355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Конюхов » Геология океана: загадки, гипотезы, открытия » Текст книги (страница 5)
Геология океана: загадки, гипотезы, открытия
  • Текст добавлен: 7 октября 2016, 19:22

Текст книги "Геология океана: загадки, гипотезы, открытия"


Автор книги: Александр Конюхов



сообщить о нарушении

Текущая страница: 5 (всего у книги 15 страниц)

Важный вклад в познание дна Атлантического океана был сделан немецкими учеными в экспедиции на «Метеоре» в 1925—1927 гг. За период плавания судно 14 раз пересекало Атлантический океан между 20° с. ш. и 65° ю. ш., не только измеряя температуру и соленость в разных слоях водной толщи, но и выполняя детальные промеры океанского дна с помощью нового метода – эхолотирования. Использование эхолота, изобретенного первоначально для выявления подводных лодок в морских глубинах, позволило получать непрерывную запись рельефа океанского дна при различных скоростях хода судна. В экспедиции на «Метеоре» были получены данные о процессах, происходящих в обширной зоне океана на разных широтах.

Спустя два года, плавая на судне «Виллиборд Снеллиус», датские исследователи с помощью нового устройства взяли колонки донных осадков длиной около 2 м. Работы проводились в морях Индонезийского архипелага. Появилась возможность изучать последовательность слоев в верхах осадочной толщи, а следовательно, и реконструировать недавнюю геологическую историю морей и океанов.

Благодаря установке эхолотов на океанографических и гидрографических судах многих стран в 20—30-х годах нашего столетия было накоплено огромное количество данных о глубинах в различных районах океана. Стали составляться карты рельефа дна, постоянно обновлявшиеся по мере поступления новых сведений. Применение эхолотов позволило выявить неоднородную структуру ложа океана, где отчетливо выделились две области – приконтинентальная, относительно мелководная и собственно океаническая, глубоководная. Постоянными элементами приконтинентальной зоны, согласно данным эхолотных промеров, были плоская, полого падающая от берега подводная равнина с глубинами от 0 до 200 м (шельф) и круто падающая в сторону абиссали поверхность (континентальный склон). Исследования, предпринятые Береговой и Геодезической службой США, вскоре выявили подводные ложбины, прорезавшие континентальный склон. Их вершины нередко уходили далеко в глубь шельфа. Собственно говоря, эти подводные, ущелья, названные каньонами, были известны еще раньше. Однако только в конце 30-х годов стало ясным их широкое распространение, причем самые крупные подводные каньоны находились на продолжении речных дельт и эстуариев.

В 1938 г. вышла книга А. Д. Архангельского и Н. М. Страхова «Геологическое строение и история развитая Черного моря». В ней были обобщены полевые описания и результаты лабораторных исследований многих проб и колонок донных осадков, взятых в разных структурно-морфологических зонах Черноморской впадины, в том числе на шельфе и континентальном склоне Южного Крыма и Кавказа. В книге впервые были детально охарактеризованы осадки со следами гравитационного оползания и течения, сапропеля, гидротроилитовые илы и другие специфические для Черного моря образования.

В начале 40-х годов у побережья Калифорнии американские геологи К. Эмери, Ф. Шепард и др. тщательно исследовали осадки и рельеф морского дна. В те же годы Г. Хесс с помощью эхолота обнаружил в различных районах Тихого океана многочисленные подводные горы – плосковершинные потухшие вулканы, названные гайотами. Г. Хесс продолжал их исследовать и позже. Это позволило ему, исходя из данных о возрасте подводных гор, предположить, что дно Тихого океана очень медленно перемещается по направлению к глубоководным желобам, расположенным в западной и северо-западной периферии океана. Здесь, по мысли Г. Хесса, происходило его поглощение.

Небывалый ранее размах приобрели геологические исследования в океане в послевоенные годы. В историю науки вошли работы советских ученых на «Витязе» и «Михаиле Ломоносове» в дальневосточных морях, различных зонах Тихого, Индийского и Атлантического океанов, в арктических и Антарктических широтах. Значительный вклад в расшифровку структуры осадочного чехла внесли шведские и датские ученые, в начале 50-х годов работавшие на «Галатее» и «Альбатросе». В этих экспедициях использовались поршневые грунтовые трубки, способные брать колонки осадков длиной более 10 м.

К концу 50-х годов акцент в экспедиционных исследованиях стал делаться на геофизических методах, разработка которых была начата еще в 30-х годах голландским ученым Ф. Венинг-Мейнесом. Первые же гравиметрические исследования в океане связаны с именем Ф. Нансена, измерявшего силу тяготения во время легендарного дрейфа «Фрама» в арктических льдах. Создание новой высокочувствительной аппаратуры и новых методов ведения сейсмических, гидромагнитных, гравиметрических исследований в океане резко расширило возможности изучения океанского дна, позволило геологам заглянуть через многокилометровую толщу воды в глубинные слои земной коры, выявить сначала крупные, а затем и более мелкие геофизические аномалии в структуре ложа океана.

Сделанные в этой области открытия в конечном итоге привели к пересмотру всей системы взглядов на океан, да и на геологическую историю всей планеты.

После изобретения Ж. И. Кусто и Д. Ганьоном акваланга геолог смог непосредственно наблюдать морское дно на глубинах до 60—70 м. Особенно большую роль акваланг сыграл в исследованиях на коралловых рифах и атоллах. В первые послевоенные годы для проникновения на дно абиссальных котловин и даже в глубоководные желоба использовались батискафы. Однако батискаф жестко связан с судном-носителем тросом и не приспособлен для автономного плавания. Находящийся в нем ученый лишен возможности приблизиться к объекту наблюдения и отбирать образцы пород и осадков. Потому применение батискафов оказалось малоэффективным.

Глазами геолога в океанской пучине стали подводные фотокамеры. Этому способствовало создание прочных корпусов, сохранявших герметичность при высоких давлениях на больших глубинах. С помощью подводного фотографирования были открыты многие любопытные образования на абиссальном ложе океана: скопления железомарганцевых конкреций, знаки течений и поля подводных дюн на поверхности осадка, следы подводной эрозии дна.

На этом этапе развития морской геологии и геофизики выдающийся вклад в познание строения и развития океана внесли многие советские и зарубежные ученые: П. Л. Безруков, А. П. Лисицын, В. П. Петелин, Г. Б. Удинцев, Г. Менард, Б. Хизен, Г. Хесс, М. Юинг, Ф. Кюнен, К. Ле Пишон, Д. Кариг и др.

Следующий шаг в раскрытии тайн океанских недр был связан с созданием подводных обитаемых аппаратов, способных погружаться на большие глубины, и с постройкой бурового судна «Гломар Челленджер», благодаря которому стали возможными бурение практически на любой глубине и получение керна пород из глубоких слоев осадочного чехла и базальтового слоя океанической коры.

Океаны в сравнении

Океаны и моря покрывают 361,26 млн км 2, или 70,8% земной поверхности. В северном полушарии суша занимает 39,4 % поверхности нашей планеты, океаны – 60,6 %, в южном полушарии на сушу приходится всего лишь 19%, тогда как на океан – 81%.

Более одной трети земной поверхности занимает Тихий океан. Это самый глубокий, холодный и наименее соленый океан, хотя в него поступает сравнительно небольшая часть речного стока. Вблизи экватора ширина Тихого океана достигает 17 тыс. км.

Второй по величине океан – Атлантический относительно узок. Его ширина равна примерно 5000 км. Извилистой лентой он протягивается между полюсами. Если площадь, занимаемая Тихим океаном, достигает 178,7 млн км 2, то площадь Атлантического океана 91,6 млн км 2. Он мельче Тихого океана. Его средняя глубина 3597 м (Тихого – 3940 м). В этом отношении он уступает Индийскому океану, средняя глубина которого составляет 3711 м при площади 76,17 млн км 2. В Атлантический океан сбрасывают воды многие крупные реки. Объем воды, выносимой только Амазонкой и Конго, составляет около 25% всего стока рек, впадающих в океан. Несмотря на это, атлантические воды самые соленые – 34—37,3 ‰ (средняя соленость океанских вод 34,71 ‰). Это и самые теплые воды, средняя их температура достигает 3,99° С (Мирового океана – 3,51°). Столь парадоксальная ситуация обусловлена высоким уровнем обмена Атлантического океана с окраинными морями, Средиземным морем и Мексиканским заливом, воды которых отличаются высокой температурой и повышенной соленостью.

Третий но величине океан – Индийский большей своей частью расположен в южном полушарии. Максимальной ширины он достигает на самом юге, между Южной Африкой и Новой Зеландией, – 15 тыс. км. В бассейн Индийского океана впадают три крупнейшие реки – Ганг, Инд и Брахмапутра. Средняя температура воды в Индийском океане 3,88° С, средняя соленость 34,78 ‰, т. е. близка к средней для Мирового океана [Gross, 1982].

Самый небольшой по размерам и мелкий – Северный Ледовитый океан. Соленость его невелика, поскольку он со всех сторон окружен сушей, с которой стекает много мелких и крупных рек. Значительная часть поверхности океана покрыта льдами.

Хотя современные океаны имеют разные размеры, строение их примерно одинаково. В любом океане можно выделить примерно три равнозначные зоны: континентальные окраины, абиссальные котловины и срединноокеанические хребты. Континентальные окраины, включающие шельф, склон и его подножие, занимают примерно 20,5% поверхности дна океанов, на абиссальные котловины приходится 41,8% их площади, на срединно-океанические хребты и поднятия центральноокеанического типа – 32,7%. Последняя величина характерна для всех океанов. Соотношение же между континентальными окраинами и абиссальными котловинами меняется в довольно значительных пределах. Так, в Атлантическом океане, где ширина шельфов наибольшая, континентальные окраины занимают приблизительно 28% площади дна, а абиссальные котловины – 38%. В Тихом океане положение обратное: 15,7% – это подводные окраины континентов, 43% – абиссальные котловины. Правда, здесь много глубоководных желобов, однако их площадь составляет лишь 2,9% всей площади океана. Отдельно стоящие подводные вулканы и вулканические хребты наиболее многочисленны в Тихом океане, но они занимают здесь меньшую площадь, чем в Индийском океане (2,5% по сравнению с 5,4%). Впрочем, многие из этих цифр еще нуждаются в уточнении.

В океанах сложились устойчивые системы поверхностных и придонных течений. Схема распространения теплых и холодных поверхностных течений в крупнейших океанических бассейнах примерно одинакова. В экваториальных районах доминирует ветровой перенос с востока на запад, который порождает северное и южное экваториальные течения. Первое действует в северном полушарии, второе – в южном. Их разделяет довольно узкая зона, в пределах которой перенос воды происходит в обратном, восточном направлении. Это так называемое Экваториальное противотечение.

С каждым из экваториальных течений связана относительно замкнутая система других течений, образующих макроциркуляционную ячейку. Так, Северное экваториальное течение в Атлантическом океане, отклоняясь близ гряды Малых Антильских островов на север, порождает теплое течение Гольфстрим. Последнее двигается сначала вдоль континентальной окраины Северной Америки, а затем пересекает Северную Атлантику. Отсюда охлажденные воды начинают перемещаться на юг, к экватору, образуя холодное Канарское течение. В северной части Тихого океана роль Гольфстрима играет другое теплое течение – Куросио, поднимающееся в умеренные и высокие широты вдоль берегов Японии. Охлаждаясь, принесенные Куросио воды устремляются на юг, двигаясь вблизи Тихоокеанского побережья Северной Америки. Это холодное пограничное течение получило название Калифорнийского. Крупные макроциркуляционные ячейки возникли и в южной половине Атлантического, Тихого и Индийского океанов. Здесь в высоких широтах под влиянием преобладающих западных ветров вокруг Антарктиды действует мощное течение Западных Ветров. Отдельные его ветви, отклоняясь на север, в виде холодных пограничных течений устремляются к экватору вдоль западных побережий Африки, Австралии и Южной Америки. Отклоняясь под действием пассатных ветров, основные ветви этих течений следуют далее через тропики к западным континентальным окраинам, откуда уже в виде теплых сточных течений движутся на юг. Эти субтропические макроциркуляционные ячейки, как и в северном полушарии, носят антициклонический характер. Другие ветви холодных компенсационных течений, отклоняясь на восток, формируют в восточной периферии тропической зоны океанов небольшие циркуляционные ячейки циклонического типа [Степанов, 1974]. В субполярных и полярных районах северного полушария, в областях исландского и алеутского минимума, существуют циклонические круговороты, хорошо выраженные в осенне-зимние сезоны.

Различия в плотности и температуре поверхностных и придонных вод порождают вертикальный водообмен. Следствием этого является возникновение придонных геострофических течений, направленных из высоких широт к экватору. Так как эти подводные реки текут вдоль континентальных склонов и над их подножиями, т. е. вдоль контуров материков в западных районах океанов, их называют контурными течениями. Самые мощные из них пересекают экватор, проникая в другое полушарие.

Таковы в самых общих чертах особенности современной океанической циркуляции. Все вышесказанное свидетельствует о том, что океанические бассейны представляют собой отдельные ячейки единой целостной системы, построенной в структурно-морфологическом и океанологическом отношении достаточно однотипно. Далее мы покажем, что эволюция океанов и протекающие в них геологические процессы подчиняются одним и тем же законам.

А. Вегенер и теория дрейфа континентов

Если посмотреть на очертания материков в Атлантическом и Индийском океанах, то в глаза бросится удивительная особенность: выступы одних довольно точно отвечают вогнутым участкам других. В качестве примера можно привести выступ Бразильского побережья Южной Америки, хорошо вписывающийся в контуры Гвинейского залива Африки. Нетрудно найти совмещаемые участки в пределах западного побережья острова Мадагаскар и лежащего напротив побережья Восточной Африки, а сомалийско-кенийский участок материка совпадает с выступающей северо-западной частью Австралии.

На сходство очертаний берегов противолежащих континентов обращали внимание многие географы и геологи, работавшие с картами Атлантического и Индийского океанов. Однако лишь немецкий геофизик А. Вегенер (1880—1930) разработал на основании этого и других фактов целую гипотезу. Суть ее заключалась в следующем: материки, определяющие лик нашей планеты, некогда составляли единое целое, а потом под влиянием центробежных сил разошлись в стороны. А. Вегенер назвал это дрейфом континентов.

Действительно, если из географической карты сначала вырезать, а затем сблизить друг с другом материки, то нетрудно найти такое их положение, при котором возникает сравнение с разбитой тарелкой: крупные осколки, по крайней мере частично, можно совместить между собой. При этом останутся промежутки различной формы, как бы указывающие на отсутствие мелких обломков.

При более тщательном анализе, особенно на крупномасштабных картах, если совмещать контуры по современной береговой линии, обнаруживается масса накладок, пробелов и несовпадений. Ведь побережье обозначает не край континента, а лишь границу суши и моря, подвижную во времени. Когда уровень океанских вод поднимается, побережье отступает, и, напротив, с падением уровня связано выдвижение берега в сторону моря. Если совмещать контуры материков по краю шельфа, как это и сделал А. Вегенер, то можно добиться более полного их совпадения. Но и в данном случае остаются пробелы и участки перекрытия. Последние особенно значительны в районах, где в океан впадают реки, образовавшие крупные дельты и их подводные продолжения. Однако здесь нет ничего удивительного, так как дельты – аккумулятивные формы, сложенные терригенными выносами рек, которые поступали с суши в течение сотен тысяч и даже миллионов лет.

В начале века исследования в морях и океанах только разворачивались, для многих районов еще отсутствовали сведения не только о положении геологической границы между материком и океаном (ее и сейчас трудно точно провести), но и о ширине шельфовой зоны. Поэтому построения А. Вегенера в основном были восприняты как спекулятивные. В те годы доказать правомочность подобных совмещений было невозможно. Лишь в наши дни, прибегнув к помощи ЭВМ, Э. Булларду, Дж. Эверетту и А. Смиту [1965] удалось удовлетворительно решить задачу. Оказалось, что наилучшего совпадения контуров материков, расположенных в Атлантике и Индийском океане, можно добиться, используя их очертания по изобате – 2000 м, т. е. уже на глубинах, соответствующих средней части континентального склона. По-видимому, эти глубины в наибольшей степени отвечают границе между континентами и океанами.

Для доказательства дрейфа материков после раскола гигантского суперконтинента, названного А. Вегенером Пангеей (Пангея состояла из двух крупных материковых конгломератов – Лавразии и Гондваны), он использовал также геологические, палеонтологические и палеоклиматические данные. Вегенер обратил внимание на близость возраста и состава осадочных и магматических формаций, слагающих периферийные районы Африки и Южной Америки со стороны Атлантического океана. Другим убедительным аргументом в пользу существования в конце палеозоя – начале мезозоя единого материка в южном полушарии – Гондваны – были следы обширного материкового оледенения, найденные на юге Африки, в Южной Америке, на Индостанском полуострове и в Австралии. Все говорило о том, что в конце карбона и в перми указанные континентальные глыбы находились вблизи Южного географического полюса и были спаяны вместе. Действительно, трудно представить, что оледенение одновременно охватывало столь удаленные друг от друга континенты.

По признанию самого А. Вегенера, на мысль о возможном дрейфе материков его натолкнули данные о близком составе палеонтологических остатков, которые были обнаружены в континентальных породах палеозойского и раннемезозойского возраста Африки и Южной Америки. Особенно поразительными оказались находки на этих континентах скелетов листозавров – представителей редкой группы динозавров, обитавших, по-видимому, в пресноводных водоемах. На материках северного полушария остатки этих животных не встречались. Все это свидетельствовало о существовании сухопутного моста между континентами в южном полушарии. Сходны были флористические комплексы из континентальных разрезов Африки и Южной Америки. Однако на рубеже поздней юры и раннего мела появились различия. Отсюда А. Вегенер сделал вывод, что отделение Южной Америки от Африки произошло в меловое время.

Интуиция А. Вегенера опередила развитие науки почти на полстолетия. Смелость и внутренняя логика концепции дрейфа континентов поначалу захватили умы многих его современников. Но спустя несколько лет были произведены расчеты, которые показали, что механизм возможного дрейфа материков в том виде, в каком он представлялся А. Вегенеру, нереален. Чтобы двигаться, огромные по толщине и размерам глыбы сиалического материала (с континентальным типом земной коры) должны были преодолевать сопротивление тяжелой и вязкой «симы» (океанической коры), а также твердой (по представлениям тех лет) мантии, т. е., по существу, взламывать и ту и другую. Центробежной силы, которая, по мысли первых мобилистов, двигала континенты, на это явно не хватало. О новообразовании (спрединге) океанической коры в срединно-океанических хребтах тогда ничего не было известно.

После нескольких лет ажиотажа вокруг гипотезы А. Вегенера ее популярность быстро пошла на убыль. Это в немалой степени было связано с трагической гибелью А. Вегенера в 1930 г. во льдах Гренландии. Негативную роль сыграли и навеянные гипотезой дрейфа материков разнообразные фантастические представления. Их отголоски мы находим, например, у А. Н. Толстого в «Гиперболоиде инженера Гарина». Герой романа изобретатель и авантюрист Гарин с помощью лучевой энергии гиперболоида пробивает на базальтовом острове глубокую шахту сквозь океаническую оболочку, в недрах которой якобы находится золотоносный рудный пояс. Как видим, здесь легко просматривается идея о том, что «тяжелая» океаническая кора должна содержать несравненно больше тяжелых металлов, чем континентальная.

В действительности же океан оставался почти таким же недоступным для исследователей, как и раньше. Новых фактов появлялось немного, и интерес в теории дрейфа материков постепенно угас. Однако она успела побудить геологов к изучению морей и океанов и дала толчок разработке дистанционных методов исследований. В частности, стали развиваться геофизические методы, способные просвечивать дно на глубину и получать непрерывные записи подводного рельефа от берега до абиссали. Огромное значение имело усовершенствование приборов эхолокации. Благодаря широкому внедрению эхолотов на флотах, а затем и на исследовательских судах за короткий промежуток времени произошел настоящий переворот в наших знаниях о рельефе морского дна. Выявилась чрезвычайно сложная геологическая структура океана, различающаяся в периферийных и центральных его частях. Началась эпоха интенсивного накопления фактических данных, что привело в конечном итоге к революционному пересмотру всей системы взглядов на историю не только океанского дна, но и континентов.

В геологической науке между тем развернулась борьба идей, продолжающаяся с разной интенсивностью до сих пор.

Фиксизм и мобилизм

Споры среди геологов относительно возможности горизонтальных перемещений крупных блоков земной коры вскоре привели к обособлению двух школ, представители которых занимали непримиримые позиции. Одни пытались объяснить особенности строения горно-складчатых поясов, выделяемых на континентах, только горизонтальными тектоническими подвижками, другие – исключительно вертикальными: воздыманием земной коры и ее опусканием. За первым течением вскоре закрепилось название «мобилизм», а за вторым – «фиксизм».

Чтобы понять суть этих споров, нужно обратиться к строению основных структурно-тектонических элементов в пределах континентального сегмента земной коры, так как о структуре океанического сегмента тогда почти ничего не знали. Речь идет о древних и молодых платформах и горно-складчатых поясах, их разделяющих. Платформы характеризуются двучленным строением, спокойным горизонтальным залеганием пластов осадочных пород, а также сглаженным, чаще всего низменным рельефом. Они имеют кристаллическое основание (фундамент), разбитое на крупные и мелкие блоки, и осадочный чехол.

Платформы, или, как их еще называют, кратоны, составляют ядро (или ядра) континентов, которые спаяны между собой горно-складчатыми поясами различного возраста. Последние нередко отделяют кратоны от океана, хотя чаще он непосредственно граничит с платформами континентов. Горно-складчатые пояса представляют собой систему разновысотных хребтов, разделенных долинами и межгорными впадинами. Серии осадочных и вулканических пород здесь собраны в крупные и мелкие складки, в ядрах которых при эрозии горных массивов обнажаются самые древние образования, а на крыльях – самые молодые. Выступающие части складок, будь то на поверхности или в недрах осадочного чехла, получили название антиклиналей, а разделяющие их понижения – синклиналей. Помимо складчатых дислокаций, в пределах горно-складчатых сооружений выявляются и иные зоны нарушений. По ним те или иные группы пластов разобщены (разорваны) и смещены друг относительно друга. Смещения эти могут носить вертикальный или горизонтальный характер. В первом случае разломы, по которым они происходят, называются сбросами или взбросами в зависимости от направления движений вниз или вверх, во втором – сдвигами. И те и другие достаточно четко проявляются и легко картируются при геологической съемке.

Известны, однако, и более сложные разрывные нарушения, получившие название надвигов. Суть их состоит в том, что разорванные по плоскости сместителя горизонты (пласты) пород не только смещаются друг относительно друга по вертикали и горизонтали, но к тому же и накладываются одни на другие. Возникает так называемая покровная структура: пласты одного возраста в разрезе образуют «слоеный пирог». При таком строении осадочного чехла скважина, заложенная на поверхности, вскроет однотипные и близкие по составу и возрасту пластины, разделенные несогласиями, иначе говоря, поверхностями разрыва, по которым перемещались слои. Возникает комплекс чешуйчатого строения.

Нередки случаи, когда в районах с покровной структурой более древние пласты, которые по законам геологической логики должны находиться под более молодыми образованиями, оказываются над ними, т. е. перекрывают их. Тут речь идет о крупных надвигах и связанных с ними значительных по амплитуде и расстоянию перемещениях.

Благодаря надвигам в непосредственном соседстве могут находиться породы и целые комплексы отложений, никак не связанных возрастом или происхождением. Для геолога является нормальной ситуация, когда в районе, где проводятся исследования, он имеет дело с породами определенного возрастного диапазона, т. е., скажем, с возникшими в докембрии, палеозое, мезозое или кайнозое. В редких случаях, да и то лишь в краевых частях древних платформ, присутствуют одновременно все эти образования. Но и здесь их удается вскрыть только очень глубокими скважинами. Как правило, тот или иной участок земной коры активно развивался в конкретный период (периоды) геологической истории.

Согласно другому закону, особенно хорошо известному литологам, т. е. специалистам по породам осадочного происхождения, в непосредственном соседстве как в разрезе, так и на площади могут находиться породы близкого генезиса, если они, конечно, не разделены крупными стратиграфическими перерывами или не контактируют по разлому. Иначе говоря, рядом с речными и озерными отложениями обычно оказываются прибрежно-морские и дельтовые, но никак не глубоководные морские или океанические. Соответственно и наоборот: осадки, сформировавшиеся в открытой части шельфа, т. е. в районах действия океанских или морских течений, не могут находиться в непосредственном соседстве с эоловыми наносами пустынь или речными выносами предгорий. Между ними обязательно должно быть связующее звено – отложения волнового генезиса или зоны действия приливов и отливов, иначе говоря, прибрежно-морские и береговые образования. Эта особенность, получившая название закона Вальтера—Головкинского, с конца прошлого века являлась своеобразным мерилом правильности геологических построений для того или иного региона.

Легко поэтому представить, какие ожесточенные споры возникали в тех случаях, когда на составлявшихся геологических картах оказывались рядом образования очень разного возраста и разной фациальной природы. С подобным соседством можно смириться, если предположить наличие разрывных нарушений, по которым были подняты к поверхности (или, наоборот, опущены в недра) слои другой возрастной группы. Однако особо острые дискуссии среди геологов разгорались тогда, когда подобные разновозрастные и разнофациальные контакты выявлялись не на площади, а в разрезе. Впрочем, совершенно чуждые друг другу комплексы пород могут оказаться рядом, если они разделены огромным стратиграфическим перерывом, в течение которого произошла резкая перестройка этого участка земной коры.

Бывают, однако, случаи, когда и подобные предположения не объясняют всей курьезности и даже парадоксальности выявленных геологических границ. И тогда остается одно: признать наличие надвига и связанного с ним покрова, развитие которых привело в непосредственное соприкосновение комплексы пород-антиподов.

Надо сказать, что на платформах подобные казусы практически не встречаются. Здесь в разрезах осадочного чехла древние отложения перекрываются более молодыми, причем залегают они в основном горизонтально я большая часть нарушений этой стратификации связана с простейшими разломами – сбросами. Лишь в краевых частях платформ, обращенных к океану или горно-складчатому поясу, имеются покровные структуры. Их появление обусловлено тектоническими процессами, протекающими в зоне перехода от континента к океану, или особенностями роста и эволюции горно-складчатых систем. В целом для осадочного этажа древних и относительно молодых кратонов (платформ) характерны малоамплитудные пологие складки простого строения, вытянутые в антиклинальные зоны. Тут все было более или менее ясно: тектонику платформенных областей на континентах определяли вертикальные, в основном малоамплитудные, движения.

В отечественной геологии основополагающие проблемы тектоники стали объектом пристального внимания ученых в 40—50-х годах, когда резко расширились региональные исследования, в том числе поисковое и разведочное бурение на нефть и газ. Велось оно, однако, неглубоко (1,5—3 тыс. м) и в районах с. относительно простым строением – в передовых прогибах и прилегающих частях древних и молодых платформ. Результаты бурения, а также геологической съемки на огромных просторах нашей страны не подтверждали наличия крупных покровных структур. Отдельные надвиги и чешуи в различных горно-складчатых системах принципиально не меняли складывавшейся к тому времени общей картины, которую легко можно было объяснить господством в геологическом прошлом вертикальных тектонических движений. Правда, работы зарубежных ученых показали покровно-надвиговое строение многих районов Альпийского складчатого пояса, что нашло отражение в термине «альпинотипная», т. е. покровная, тектоника. Однако Альпы можно было рассматривать как исключение. Отечественные же материалы, интерпретировавшиеся зачастую с учетом позиции ведущих тектонистов того времени, казалось, свидетельствовали о главенствующей роли вертикальных Движений. Фиксистские концепции получили всеобщее признание, а мобилизм, и в частности гипотеза дрейфа материков А. Вегенера, рассматривался как исторический курьез, скорее забавный, чем значимый. Впрочем, доклады мобилистов на всесоюзных тектонических совещаниях уже тогда собирали обширную аудиторию, чувствовавшую подспудно, что именно с этой стороны можно ожидать нового скачка в геологических знаниях. Провозвестниками новой геологической революции в те годы выступали в нашей стране Б. Л. Личков и П. Н. Кропоткин, а за рубежом – Ф. Венинг-Мейнес, Г. Хесс, Р. Дитц, Б. Хизен и др.

Геосинклинальная теория и гипотеза океанизации земной коры

Тектоническая мысль в первые послевоенные десятилетия развивалась в рамках геосинклинальной теории, основы которой были заложены еще в XIX в. Дж. Дэна и Г. Огом и существенно обогащены в XX столетии сначала Г. Штилле, а затем Н. С. Шатским, В. В. Белоусовым, В. Е. Хаиным, А. В. Пейве и другими учеными. Геосинклинальный режим развития земной коры, как Считает член-корреспондент АН СССР В. В. Белоусов [1976], «характеризуется глыбово-волновыми колебательными движениями, интенсивными складчатыми и разрывными дислокациями, напряженной магматической деятельностью, проявлением регионального метаморфизма и гранитизации». Иначе говоря, геосинклиналь – это область земной коры, которая на определенном промежутке времени становится ареной наиболее ярких и драматических геологических событий: проявлений магматизма, вулканических извержений, интенсивного накопления осадков, наконец, горообразования, сопровождающегося складчатостью.


    Ваша оценка произведения:

Популярные книги за неделю