355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Фёдоров » Огненный воздух » Текст книги (страница 1)
Огненный воздух
  • Текст добавлен: 9 февраля 2020, 13:00

Текст книги "Огненный воздух"


Автор книги: Александр Фёдоров



сообщить о нарушении

Текущая страница: 1 (всего у книги 5 страниц)

Александр Фёдоров
ОГНЕННЫЙ ВОЗДУХ



ВВЕДЕНИЕ

«Огненный воздух» – книжка о кислороде, самом распространенном в природе химическом элементе. Кислород встречается всюду. Он входит в состав атмосферного воздуха и воды, присутствует почти во всех минералах, является необходимой составной частью растительных и животных организмов.

Кислород является основой жизни на Земле. В атмосфере, лишенной этого газа, невозможно, существование животных и растений, за исключением, пожалуй, небольшого числа простейших бактерий.

Без кислорода немыслимо подавляющее большинство процессов в технике. Горение топлива, выплавка металлов, получение огромного количества химических веществ обеспечиваются кислородом, находящимся в атмосфере или заключенным в исходных материалах – сырье.

Однако этого мало. Теперь кислород нередко специально вводится в различные производственные установки. Уже много лет он применяется для сварки и резки даже самых тугоплавких металлов и сплавов. Многочисленные исследования показали, что с помощью кислорода удается резко ускорить различные технологические процессы.

Дополнительные количества кислорода, введенные в металлургические печи, в аппараты химической промышленности, в установки для газификации дешевого твердого топлива, не только увеличивают выпуск продукции, но и значительно повышают ее качество.

Вот почему кислород находит всё более широкое применение в промышленности, а производство установок для получения кислорода превратилось в крупную отрасль машиностроения.

В этой книжке кратко рассказывается о свойствах кислорода, о принципах устройства и работы промышленных установок, позволяющих получать кислород из атмосферного воздуха, а также о том, как используется кислород в отдельных отраслях народного хозяйства.

В ЛАБОРАТОРИИ ВЕЛИКОГО УЧЕНОГО

Далеко за полночь. Мигающее пламя светильника бросает расплывчатые причудливые тени на закопченный свод потолка. Чуть тлеют угли в большом очаге, выложенном посреди комнаты. В стеклянных ретортах – сосудах с длинными запаянными горловинами – булькает какая-то густая, тягучая жидкость. Это расплавленные металлы – свинец, олово. Часами прокаливаются они на огне, превращаясь в хрупкую, зернистую массу – окалину.

Высокий, широкоплечий человек устало поднимается со скамьи. Железными щипцами он ловко схватывает одну из реторт, несет ее к столу и бережно устанавливает на чашку весов. На другой чашке находятся бронзовые гирьки. Они уравновесили реторту с ее содержимым в начале опыта.

Стрелка весов медленно, как бы нехотя, качается. Секунды кажутся томительно долгими. Колебания стрелки делаются все меньше, и вот ее тонкий конец останавливается против отметки «нуль» на шкале. Закончен еще один опыт. Вес запаянного сосуда с оловом не изменился, несмотря на длительное прокаливание на огне. То же самое подтверждает взвешивание второй реторты, третьей, десятой… Такой же результат был отмечен вчера, позавчера, на прошлой неделе…

– Да, теперь все ясно!

Порывистым движением исследователь отодвигает весы и открывает толстую книгу. Обмакнув в чернила гусиное перо, он быстро пишет:

«…деланы опыты в запаянных накрепко сосудах, чтобы исследовать, прибывает ли вес металла от чистого жару. Оными опытами нашлось, что славного Роберта Бойля мнение ложно, ибо без пропускания внешнего воздуха вес сожженного металла остается в одной мере».

Строки эти писал в 1756 году Михаил Васильевич Ломоносов, гениальный русский ученый, заложивший основы отечественной науки и установивший ряд важнейших законов современной химии и физики.

Еще за много лет до Ломоносова явления горения возбуждали у химиков большой интерес. В то время существовала примитивная, глубоко ошибочная «теория» горения. Она утверждала, что во всех телах имеется особое, горючее вещество – флогистон. По утверждению последователей этой «теории» флогистон весил «меньше, чем ничего», т. е. имел отрицательный вес. При горении топлива или прокаливании металлов флогистон покидает тело, и поэтому вес продуктов горения увеличивается по сравнению с первоначальным. Такое объяснение явлений горения казалось современникам Ломоносова очевидным и убедительным.

Однако Ломоносов не мог согласиться с существованием фантастического флогистона. Он предположил, что самый обычный воздух участвует в горении и обжигании. И великий ученый ставит опыты с прокаливанием свинца и олова, чтобы доказать эту новую мысль.

Что же происходит с металлом, который прокаливается в реторте? Часть воздуха соединяется с металлом, образуя окалину. Если реторта запаяна, вес ее при этом не изменяется. Но достаточно вскрыть реторту, как наружный воздух с шумом устремится в нее и займет место той части находившегося в реторте воздуха, которая пошла на превращение металла в окалину. Вес содержимого реторты при этом несколько увеличится.

Этими опытами Ломоносов доказал не только роль воздуха при горении, но и установил, что при химических превращениях веществ «сколько у одного тела отнимается, столько присовокупляется к другому». Этот закон сохранения массы вещества стал основой современной химии. Великий русский ученый на три десятилетия опередил «открытие» того же закона французским химиком Лавуазье.

КАК БЫЛ ОТКРЫТ КИСЛОРОД

Через несколько лет после смерти М. В. Ломоносова молодой шведский химик Карл Шееле сделал такой опыт. Он поместил в колбу кусочек фосфора и плотно закрыл ее пробкой. Затем он поднес к колбе зажженную свечу. Через секунду, от нагревания колбы, фосфор ярко вспыхнул, и колба наполнилась густым дымом, который вскоре осел на ее стенках в виде белых, похожих на иней хлопьев.

Когда колба остыла, Шееле опрокинул ее, бережно опустил горловину в воду и осторожно выдернул пробку. Вода быстро устремилась в колбу и заполнила пятую часть ее объема.

Молодой химик пробовал сжигать в закрытых сосудах и другие вещества. Результат неизменно получался все тот же: пятая часть воздуха, заключенного в сосуде, куда-то исчезала и ее место заполнялось водой. В том же воздухе, который оставался в колбе после горения, уже не удавалось зажечь не только свечу, но даже легко воспламеняющийся фосфор. Помещенная туда мышь очень быстро умирала от удушья.

Все это навело Шееле на мысль, что окружающий нас воздух вовсе не является однородным веществом, как принято было думать в то время, а представляет собою смесь по крайней мере двух различных частей. Ту часть воздуха, которая оставалась в колбе после горения фосфора или какого-либо другого вещества, Шееле назвал мертвым, негодным воздухом, а исчезнувшую часть, которая поддерживала горение, – живым или «огненным воздухом».

Вскоре Шееле научился получать «огненный воздух» в чистом виде, отдельно от негодного. Он насыпал в стеклянную реторту порошок селитры и нагревал его на огне. Селитра плавилась, выделяя чудесный газ, в котором ярко вспыхивала чуть тлеющая лучина.

Так был открыт в 1772 году новый химический элемент, «огненный воздух», необходимый для горения и дыхания. Впоследствии его назвали кислородом.

В НЕОБЪЯТНОЙ КЛАДОВОЙ ПРИРОДЫ

Природа исключительно богата кислородом. Это – самый распространенный химический элемент. Почти вся земная кора состоит из соединений различных элементов с кислородом. Железные руды, например, являются химическим соединением железа и кислорода. Речной песок состоит из кислорода и кремния, глинозем содержит алюминий и кислород.

Огромное количество кислорода есть и в воде. На тонну воды приходится 890 килограммов кислорода и 110 килограммов связанного с ним водорода. Наконец, атмосферный воздух, как мы уже знаем, состоит на одну пятую из кислорода, а это – невероятно большое количество. Если весь кислород земной атмосферы превратить в жидкость, то вся поверхность земли, включая горы и равнины, моря и океаны, покроется слоем холодной светло-голубой жидкости толщиной больше двух метров.

Старый способ получения кислорода путем нагревания селитры уже давно ушел в прошлое. Добывание кислорода превратилось в самостоятельную и очень крупную отрасль промышленности. Во всех странах мира работают специальные кислородные заводы, использующие в качестве сырья безграничные запасы атмосферного воздуха.

КАК ПОЛУЧИТЬ КИСЛОРОД ИЗ ВОЗДУХА

Воздух не является химическим соединением отдельных газов. Теперь известно, что он представляет собою смесь из азота, кислорода и так называемых редких газов: аргона, неона, криптона, ксенона и гелия. Кроме того, воздух содержит ничтожные количества водорода и углекислого газа.

Главная составная часть воздуха – азот. Он занимает больше 3/4 всего объема воздуха. Пятую часть воздуха составляет «огненный воздух» – кислород. А на долю остальных газов приходится около одной сотой части.

Каким же образом удается разделить эти газы и получить из воздуха чистый кислород?

30 лет назад сравнительно широко применялся химический способ получения кислорода. Для этого использовалось соединение металла бария с кислородом – окись бария. Это вещество имеет одно интересное свойство. Нагретая до темно-красного цвета (примерно до 540 градусов) окись бария энергично соединяется с кислородом воздуха, образуя при этом новое более богатое кислородом вещество – перекись бария. Однако при дальнейшем нагревании перекись бария разлагается, выделяет кислород и снова превращается в окись. Кислород при этом улавливается и собирается в особые сосуды – баллоны, а перекись бария охлаждается до 540 градусов, чтобы снова получить способность извлекать кислород из воздуха.

Кислородные установки, работавшие по такому способу, давали несколько кубических метров газа в час. Однако они были дороги, громоздки и неудобны. Кроме того, окись бария при работе постепенно теряла свои поглотительные свойства и ее приходилось часто менять.

Все это привело к тому, что с течением времени химический способ получения кислорода из воздуха был вытеснен другими, более совершенными.

Наиболее просто удается выделить кислород из воздуха в том случае, если воздух предварительно превращен в жидкость.

Жидкий воздух при обычном атмосферном давлении имеет крайне низкую температуру – минус 192 градуса, то-есть на 192 градуса ниже точки замерзания воды. Но температура ожижения отдельных газов, входящих в состав воздуха, не одинакова. Жидкий азот, например, кипит и испаряется при температуре минус 196 градусов, а кислород при минус 183 градуса. Эта разница в 13 градусов и позволяет разделить жидкий воздух на составляющие его газы.

Если налить жидкий воздух в какой-либо сосуд, он энергично закипит и очень быстро испарится. При этом в первые моменты испаряется преимущественно азот, и жидкий воздух все больше обогащается кислородом. Этот процесс и положен в основу устройства специальных аппаратов, применяющихся для разделения воздуха.

В настоящее время жидкий воздух широко используют для промышленного получения кислорода. Однако, чтобы превратить атмосферный воздух в жидкое состояние, его нужно охладить до весьма низкой температуры. Поэтому современный метод получения жидкого воздуха называется методом глубокого охлаждения.

Глубокое охлаждение воздуха ведут в специальных машинах. Но, прежде чем рассказать об их работе, нам необходимо познакомиться с несколькими простейшими физическими явлениями.

НЕМНОГО ФИЗИКИ

Приходилось ли вам когда-нибудь накачивать воздух в камеры велосипеда? Если приходилось, вы, вероятно, обратили внимание, что шины при этом немного нагреваются. Здесь происходит весьма распространенный в природе переход механической энергии в тепловую. Часть работы, которую мы затрачиваем на сжатие воздуха в шине, превращается в теплоту, и температура сжимаемого воздуха повышается.

Попробуйте теперь сделать такой опыт. Возьмите бутыль, наполненную на одну треть водой. Плотно закройте ее горлышко пробкой, сквозь которую пропущена трубка от резиновой груши. Сдавите грушу рукой. При этом воздух в бутыли сожмется и нагреется. Выждите немного и быстро отпустите грушу. Тогда воздух расширится до прежнего объема, и пространство над жидкостью наполнится туманом (рис. 1).


Рис. 1. Опыт, позволяющий обнаружить охлаждение газа при его расширении.

Почему это получилось? При расширении воздух охладился, и часть пара, образовавшегося из воды, превратилась в мельчайшие капельки воды, сконденсировалась.

Но почему же при расширении воздух охлаждается?

Если для сжатия газа затрачивает работу человек или машина, то при расширении работу совершает сам газ за счет заключенной в нем тепловой энергии. Такое превращение тепловой энергии в работу, сопровождаемое понижением температуры, тоже широко распространено в природе.

Расширение любого сжатого газа можно провести двумя путями. Можно, например, взять баллон, наполненный сжатым воздухом, и постепенно выпускать воздух через кран. Какую же работу совершает в этом случае газ? Он преодолевает силы сцепления между молекулами и трение молекул воздуха о стенки крана. Однако таким путем добиться большого охлаждения газа нельзя. Он совершает слишком мало механической работы.

Попробуем теперь заставить тот же расширяющийся воздух двигать поршень небольшого воздушного моторчика. В этом случае газ, совершая уже значительную механическую работу, охладится настолько, что наш моторчик почти мгновенно покроется инеем, а отработанный воздух будет выходить из него в виде дымящейся струи: температура воздуха настолько сильно понизится, что содержащаяся в нем влага сконденсируется, превратится в мельчайшие капельки воды.

Эти два способа расширения сжатого газа – простое расширение и расширение с преодолением значительного внешнего сопротивления – и послужили основой современных промышленных способов ожижения газов, в том числе и воздуха.

ОБ ОДНОМ ПРОСТОМ, НО ВАЖНОМ АППАРАТЕ

Мы уже знаем, что при нормальном атмосферном давлении температура жидкого воздуха исключительно низка. Если попытаться достигнуть такой температуры обычным расширением воздуха, то придется предварительно сжимать его до колоссальных давлений. Это вызовет огромные затраты и вряд ли сможет быть выполнено по техническим причинам.

Но есть довольно простой аппарат, в котором можно сильно охладить газ, не прибегая к большому сжатию. Этот аппарат – теплообменник – необходимая часть любой современной машины, предназначенной для получения глубокого холода.

Простейший теплообменник состоит из двух металлических трубок, вставленных одна в другую (рис. 2).


Рис. 2. Так устроен теплообменник – простейший аппарат для охлаждения газов.

По внутренней трубке сжатый воздух идет к особому крану, называемому расширительным вентилем. Выходя из вентиля в камеру, воздух расширяется. При этом его давление падает до атмосферного, а температура понижается на несколько градусов. Затем охлажденный воздух покидает расширительную камеру. Направляясь к выходу из аппарата по наружной трубке теплообменника, он омывает внутреннюю трубку со следующей порцией сжатого воздуха и отдает ему часть своего холода. К моменту расширения новые порции сжатого воздуха, поступающего по внутренней трубке теплообменника, будут уже более холодными, а в камере их температура станет еще ниже.

С каждой минутой работы теплообменника температура расширяющегося воздуха становится все более и более низкой. Наконец, наступает момент, когда часть расширяющегося воздуха превращается в жидкость. Жидкий воздух собирается в нижней части расширительной камеры и может быть слит оттуда через специальный кран. Таким образом, теплообменник, исключительный по своей простоте аппарат, позволяет постепенно, как бы автоматически, понижать температуру расширяющегося воздуха до нужного предела, когда наступает момент превращения его в жидкость.

Практически теплообменник устроен более сложно. Вместо одной трубки внутри теплообменника обычно находится целая система длинных и тонких трубок, изготовленных из меди – металла, хорошо проводящего тепло. Иногда, для увеличения охлаждающей поверхности теплообменника, внутреннюю трубку делают в виде спирали.

Теплообменник, как и все аппараты, работающие при низких температурах, тщательно покрывается снаружи толстым слоем материала, плохо проводящего тепло: шлаковой ваты, углекислой магнезии и других. Этот слой надежно предохраняет теплообменник от излишних потерь холода в окружающее пространство.

Каким же образом сжимается воздух, поступающий в теплообменник? В установке глубокого холода есть особая машина – компрессор, в котором воздух можно сжать до давления, в 200 раз превышающего атмосферное. Чаще всего ставят многоступенчатый поршневой компрессор. Он состоит из 5 или б цилиндров с поршнями. Воздух, проходя по особым трубам от одного цилиндра к другому, постепенна, ступенями, сжимается. В первом цилиндре давление воздуха повышается до 6–7 атмосфер, во втором – оно увеличивается до 20 атмосфер, и т. д. Наконец, в последнем цилиндре достигается сжатие до 200–250 атмосфер.

При сжатии воздух, конечно, нагревается, поэтому по выходе из каждого цилиндра он охлаждается в специальных холодильниках.

ОЧИСТКА ВОЗДУХА

О атмосферном воздухе всегда есть всякого рода нежелательные примеси – песок, дым, пыль и т. д. Попадая в компрессор, эти примеси могут вызвать преждевременный износ его трущихся частей. Поэтому на всасывающей трубе компрессора устанавливаются специальные фильтры, улавливающие эти твердые частицы.

Однако в воздухе есть еще и другие вредные примеси, от которых нельзя освободиться фильтрованием. Это – углекислота и водяные пары.

В каждом кубическом метре атмосферного воздуха содержится не менее 0,7 грамма углекислоты, которая уже при температуре около минус 80 градусов затвердевает.

Через современные установки глубокого холода проходят огромные количества воздуха, измеряемые сотнями и даже тысячами кубических метров в час. Ничтожные количества углекислоты, содержащиеся в воздухе, могут оказаться серьезной опасностью для холодильных аппаратов. Ведь через холодильные аппараты пройдут десятки килограммов этого газа в течение нескольких часов. Превращенная при низких температурах в твердые куски льда, углекислота в короткое время может плотно закупорить трубопроводы и вывести установку из строя. Тогда придется прекратить получение жидкого воздуха, отогревать установку и продувать все ее трубопроводы.

Чтобы удалить из воздуха углекислоту, его пропускают через растворы едкого кали или едкого натра. Углекислота химически соединяется со щелочью и из раствора выходит уже освобожденный от нее воздух. Такая промывка производится в особом аппарате – скрубере. Этот аппарат обычно устанавливается между вторым и третьим цилиндрами компрессора. Воздух поступает в скрубер уже под давлением, а это значительно ускоряет и облегчает удаление углекислоты.

Еще более вредной примесью атмосферного воздуха является влага. В обычных условиях в одном кубическом метре воздуха содержится около 20 граммов водяных паров. При сжатии воздуха большая часть этих паров превращается в воду. Для улавливания ее в многоступенчатом компрессоре после каждого цилиндра устанавливаются водоотделители. Но они освобождают воздух от влаги не полностью. А это может привести к серьезным неприятностям.

Попадая в холодную трубу теплообменника, остатки воды превратятся в лед, который вызовет если не аварию, то во всяком случае остановку машины. Поэтому сжатый компрессором воздух пропускается через целую батарею баллонов, которые наполнены веществами, хорошо поглощающими влагу, – каустической содой, хлористым кальцием, едким кали и т. д. Пройдя через такой химический осушитель, воздух оказывается уже совершенно сухим.

В более крупных установках остатки влаги из сжатого воздуха вымораживаются в особых холодильниках при 40–45 градусах ниже нуля. Каждая такая установка обычно имеет два холодильника. Пока работает один холодильник, второй отогревается и освобождается от льда.

Но вот воздух прошел все эти аппараты. Он очищен от механических примесей, от углекислоты и водяных паров. Теперь можно беспрепятственно понижать его температуру, не рискуя вывести из строя установку глубокого холода.

МАШИНЫ ГЛУБОКОГО ХОЛОДА

Компрессор, сжимающий воздух, расширительное устройство, предназначенное для его охлаждения, и теплообменник, позволяющий превращать в жидкость воздух, вот главные части установки глубокого холода.

Мы уже знаем, что воздух может охлаждаться гораздо больше, если заставить его при расширении работать, например, двигать поршень воздушного моторчика. Такое охлаждение ведут в установках, которые, кроме сжимающего компрессора и охлаждающего теплообменника, имеют еще и расширительную машину, детандер.

Детандер устроен так же, как любая поршневая машина. Это цилиндр о поршнем, но поршень в детандере приводится в движение не паром, а сжатым воздухом.

Обратимся к рисунку 3.


Рис. 3. Принципиальная схема установки для получения жидкого воздуха.

Многоступенчатый компрессор сжимает очищенный атмосферный воздух. Пройдя по внутренней трубке первого теплообменника, сжатый воздух разделяется на два потока. Один поток, составляющий около четырех пятых всего воздуха, направляется в детандер и, расширяясь, приводит в движение его поршень. При этом воздух значительно охлаждается. Затем он омывает внутренние трубки обоих теплообменников и, отдав свой холод текущим навстречу свежим порциям воздуха, покидает машину. Второй поток воздуха, охлажденный еще больше во втором теплообменнике, направляется через вентиль в расширительную камеру, затем вместе с воздухом из детандера идет к выходу. Вскоре наступает момент, когда сжатый воздух, устремляющийся в расширительную камеру, достигает температуры ожижения и часть его превращается в светло-голубую жидкость. Когда накопится достаточное количество этой жидкости, кран открывают и жидкий воздух выливают. Работа воздуха в детандере не пропадает даром. Поршень детандера может приводить в действие динамомашину. Но чаще всего механическая энергия детандера передается валу компрессора, в котором сжимается воздух. Таким образом, часть энергии, затраченной на сжатие воздуха, компрессор получает обратно, а это снижает расход энергии на ожижение воздуха.


    Ваша оценка произведения:

Популярные книги за неделю