать и другие факторы.
Чтобы оценить все здесь сказанное количественно, могут потребоваться годы. Только длительное наблюдение может помочь понять, в какую сторону и с какой скоростью будут развиваться те или иные явления.
Несмотря на сложность такого анализа, уже проведены первичные (их иногда называют поисковыми) исследования, учитывающие основные факторы, поддающиеся количественной оценке.
В одной из таких оценок, сделанной зарубежными специалистами, в качестве критерия сравнения было выбрано количество потерянных человеко-дней, приходящихся на выработанную единицу энергии.
Мы уже говорили, что практически любой вид деятельности человека наряду с пользой приносит и ущерб его здоровью, его трудоспособности. Электростанция, работающая на угольном топливе, безусловно, нужна и полезна. Но на каждый выработанный ею киловатт-час приходится большое количество выброшенных пыли и вредных газов, загрязняющих атмосферу, ухудшающих самочувствие человека, уменьшающих его трудоспособность, сокращающих срок его жизни. Все это и приводит к потере дней, которые могли бы быть отданы трудовой деятельности. Удобно выражать эти потери в человеко-днях. Для общества в целом важна именно эта характеристика.
Приведем сравнительные оценки, сделанные для нескольких видов энергоисточников. Если потери человеко-дней на единицу выработанной электроэнергии для электростанции, использующей в качестве топлива природный газ, принять за единицу, то для других они будут такими: для атомной электростанции-1; для электростанции на угле – 200-300; для электростанции на солнечной энергии – 2000-3000; для электростанции на энергии ветра – 3000.
Другие специалисты получают иные по сравнению с приведенными величины, иногда отличающиеся в 2– 5 раз. Поэтому хотелось бы еще раз сказать, что это первые приближенные оценки, которые никоим образом нельзя абсолютизировать. Безусловно, последующее уточнение методики расчета, более глубокий и широкий анализ приведут к изменению этих данных. Но ясно, что атомные электростанции с полным основанием могут претендовать на роль самого чистого источника энергии.
теперь некоторые разъяснения, поражает полученная величина вредности солнечной электростанции. Она в тысячи раз больше вредности станции на ядерном топливе, хотя на первый взгляд должна быть самой безвредной. Но только на первый.
Плотность солнечной энергии мала. Чтобы на солнечной электростанции выработать единицу энергии, нужно разместить на поверхности Земли большое количество приемных преобразующих устройств. Для их изготовления необходимо определенное количество различных металлических и неметаллических материалов.
А при работе шахт, рудников, химических, металлургических и других заводов, производящих и обрабатывающих эти материалы, в атмосферу будет выброшено немало вредных веществ. Значит, в конечном счете выработка электроэнергии на солнечной электростанции также оказывает вредное воздействие на человека.
В этом смысле не являются исключением и электростанции, использующие энергию ветра или океана. А вот в угольных электростанциях почти весь вредный эффект вызван их собственными выбросами.
Проведенное сравнение позволяет сделать два важных вывода. Во-первых, атомная энергетика наиболее чистая и безвредная среди перспективных масштабных источников энергии – угольных, солнечных, внутриядерных; во-вторых, даже при самом интенсивном развитии атомной энергетики нельзя обеспечить чистоту атмосферы, вод и поверхности Земли, если не будут разработаны меры по очистке сбросных газов и других видов отходов в остальных отраслях народного хозяйства.
Их необходимо предусмотреть на всех предприятиях.
Ведь ныне, учитывая все достижения технологии, в среднем 95-98 процентов исходного сырья у ходит в отходы, которые засоряют, захламляют местность, окружающую предприятия. Необходимо внедрить такой порядок, согласно которому все отходы одних предприятий стали бы полноценным сырьем для других. Только таким путем может быть восстановлен нормальный кругооборот веществ. Главная задача специалистов-технологов – создать технологические схемы и процессы, способные хорошо вписываться в кругооборот веществ, установившийся в биосфере.
Конечно, нельзя утверждать, что совершенствования производств полностью устранят воздействие на природную среду, как и доказывать, что изменение природной среды, ее отход от "естественного состояния" – обязательно ее ухудшение. Стоит привести слова, сказанные по этому поводу Д. Арманд: "На природу можно воздействовать так, что все вносимые в нее частные изменения приведут только к ее обогащению. Но для этого надо прекрасно знать ее механизм".
Мы уже не раз говорили, что дальнейшее развитие энергетики может приводить ко все большим неуправляемым изменениям в климате планеты. Все это так, но, используя различные методы управления стоками и источниками тепла, человек может благотворно воздействовать и на климат. Наверное, в будущем появится возможность размещать крупные ядерные источники энергии с учетом их влияния на циркуляцию в атмосфере.
Тепловой баланс планеты можно изменять, регулируя облачность. Реальным способом изменения климата является изменение отражающей способности поверхности Земли. Так, посадка некоторых видов растительности в тундре может сильно "поправить" тепловой баланс.
Сброс тепла в морские течения с преобразованием их траекторий – еще одно мощное средство управления потоками тепла. В принципе допускается внесение специальных веществ в верхние слои или создание затемняюще-отражающих слоев различного состава над земной атмосферой. Принципиально возможен еще один способ воздействия на потоки теплового излучения.
В атмосфере Земли для излучения с длиной волны от 8 до 13 микрон существует "окно". Такое излучение свободно проходит сквозь атмосферу и находящиеся в ней пары воды и углекислый газ. Можно подобрать такие материалы для труб, с помощью которых на электростанциях будет отводиться низкопотенциальное тепло, что длина волны этого тепла будет лежать как раз в "окне" атмосферы и оно свободно может уходить в космическое пространство.
Короче говоря, существует много способов управления потоками тепла, а значит, и климатом планеты. Бесспорно, такие способы потребуют больших затрат энергии. Но не нужно забывать, что нужда в них появится именно тогда, когда человек будет оперировать очень большими количествами энергии. Нельзя говорить о проблемах, связанных с изменением климата, при масштабном изменении энергетики в будущем и в то же время судить о возможностях целенаправленного воздействия на климат, исходя из возможностей энергетики сегодняшнего дня.
СКОРО ЛИ 2000 ГОД?
Не правда ли, вопрос в заглавии звучит почти риторически? И все же на него можно ответить по-разному: "через полтора десятка лет", "скоро", "не скоро".
Так скоро или не скоро? Психологи говорят, что люди ответят на вопрос этот неодинаково. Если у человека нет активного отношения к будущему, оно будет "очень не скоро". Это утверждение многократно проверено экспериментально.
Интересны в связи с этим результаты опросов, проведенных одним из сотрудников Международного института исследований проблем мира в Осло. Анализ ответов на вопрос "Далеким или близким кажется вам 2000 год?" показал, что для представителей социалистических и развивающихся стран он ближе, чем для представителей развитых капиталистических стран.
Активное отношение к будущему, борьба за осуществление идеалов общества приближает "далекое завтра". Человек с таким мировоззрением, несмотря на трезвое понимание того, что, может быть, еще десятилетия отделяют его от намеченной цели, от будущего, уверен, что оно наступит "скоро".
Перестройка энергетики, которая началась сейчас, в ближайшие 15-20 лет должна сделать главные шаги, и 2000 год – один из важнейших рубежей. Начальные этапы перестройки определены Энергетической программой СССР, о которой и пойдет разговор.
Сначала давайте отступим на несколько десятилетий назад, в 1920 год, и оттуда посмотрим на принятую Энергетическую программу СССР. Что же произошло в том далеком 1920 году? Была принята историческая программа ГОЭЛРО (Государственная комиссия по электроэнергии России) – вторая программа партии, как назвал ее Владимир Ильич Ленин. Интересно, как создавалась эта программа, какой она была?
В феврале 1920 года на Мясницкой улице, 24, в квартире 98 состоялось первое заседание мозгового центра комиссии. (Да, да! Именно в квартире размещался электроотдел ВСНХ. Сейчас в этом здании на улице Кирова редакция журнала "Наука и жизнь". Будете проходить мимо – взгляните: на здании мемориальная доска в память о плане ГОЭЛРО.) У только что разгоревшейся печки-времянки девятнадцать человек.
– Ну что? Кажется, нашей комиссии удалось расшуровать первую топку?.. произнес, улыбаясь, председатель комиссии Глеб Максимилианович Кржижановский, обладатель множества титулов: вице-президент АН СССР, председатель Госплана СССР, один из организаторов Петербургского "Союза борьбы за освобождение рабочего класса". Вокруг него единомышленники: М. Шателен, Л. Рамзин, Г. Графтио, К. Круг, Б. Угрюмов.