355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Проценко » Энергия будущего » Текст книги (страница 3)
Энергия будущего
  • Текст добавлен: 26 сентября 2016, 11:04

Текст книги "Энергия будущего"


Автор книги: Александр Проценко



сообщить о нарушении

Текущая страница: 3 (всего у книги 14 страниц)

Последовательность шагов, которые мы делали, подходя к делению ядер, почти обратна историческому ходу событий. До 1938 года физики вообще не знали, что деление возможно. Лишь открыв это опытным путем, они объяснили природу данного явления: почему его легко осуществить с помощью нейтронов и трудно с помощью протонов. Вот как это происходило.

С 1919 года физики-экспериментаторы начали изучать ядра элементов, бомбардируя их-пучками летящих частиц: ядрами гелия (альфа-частицами), протонами.

При обстреле ядра влившаяся в него частица меняла его заряд и атомный вес. Первым человеком, осуществившим превращение ядра, был английский ученый Э. Резерфорд. Он наблюдал реакцию получения кислорода из азота при обстреле последнего ядрами гелия.

У многих исследователей потом возникла мысль о создании новых элементов, которых нет на земле. Начавшаяся серия опытов приносила массу новых сведений, одно открытие следовало за другим. Началась эта серия опытами французских молодых ученых Ирэн и Фредерика Жолио-Кюри. При бомбардировке бериллия ядрами гелия были обнаружены какие-то новые частицы. Д. Чедвик в Англии повторил опыты Кюри и показал, что эти новые частицы имели массу протона, но были лишены электрического заряда. Так были открыты нейтроны. Советским ученым Д. Иваненко и немецким физиком В. Гейзенбергом была выдвинута подтвердившаяся затем гипотеза о том, что нейтроны являются составной частью ядра.

В 1934 году Э. Ферми бомбардирует атомы вновь открытыми частицами нейтронами. Обстреливая ими уран, он получил новые радиоактивные ядра, которые принял за новые элементы, следующие в периодической таблице Менделеева за ураном.

Но лишь в 1939 году стало ясно, что в действительности происходит при обстреле урана нейтронами.

В конце 1938 года Ирэн Жолио-Кюри и югославский ученый Савич провели опыты по бомбардировке урана и обнаружили среди продуктов, возникших после бомбардировки, вещество, сходное с лантаном – элементом, весьма далеким от урана в таблице Менделеева.

Эти опыты были повторены О. Ганом и его сотрудником Ф. Штрассманом (Германия). Среди продуктов облучения они обнаружили барий и молибден и уже в январе 1939 года опубликовали это сенсационное сообщение.

Атомный вес бария 137, что означало, что его ядро содержит чуть более половины числа протонов и нейтронов ядра урана. Таким образом, было установлено, что ядро урана раскалывается на более легкие ядра, в числе которых ядро бария. Этот процесс назвали расщеплением ядра. Затем появился термин – деление.

Позже было установлено, что при делении урана-235 может образоваться до 30 пар различных элементов. Характер деления таков, что ядро распадается на равные половины или образует одно тяжелое и одно легкое ядра.

В дальнейшем опыты, поставленные Ф. ЖолиоКюри, показали, что при делении урана выделяется громадная энергия. При этом были обнаружены осколки урана на расстоянии трех миллиметров от места их деления, что свидетельствовало о ядерном взрыве. Ведь если сопоставить указанное расстояние с масштабом земного шара, то оно равносильно отбрасыванию осколков нашей планеты в случае ее взрыва на расстояние 400 миллионов миллиардов километров, то есть на половину диаметра нашей Галактики.

Сомнений не было – человек впервые осуществил ядерный взрыв.

Ленинградским физиком-теоретиком Я. Френкелем и датским ученым Н. Бором была разработана теория деления ядра урана. Из нее следовало, что при делении появляется больше нейтронов, чем нужно для образования легких ядер. Некоторые из этих частиц, вошедших в новые ядра, превращаются в протоны, испуская при этом один электрон. Другие, избыточные, нейтроны выбрасываются из ядра и остаются свободными.

Об испускании нескольких нейтронов расколовшимся ядром стало достоверно известно в начале 1939 года после проведения экспериментов по делению урана. Это и натолкнуло физиков разных стран на мысль узнать, сколько же нейтронов испускается при делении урана.

Они готовили эксперименты и с нетерпением ожидали своих и чужих результатов.

По разным причинам им представлялось, что результаты будут различные. Так, венгерский физик Л. Сциллард, эмигрировавший в Америку, в письме к Ф. Жолио-Кюри изложил свои надежды, отражающие ту драматическую ситуацию, в которой находились ученые:

"Мы все надеемся, что количество выделяющихся нейтронов либо равно нулю, либо недостаточно, и нам не придется больше беспокоиться по этому поводу".

Что же вызвало беспокойство ученых? Сформулируем задачу, которую необходимо было решить, четче.

Сформулируем ее так, какой она представлялась физикам, начинавшим борьбу за покорение атома.

Предстояло создать установку большой мощности для получения энергии от деления ядер. Если бы не требование высокой мощности, такую установку можно было бы создать довольно просто. Надо взять кусок урана-235 и начать обстреливать его нейтронами. В качестве источника нейтронов, состоящего из смеси нескольких элементов (в том числе радиоактивных), используем такой, из которого в секунду вылетает 30 миллиардов нейтронов. Для нас "сейчас неважно, как устроен этот источник. Отметим только, что он очень большой мощности по сравнению с источниками, применяемыми, например, физиками-экспериментаторами.

Допустим, что все нейтроны, попав в ядра урана, вызовут их деление. В таком случае в секунду будет выделяться 2-10^-4 килокалорий. Но это же очень и очень мало! В этой установке в течение суток выделится всего 20 килокалорий, то есть энергия, достаточная лишь для того, чтобы вскипятить стакан воды. Ясно, что такая установка для энергетики не годится. У нее должен быть другой принцип работы. Какой? Примерно такой, как в обычной реакции горения. Ведь мы не поджигаем спичкой каждое полено, каждый кусок угля и не подводим энергию к каждой паре атомов углерода и кислорода. Достаточно зажечь топливо в каком-то одном месте, а дальше реакция охватывает всю горючую массу. Пламя, словно по цепочке, переходит от одной части топлива к другой. Так осуществляется цепная реакция горения.

Теперь нет никаких сомнений, что для деления урана нужна также цепная реакция. Деление одного ядра должно вызывать деление других; именно здесь должны сыграть свою роль нейтроны, вылетающие при делении. Они и будут тем пламенем, которое перенесет реакцию от одного ядра к другому.

Пусть в нашем распоряжении только 100 нейтронов.

Кажется, это не так много. Но такой малостью можно многого добиться: можно расщепить 100 ядер урана.

Если при этом из каждого разделившегося ядра вылетит по 3 новых нейтрона, то мощность реакции очень быстро разовьется и она пойдет сама собой. Из разделившихся 100 ядер урана вылетят 300 новых нейтронов уже второго поколения (первое поколение – это 100 исходных нейтронов). Нейтроны второго поколения произведут уже 300 делений, при которых вылетит 900 нейтронов уже третьего поколения. В следующем число делений снова увеличится в три раза и станет равным 2700, затем 8100 и т. д. Число делений будет увеличиваться безгранично, если вовремя не остановить этот процесс. Такая цепная реакция называется растущей.

Если бы при каждом делении урана вылетало не 3 нейтрона, а только один, то число делений в каждом поколении оставалось бы постоянным. Наконец, если при делении вылетало бы меньше одного нейтрона, скажем, 0,5 (один нейтрон на два акта деления), тогда число делений в последующих поколениях сокращалось бы вдвое: вместо 100-50, затем 25... Такая цепная реакция в конце концов прекратится.

Теперь мы подошли к концу поиска принципов работы установки, использующей энергию деления ядер.

Впрочем, с точки зрения физика, тут-то и начинается настоящий поиск. И пожалуй, он будет прав. Пока мы знаем только принцип работы установки, но ведь ее еще нужео сделать так, чтобы осуществился найденный принцип.

После открытия деления ядер в том же, 1939 году на научном совещании советских физиков в московском Доме ученых обсуждалась возможность возникновения цепной реакции деления урана. Хотя было еще очень мало экспериментальных данных, общие условия, необходимые для осуществления цепной реакции, были сформулированы. Со времени этого совещания исследования деления урана нейтронами заняли центральное место в лаборатории крупного ученого-физика Игоря Васильевича Курчатова, работавшего тогда в Ленинградском физико-техническом институте. Он организовал семинар, на котором обсуждались все вопросы деления урана. К работе были привлечены ленинградские физики Ю. Харитон, Я. Зельдович, Г. Флеров. Уже в ноябре 1939 года на состоявшемся в Харькове совещании физико-математического отделения Академии наук СССР Ю. Харитоя изложил проведенное им и Я. Зельдовичем теоретическое исследование течения цепной реакции в уране. После харьковского совещания И. Курчатов направил все научные силы на исследования размножения нейтронов. Его молодые сотрудники Г. Флеров и К. Петржак изучали процессы деления урана, когда нейтроны "поставлялись" внешним источником. Както поздней ночью, собираясь идти домой, они его убрали и поразились: деление урана продолжалось. Соратник И. Курчатова физик И. Головин так описывает продолжение этого события. "Позвонили Курчатову. Обсудили удивительный результат и продолжали наблюдать.

В два часа ночи Курчатов позвонил в лабораторию и сказал: "Тщательно проверьте. Это не открытие, а какая-то грязь". В течение нескольких месяцев он заставлял своих учеников менять условия опытов и добывать неопровержимые факты. Возникали сомнения: может быть, лаборатория заражена радиоактивностью? Нет, ни один радиоактивный элемент не мог дать таких сильных импульсов. Может быть, деление вызывают космические лучи? Немедленно опыты переносятся под землю, на станцию "Динамо" Московского метрополитена. Нет, космические лучи тут ни при чем... Когда все сомнения были разрешены, И. Курчатов Наконец согласился на опубликование открытия.

Г. Флеров с К. Петржаком в начале 1940 года послали краткое сообщение об открытом ими новом явлении – самопроизвольном делении урана – в американский журнал "Физикал ревью", в котором печаталось большинство сообщений об уране. Письмо было опубликовано, но проходили неделя за неделей, а отклика все не было. Просматривая американские журналы, советские физики обнаружили поразительный факт. После бурного потока статей, наперебой сообщавших о результатах исследования деления урана, американская печать вдруг умолкла".

После Великой Отечественной войны мы узнали, что инициатором засекречивания работ по урану была группа физиков во главе со Сциллардом. Да, именно тем Сциллардом, который в письме к Ф. Жолио-Кюри выражал надежду, что число нейтронов, выделяющихся при делении, будет слишком малым, чтобы вызвать беспокойство. Беспокойство какого рода его волновало, из-за чего?

Теперь это очевидно. Если число нейтронов, вылетающих при одном акте деления, велико, то возможна растущая цепная реакция деления, которая, если ее не контролировать, может привести к взрыву, взрыву громадной мощности. А это не что иное, как атомная бомба. Надо иметь в виду, что в эти годы в Германии фашизм достиг апогея. Всем было ясно, куда гитлеровцы ведут мир: он стоял на грани второй мировой войны.

Опасаясь, что получаемые результаты могут быть использованы фашизмом для создания ядерного оружия, Л. Сциллард и предложил засекретить работы по урановой проблеме.

В Советском Союзе урановая проблема последний раз открыто обсуждалась в Москве в ноябре 1940 года на Всесоюзном совещании по физике атомного ядра.

И. Курчатов и Ю. Харитон выступили тогда с обстоятельными докладами об условиях осуществления цепной реакции.

После этого общение физиков СССР, США и других стран прервалось. Возобновилось оно только в послевоенные годы.

Что же касается количества нейтронов, вылетающих при делении урана, то их оказалось достаточно. Первые эксперименты, проведенные группой Ф. Жолио-Кюри, разрушили отчаянные надежды Л. Сцилларда на то, что ядерная реакция заглохнет. Освобождение энергии атома оказалось возможным: при делении одного ядра урана французские физики насчитали от 2,8 до 4,2 вылетающего нейтрона. Позже это число было уточнено: тщательные измерения показали, что количество освобождающихся нейтронов неодинаково в разных случаях деления и зависит от того, каким образом распалось ядро урана. При одном акте деления может быть всего один нейтрон, при другом – два, а при следующем – три.

Если подсчитать среднее число нейтронов, вылетающих при делении, то окажется, что оно равно 2,5.

Заканчивая рассказ об истории открытия деления урана, нельзя пройти мимо такого важного факта: большую часть фундаментальных открытий делали молодые ученые. В те годы Э. Ферми, И. Курчатову и Ф. ЖолиоКюри было всего по 30-35 лет. Да и ныне стало привычным, что самый большой творческий вклад в развитие науки вносят молодые исследователи. Их успех объясняется тем, что им легче выкорчевывать из своего подсознания устаревшие понятия и истины.

Открытие, сделанное в бассейне

Казалось бы, имеется все для создания установки по извлечению энергии ядра: есть уран-235, способный делиться, есть самопроизвольное деление урана, которое дает начало цепной реакции, и, наконец, для поддержания цепной реакции есть большое количество нейтронов, вылетающих при делении.

Если бы, скажем, возникло требование построить атомный реактор мощностью 500 ватт, работающий на протяжении пяти лет, то понадобился бы всего один грамм урана.

Однако нечего надеяться с помощью такого реактора вскипятить воду в чайнике (ведь 500 ватт – мощность обычной бытовой электроплитки), так как в нем не возникнет самоподдерживающейся цепной реакции.

Почему?

В какой-то момент в таком кусочке урана произойдет самопроизвольное деление хотя бы одного ядра. Допустим, при этом вылетят два нейтрона, которые, попав в еаходящиеся рядом два ядра урана, вызовут их деление... По логике вещей, должна получиться цепная реакция. Но быть уверенным в том, что два нейтрона, вылетевшие при самопроизвольном делении первого ядра, попадут в соседние ядра урана, нельзя.

Можео привести такой пример. Попробуйте, встав напротив открытого окна дома, попасть в него хотя бы теннисным мячиком. Можно с уверенностью сказать, что это сделать нетрудно. Но если, скажем, в каком-то заранее неизвестном месте будет подвешен спичечный коробок и попасть в него надо с закрытыми глазами, мячик, пожалуй, придется бросать несколько тысяч раз.

Точно в таком же положении находится и нейтрон, вылетевший из разделившегося ядра. Он тоже ничего "не видит", и весьма вероятно, что он пролетит мимо всех окружающих его ядер урана. Ведь кусок урана только нам кажется очень плотным, непроницаемым веществом.

Для нейтрона же это пустота, в которой ему лишь изредка попадаются ядра урана. Их объем в этом кусочке занимает всего одну десятитриллионную долю. Сам нейтрон по сравнению с этим "пустым" кусочком урана так же мал, как шарик объемом в один кубический миллиметр по Сравнению с Солнцем.

Чтобы рождающиеся нейтроны могли попасть в ядра урана, нужно на пути их полета увеличить количество этих ядер, а значит, увеличить толщину слоя урана, через который должны пролетать нейтроны. С ростом размеров куска урана, который мы можем называть реактором, все большее число нейтронов будет попадать в ядра урана, вызывая их деление.

При каком-то размере куска доля нейтронов, попадающих в ядра урана, будет достаточна для поддержания цепной реакции. Этот минимальный объем реактора, при котором обеспечивается самоподдерживающаяся цепная реакция, называют критическим объемом, а соответствующий вес урана – критической массой. Величина ее для урана-235 составляет около 50 килограммов.

Этот реактор мы "построили" целиком из урана.

Однако более распространены реакторы другого типа, в которых уран перемешан с каким-либо неделящимся элементом. Тогда критическая масса может быть гораздо меньшей.

Основной принцип, лежащий в основе построения такого реактора, был открыт Э. Ферми в 1934 году, когда вообще еще ничего не было известно о делении урана.

Вместе со своими сотрудниками Б. Понтекорво, Амальди и другими Э. Ферми занимался исследованием радиоактивности различных элементов. Образцы изготавливались в виде пустотелых цилиндров с вставленными в них источниками нейтронов. При облучении материала цилиндрика нейтронами образовывались радиоактивные ядра. Именно их радиоактивность и изучали исследователи. И вот 22 декабря 1934 года, производя опыты с серебряным цилиндриком, Б. Понтекорво обнаружил, что активность цилиндрика была разной в зависимости от того, где он стоял в момент облучения. Оказалось, что предметы, находящиеся вблизи цилиндрика, способны влиять на его активность: если цилиндрик облучали, когда он стоял на деревянном столе, его активность была выше, на металлической подставке она понижалась.

Вот что пишет по этому поводу Лаура Ферми в книге "Атомы у нас дома": "Теперь уже вся группа заинтересовалась этим и все приняли участие в опытах. Они поместили источник нейтронов вне цилиндра и между ним и цилиндриком ставили различные предметы.

Свинцовая пластина слегка увеличивала активность.

Свинец – вещество тяжелое. "Ну-ка давайте попробуем теперь легкое! предложил Ферми. – Скажем, парафин". Счетчик словно с цепи сорвался, так и защелкал.

Все здание загремело возгласами. Немыслимо! Невообразимо! Черная магия! Парафин увеличивал искусственную радиоактивность в сто раз...

"Давайте-ка попробуем установить, какое действие окажет на активность серебра большое количество воды", – заявил Энрико.

Лучшего места, где имелось бы "большое количество воды", чем фонтан с золотыми рыбками в саду... позади лаборатории, нельзя было и придумать. Они притащили свой источник нейтронов и серебряный цилиндрик к фонтану и опустили то и другое в воду. Результаты эксперимента привели их в неистовое возбуждение... Вода также во много раз увеличивала искусственную радиоактивность серебра".

Чем же было вызвано такое "неистовое возбуждение" Э. Ферми и его сотрудников? Что было необычного и, если хотите, на первый взгляд противоречивого в этих опытах?

Вот что поразило исследователей. Ведь радиоактивность серебряного цилиндрика определяется тем, сколько нейтронов, вылетающих из источника, попадет в ядра серебра, образуя при этом радиоактивные ядра. Но ведь количество вылетающих нейтронов не менялось и цилиндрик оставался прежним, а тем не менее радиоактивность возрастала. Значит, в силу каких-то причин сечение ядер серебра, то есть площадь их, то есть мишени, в которые попадали нейтроны, менялось в зависимости от соседствующих предметов. Еще более фантастичным оказался тот факт, что сечение ядер для налетаюших на них нейтронов было в несколько десятков раз больше геометрической площади сечения ядер серебра.

Это поставило ученых в тупик. Когда группа Э. Ферми в том же году сообщила о результатах своих исследований, многие физики посчитали эти опыты ошибочными.

Ведь получалось, что вокруг ядра есть какая-то зона, намного превышающая площадь ядра, попав в которую нейтрон тут же захватывался ядром. Но если даже признать, что такое явление возможно, нужно было объяснить, почему эта площадь зависит от предметов, находящихся вблизи цилиндра.

Первое объяснение этим фактам дал сам Э. Ферми.

Уже во время эксперимента он догадывался, в чем первопричина этого явления. И не случайно предложил провести опыты в бассейне с водой. Позже многочисленными опытами и теоретическими разработками удалось существенно прояснить картину взаимодействия нейтронов с ядрами. Давайте и мы более подробно посмотрим, что происходит с нейтронами, пролетающими через какое-либо вещество. Ведь в опытах Э. Ферми активность цилиндрика менялась как раз потому, что между ним и источником нейтронов размещали разные материалы.

В основном картина взаимодействия нейтронов с веществом такова. Столкнувшись с ядром атома, нейтрон может просто поглотиться в нем. Если это ядро делящегося материала, то может произойти деление ядра.

Наконец, столкнувшись с ядром, нейтрон может просто отскочить от него рассеяться. Вот это событие следует рассмотреть внимательнее.

Если летящий футбольный мяч ударится о стенку дома, он отскочит от нее и с чуть меньшей скоростью полетит в каком-то другом направлении. Но если он ударится о другой такой же мяч, то может случиться так, что он совсем или почти совсем остановится, а тот, что находился в покое, полетит со скоростью, близкой к скорости налетевшего на него мяча. Значит, в первом слчае (при столкновении со стенкой) скорость футбольного мяча почти не изменилась, а во втором (столкнонии мяча с мячом) она стала близка к нулю. Конечно, и во втором случае футбольные мячи могли бы столкнуться так, что после удара полетели бы в разные стороны с какими-то скоростями, правда, меньшими, чем скорость налетевшего мяча, но для нас важен тот факт, что при соударении мяча с телом, масса которого оч"ень велика по сравнению с ним, скорость последнего почти не меняется. При столкновении же с телом массой, равной или близкой его массе, его скорость может изменяться весьма существенно.

Приблизительно то же самое происходит и с нейтронами, рассеивающимися на различных ядрах. Если нейтрон пролетит сквозь свинец (как в первом опыте Э. Ферми), то, сталкиваясь с ядрами атомов свинца, которые в 200 раз тяжелее нейтрона, он отскакивает от них, как футбольный мяч от стенки дома, почти ее уменьшая своей скорости, а следовательно, и энергии.

Значит, рассеяние нейтронов свинцом не приводит к существенному уменьшению их энергии.

Но вот источник нейтронов был помещен в воду, и его нейтроны, прежде чем добраться до серебряного цилиндрика, должны были пройти через слой воды, в которой очень миого атомов водорода, то есть много протонов, почти равных по весу нейтронам. Соударяясь с ними, как футбольный мяч с другим мячом, нейтрон может потерять большую часть своей энергии.

Чем больше число раз нейтрон столкнется с ядрами водорода, тем меньше будет его скорость, а значит, и энергия. Конечно, совсем остановиться иейтрон не может. Ведь атомы вещества не находятся в покое. Они движутся, колеблются, сталкиваются, обусловливая этим движением температуру вещества. Вот и получается, что остановиться нейтрон ее может. Если он попытается это сделать, на него немедленно налетели бы беспорядочно движущиеся окружающие его ядра и заставили бы двигаться. Итак, минимальная скорость движения нейтрона определяется температурой вещества. При комнатной температуре эта скорость равна всего двум тысячам метров в секунду, и поэтому нейтроны, движущиеся с такой скоростью, называют тепловыми, или медленными, так как их скорость после столкновения с окружающими ядрами вещества замедляется в 10 тысяч раз. Скорость же нейтронов, вылетающих при делении, равна 20 тысячам километров в секунду. Поэтому их называют быстрыми.

Теперь понятно, почему были разными результаты опытов, поставленных Э. Ферми при облучении серебряного цилиндрика. В одном случае на него падали быстрые нейтроны, в другом – медленные. Значит, площадь сечения ядра-мишени зависит от того, какова энергия нейтрона, налетающего на ядро. Ясно, что когда мы говорим о площади сечения ядра, то подразумеваем не геометрическую, а эффективную площадь ядра, попав в которую нейтрон провзаимодействует с ядром, то есть поглотится, рассеется или вызовет деление.

Есть такая игра: на дне небольшой коробочки сделано несколько лунок и там столько же шариков. Задача заключается в том, чтобы, покачивая коробочку, заставить все шарики упасть в лунки. Попробуйте сделать это, тряся коробочку очень резко. Поверьте, из этого ничего не получится. Шарики, быстро перекатывающиеся по дну коробочки, пролетят мимо лунок, и если даже попадут в них, то тотчас выскочат и покатятся дальше. Только очень осторожно наклоняя коробочку, так, чтобы шарики катились медленно, можно заставить их попасть в лунки. Приблизительно так же можно было бы объяснить увеличение площади сечения ядра при

уменьшении скорости нейтрона. Чем медленнее нейтрон, чем дольше он находится вблизи ядра, тем больше вероятность того, что он не проскочит мимо него.

Здесь целесообразно заметить, что истинная причина такой зависимости сечения ядер от скорости налетающих нейтронов лежит в двойственной природе самого нейтрона. Мы считали, что он – частица, подобная, например, очень маленькому шарику. И действительно, во многих явлениях и процессах нейтрон ведет себя как частица. Но существует множество опытов, которые можно объяснить только, посчитав нейтрон неким сгустком волн, что он как бы размазан в пространстве. При этом оказывается, что чем меньше его скорость, тем больше длина его волны и его размер. Если же нейтрон очень медленный, то может оказаться, что его размер в несколько тысяч раз больше размера ядра. Поэтому так сильно возрастает площадь, попав в которую нейтрон взаимодействует с ядром. Физики называют эту площадь сечением ядра, именно ядра, а не налетающего на него нейтрона.

Это открытие позволило предложить другой тип атомного реактора, нежели просто кусок металлического урана-235. Необходимое условие осуществления цепной реакции – это удержание в таком реакторе достаточного количества нейтронов, рождающихся при делении. Если реактор делается только из урана, то приходится значительно увеличивать размеры шара, так как при делении урана рождаются быстрые нейтроны, а сечение ядер для таких нейтронов очень маленькое, и большое количество нейтронов улетает из уранового шара, так и не вызвав нового деления.

Ограничить вылет нейтронов из атомного реактора и заставить их делить ядра урана можно и другим способом. Для этого в реактор надо добавлять любой химический элемент, замедляющий нейтроны, например водород. Столкновение с ядрами водорода будет не только препятствовать вылету нейтронов, но и замедлять их.

А медленные нейтроны, как мы уже знаем, будут более эффективно захватываться ядрами урана и делить их.

Если такой реактор сделать в виде сферы, заполненной водой, в которой будет растворен уран, то, чтобы началась цепная реакция, потребуется всего около килограмма урана. Такой атомный реактор называют реактором на тепловых, или медленных, нейтронах.

Реактор, в который специально не вводится замедляющее вещество и представляющий собой, например, сферу из металлического урана, называют реактором на быстрых нейтронах.

Так целая цепочка открытий, сделанных в 30-е годы нашего столетия, дала возможность разработать теорию и приступить к созданию атомного реактора, в котором при делении ядер освобождалась бы внутриядерная энергия.

Конечно, всем этим достижениям предшествовали фундаментальные классические исследования, а попытки проникнуть внутрь ядра начались на несколько десятилетий раньше. Точно так же ведущиеся в наше время исследования по физике ядра и элементарных частиц несомненно приведут к новому скачку в понимании тайн веществ, не меньшему, чем был осуществлен в те уже довольно далекие годы.

ТЫСЯЧИ ВОПРОСОВ

Я бы предпочел найти истинную причину хотя бы одного явления, чем стать королем Персии.

Демокрит

Одно из основных преимуществ атомной энергетики – это огромная калорийность используемого в ней ядерного топлива. Вспомните числа: деление урана дает 20 миллионов килокалорий на грамм разделившегося топлива против 7 килокалорий на грамм угля. Это много, бесконечно много. Такая высокая калорийность позволяет значительно уменьшить объем перевозок топлива.

Кроме того, одним из главных достоинств атомной энергетики является возможность перенесения центра тяжести производства энергии из отрасли, добывающей топливо (уголь, нефть, газ, сланцы), в отрасль машиностроения с ее традиционно поточным методом производства и высокой степенью автоматизации.

В действительности эффективная калорийность ядерного топлива оказывается не столь высокой. Правда, на транспортных расходах некоторое уменьшение выхода энергии в реакторе по сравнению с расчетной почти не сказывается. Подумаешь, вместо 20 миллионов килокалорий из грамма урана мы получим в 100 раз меньше!

Однако соглашаться на такой расточительный его расход никак нельзя. Ведь на Земле его не бесконечное количество. От чего же зависит эффективность использования ядерного горючего?

Всего процент. Почему?

Главная идея, лежащая в основе ядерного реактора деления, понятна: нужно, смешав уран и замедлитель, взять достаточное количество смеси, и в ней возникнет цепная реакция. Объем этой смеси называют критическим объемом, а массу урана – критической массой.

Однако бесполезно пытаться сделать реактор с однородной смесью природного урана и какого-либо легкого замедлителя: воды или графита. Он работать не будет; как говорят физики, такая установка никогда не достигнет критичности. Одна из причин неудачи состоит в том"

что в смеси применен природный уран.

В чистом виде урана-235, способного делиться под действием тепловых нейтронов, в природе не существует. Во всех рудах и минералах, содержащих уран, он находится в смеси с другим изотопом – ураном-238.

А его, к сожалению, в природном уране содержится 99,3 процента. И только около 0,7 процента приходится на долю урана-235. Чем же это плохо?

А тем, что уран-238 тепловыми нейтронами не делится, а просто поглощает их. Более того, он жадно поглощает не только тепловые – медленные нейтроны, но и нейтроны более быстрые, еще не успевшие отдать свою энергию в процессе замедления. Такой сильный захват нейтронов физики назвали резонансным.

Еще в 1936 году И. Курчатов в работе "Расщепление ядер нейтронами" описал явление резонансного поглощения. Но вышло так, что честь этого открытия принадлежит не ему. В то время, когда И. Курчатов и его сотрудники для проверки выводов и опровержения сомнений коллег-оппонентов, в первую очередь Л. Арцимовича, вновь и вновь ставили контрольные опыты, в печати появилась публикация Э. Ферми, в которой и описывалось резонансное поглощение нейтронов.

Казалось бы, если уран-238 – вредный поглотитель, то его нужно просто отделить от урана-235. Конечно, это так. Но вот отделить его вовсе не просто. Если, скажем, нужно очистить воду от каких-либо примесей, то ясно, что речь идет о разделении различных химических веществ, обладающих различными химическими и физическими свойствами. На этом и основывается разделение. Но уран-238 и уран-235 – это разные изотопы одного и того же химического элемента, и химические и физические свойства у них практически одинаковы. Разделение этих изотопов должно основываться на другом принципе, на их различии. Чем же отличается уран-238 от урана-235?


    Ваша оценка произведения:

Популярные книги за неделю