355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Ивин » По законам логики » Текст книги (страница 9)
По законам логики
  • Текст добавлен: 9 октября 2016, 13:00

Текст книги "По законам логики"


Автор книги: Александр Ивин



сообщить о нарушении

Текущая страница: 9 (всего у книги 16 страниц)

ТРЕТЬЕГО НЕ ДАНО

Закон исключенного третьего противоречия, устанавливает связь между противоречащими друг другу высказываниями. И опять-таки идея, выражаемая им, представляется поначалу простой и очевидной: из двух противоречащих высказываний одно является истинным.

В использовавшейся уже полусимволической форме: А или не-А, то есть истинно высказывание А или истинно его отрицание, высказывание не-А.

Конкретными приложениями этого закона являются, к примеру, высказывания: «Аристотель умер в 322 году до н. э. или он не умер в этом году», «Личинки мух имеют голову или не имеют ее».

Истинность отрицания равнозначна ложности утверждения. В силу этого закон исключенного третьего можно передать и так: каждое высказывание является истинным или ложным.

Само название закон а выражает его смысл: дело обстоит так, как описывается в рассматриваемом высказывании, или так, как говорит его отрицание, и никакой третьей возможности нет.

Оба закона – и закон противоречия и закон исключенного третьего – были известны еще до Аристотеля. Он первым дал, однако, их ясные формулировки, подчеркнул важность этих законов для понимания мышления и бытия и вместе с тем выразил определенные сомнения в универсальной приложимости второго из них.

«…Невозможно, – писал Аристотель, – чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении (и все другое, что мы могли бы еще уточнить, пусть будет уточнено во избежание словесных затруднений) – это, конечно, самое достоверное из всех начал». Такова формулировка закона противоречия и одновременно предупреждение о необходимости сохранения одной и той же точки зрения в высказывании и его отрицания «во избежание словесных недоразумений». Здесь же Аристотель полемизирует с теми, кто сомневается в справедливости данного закона: «…Не может кто бы то ни был считать одно и то же существующим и несуществующим, как это, по мнению некоторых, утверждает Гераклит».

О законе исключенного третьего: «…Не может быть ничего– промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо что бы то ни было одно либо утверждать, либо отрицать».

От Аристотеля идет также живая еще и в наши дни традиция давать закону противоречия, закону исключенного третьего да и другим логическим законам три разные интерпретации.)

Один раз закон противоречия истолковывается как принцип логики, говорящей о высказываниях и их истинности: из двух противоречащих друг другу высказываний только одно может быть ложным.

В другом случае этот же закон понимается как утверждение об устройстве самого мира: не может быть так, чтобы что-то одновременно существовало и не существовало.

В третьем случае этот закон звучит уже как истина психологии, касающаяся своеобразия нашего мышления: не удается так размышлять о какой-то вещи, чтобы она оказывалась такой и вместе с тем не такой.

Нередко полагают, что эти три варианта различаются между собой только словесно. На самом деле это совершенно не так. Устройство мира и своеобразие человеческого мышления – темы эмпирического, опытного исследования. Получаемые с его помощью положения являются эмпирическими истинами. Принципы же логики совершенно иначе связаны с опытом и представляют собой не эмпирические, а логически необходимые истины. В дальнейшем, когда пойдет речь об общей природе логических законов и логической необходимости, недопустимость подобного смешения логики, психологии и теории бытия станет яснее.

Аристотель сомневался в приложимости закона исключенного третьего к высказываниям о будущих событиях. В настоящий момент наступление некоторых из них еще не предопределено. Нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились. «Через сто лет в этот же день будет идти дождь» – это высказывание сейчас скорее всего ни истинно, ни ложно. Таким же является его отрицание. Ведь сейчас нет причины ни для того, чтобы через сто лет пошел дождь, ни для того, чтобы его через сто лет не было. Но закон исключенного третьего утверждает, что или само высказывание, или его отрицание истинно. Значит, заключает Аристотель, хотя и без особой уверенности, данный закон следует ограничить одними высказываниями о прошлом и настоящем и не прилагать его к высказываниям о будущем.

Гораздо позднее, уже в нашем веке, размышления Аристотеля над законом исключенного третьего натолкнули на мысль о возможности принципиально нового направления в логике. Но об этом будет случай поговорить позже.

В XIX веке Г. Гегель весьма иронично отзывался о законе противоречия и законе исключенного третьего. Последний он представлял, в частности, в такой форме: дух является зеленым или не является зеленым, и задавал «каверзный» вопрос: какое из этих двух утверждений истинно?

Ответ на этот вопрос не представляет, однако, труда. Ни одно из двух утверждений: «Дух зеленый» и «Дух не зеленый» не является истинным, поскольку оба они бессмысленные. Закон исключенного третьего приложим только к осмысленным высказываниям. Только они могут быть истинными или ложными. Бессмысленное же не истинно и не ложно.

Критика Г. Гегелем логических законов опиралась, как это нередко бывает, на придание им того смысла, которого у них нет, и приписывание им тех функций, к которым они не имеют отношения. Случай с критикой закона исключенного третьего – один из примеров такого подхода.

Сделанные вскользь, разрозненные и недостаточно компетентные критические замечания Г. Гегеля в адрес формальной логики получили, к сожалению, широкое хождение. В логике в конце XIX – начале XX века произошла научная революция, в корне изменившая лицо этой науки. Но даже огромные успехи, достигнутые логикой в результате этого, не смогли окончательно искоренить тех ошибочных представлений о ней, у истоков которых стоял Г. Гегель. Не случайно немецкий историк логики X. Шольц писал, что гегелевская критика формальной логики была злом настолько большим, что его и сейчас трудно переоценить.

Резкой, но хорошо обоснованной критике подверг закон исключенного третьего голландский математик Л. Брауэр. В начале этого века он опубликовал три статьи, в которых выразил сомнение в неограниченной приложимости законов логики и прежде всего закона исключенного третьего. Первая из этих статей не превышала трех страниц, вторая – четырех, а вместе они не занимали и семнадцати страниц. Но впечатление, произведенное ими, было чрезвычайно сильным.

Л. Брауэр был убежден, что логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Возражая против закона исключенного третьего, он настаивал на том, что между утверждением и его отрицанием имеется еще третья возможность, которую нельзя исключить. Она обнаруживает себя при рассуждениях о бесконечных множествах объектов.

Упустим, что утверждается существование объекта с определенным свойством. Если множество, в которое входит этот объект, конечно, то можно перебрать все объекты. Это позволит выяснить, какое из следующих двух утверждений истинно: «В данном множестве есть объект с указанным свойством» или же: «В этом множестве нет такого объекта». Закон исключенного третьего здесь справедлив.

Но когда множество бесконечно, то объекты его невозможно перебрать. Если в процессе перебора будет найден объект с требуемым свойством, первое из указанных утверждений подтвердится. Но если найти этот объект не удастся, ни о первом, ни о втором из утверждений нельзя ничего сказать, поскольку перебор не проведен до конца. Закон исключенного третьего здесь не действует: ни утверждение о существовании объекта с заданным свойством, ни отрицание этого утверждения не является истинным.

Ограничение Л. Брауэром сферы действия этого закона существенно сужало круг тех способов рассуждения, которые применимы в математике. Это сразу же вызвало резкую оппозицию многих математиков, особенно старшего поколения. «Изъять из математики принцип исключенного третьего, – писал немецкий математик Д. Гильберт, – все равно что… запретить боксеру пользоваться кулаками».

Критика Л. Брауэром закона исключенного третьего привела к созданию нового направления в логике – интуиционистской логики. В последней не принимается этот закон и отбрасываются все те способы рассуждения, которые с ним связаны. Среди них – доказательства путем приведения к противоречию, или абсурду.

Интересно отметить, что еще до Л. Брауэра сомнения в универсальной приложимости закона исключенного третьего высказывал русский философ и логик Н. Васильев. Он ставил своей задачей построение такой системы логики, в которой была бы ограничена не только сфера действия этого закона, но и закона противоречия. По мысли И. Васильева, подобным образом ограниченная логика не способна действовать в мире обычных вещей, но она необходима для более глубокого понимания логического учения Аристотеля.

Современники не смогли в должной мере оценить казавшиеся им парадоксальными идеи Н. Васильева. К тому же сам он склонен был обосновывать свои взгляды с помощью аргументов, не имеющих прямого отношения к логике и правилам логической техники, а иногда и просто путано. Тем не менее, оглядываясь назад, можно сказать, что он оказался одним из предшественников интуиционистской логики.

Тезис об ограниченности закона исключенного третьего отстаивался в начале этого века и русским математиком С. Шатуновским, исходившим в своих рассуждениях из тщательного изучения особенностей доказательств в математике и своеобразия операций с бесконечными множествами. Он писал, в частности, что «применение логического закона исключенного третьего не только к элементам бесконечного многообразия, но и к элементам конечного класса требует чрезвычайной осторожности и иногда может быть оправдано только после длинного ряда исследований».

В дальнейшем идеи, касающиеся ограниченной приложимости закона исключенного третьего и связанных с ним способов математического доказательства, были детально развиты советскими математиками А. Колмогоровым, В. Гливенко, А. Марковым, Н. Шаниным, А. Драгалиным и др. В результате критического переосмысления основных принципов интуиционистской логики возникла так называемая конструктивная логика, также считающая неправильным перенос ряда логических принципов, применимых в рассуждениях о конечных множествах, на область бесконечных множеств.

«ОСНОВНЫЕ» ЗАКОНЫ

Еще одним логическим законом, имеющим долгую, хотя и довольно спокойную историю, является закон тождества.

Внешне он самый простой из всех законов. Он говорит: если высказывание истинно, то оно истинно. Или: если А, то А. Раньше его передавали в форме: А = А.

К примеру: «Если трава зеленая, то она зеленая», «Если трава черная, то она черная» и т. д.

Этот закон выражает идею, что каждое высказывание является и необходимым и достаточным условием своей собственной истинности.

В прошлом веке получила широкое распространение концепция «расширенной» формальной логики. Ее сторонники резко сдвинули центр тяжести логических исследований с изучения правильных способов рассуждения на разработку проблем теории познания, причинности, индукции и т. д. В логику были введены темы, интересные и важные сами по себе, но не имеющие к ней прямого отношения. Собственно логическая проблематика отошла на задний план. Вытеснившие ее методологические проблемы трактовались, как правило, упрощенно, без учета динамики научного познания,

Характерным примером такой «расширенной» трактовки была «Логика» английского логика Д. Милля. Еще при жизни автора эта книга выдержала восемь изданий, не без интереса она читается и сейчас. Общая ее направленность хорошо видна из полного ее названия:

«Система логики рациональной и индуктивной, в связи с принципами очевидности и методами научного познания». Широкой известностью пользовались также книги по логике немецких логиков В. Вундта, X. Зигварта, Л. Лотце. «Логика» В. Вундта состояла из трех толстых томов, «Логика» X. Зигварта – из двух. Последняя, как и книга Д. С. Милля, была переведена на русский язык и оказала большое влияние на распространение идей «расширенной» логики в России.

С развитием математической логики это направление в логике, путающее ее с поверхностно понятой методологией и пронизанное психологизмом, постепенно захирело.

Одним из отголосков идей «расширенной» логики является, в частности, разговор о так называемых «основных» законах мышления, или «основных» законах логики.

Согласно этой «широкой» трактовке логики основные законы – это наиболее очевидные из всех утверждений логики, являющиеся чем-то вроде аксиом этой науки. Они образуют как бы фундамент логики, на который опирается все ее здание. Сами же они ниоткуда не выводимы, да и не требуют никакой опоры в силу своей исключительной очевидности.

Под это до крайности расплывчатое понятие основных законов можно было подвести самые разнородные идеи. Обычно к таким законам относили закон противоречия, закон исключенного третьего и закон тождества. Нередко к ним добавляли еще закон достаточного основания и принцип «обо всех и ни об одному

Согласно последнему принципу сказанное обо всех предметах какого-то рода верно и о некоторых из них, и о каждом в отдельности; неприложимое ко всем предметам неверно также в отношении некоторых и отдельных из них.

Действительно, это так. Но совершенно непонятно, какое отношение имеет эта истина к основаниям логики. В современной логике это один из бесконечного множества ее законов.

Закон достаточного основания вообще не является принципом логики – ни основным, ни второстепенным. Он требует, чтобы ничто не принималось просто так, на веру. В случае каждого утверждения следует указывать основания, в силу которых оно считается истинным. Разумеется, это никакой не закон логики. Скорее всего это некоторый методологический принцип, не особенно ясный, но в общем небесполезный.

Закон тождества, как он толковался в «расширенной» логике, тоже имел только отдаленное сходство с соответствующим законом. В процессе рассуждения значения понятий и утверждений не следует изменять. Они должны оставаться тождественными самим себе, иначе свойства одного объекта незаметно окажутся приписанными совершенно другому. Чтобы этого не случилось, надо выделять обсуждаемые объекты по достаточно устойчивым признакам.

Требование не изменять и не подменять значения в ходе рассуждения является, конечно, совершенно справедливым. Но столь же очевидно, что оно не относится к законам логики.

Что касается законов противоречия и исключенного третьего, то и они в рамках «расширенной» логики приобретали ярко выраженный методологический уклон. Первый из этих законов обычно превращался в запрещение говорить одновременно «да» и «нет», утверждать и отрицать одно и то же об одном и том же предмете, рассматриваемом в одном и том же отношении. Второй подменялся требованием, чтобы решение каждого вопроса доводилось до полной определенности. Анализ следует считать завершенным только тогда, когда установлена истинность либо рассматриваемого положения, либо его отрицания.

Это – полезные советы, но никакие не законы логики.

В итоге можно сказать, что рассуждения «расширенной» логики об основных законах мышления затемняют и запутывают проблему логических законов.

Как ясно показала современная логика, законов логики бесконечное множество. Деление, их на основные и неосновные лишено ясных оснований.

Несостоятельна также подмена логических законов расплывчатыми методологическими советами. Никакого фундамента в виде короткого перечня основополагающих принципов у науки логики нет. В этом она не отличается от всех других научных дисциплин.

«Основных принципов», из которых выводилось бы или на которые опиралось бы все остальное содержание, нет ни у математики, ни у психологии, ни у любой иной науки. Иногда, правда, говорят о таких принципах или о фундаменте какой-то отрасли знания. В прошлом веке термин «основные принципы» нередко фигурировал в названиях научных книг. Но все это не должно пониматься буквально и прямолинейно.

Удивительно, что разговор об «основных принципах» логики иногда возникает даже в наше время.

Есть еще один предрассудок, культивировавшийся «расширенной» логикой и доживший до наших дней. Это обсуждение законов логики в полном отрыве их от всех иных ее важных тем и понятий и даже в изоляции их друг от друга.

При чтении старых книг по логике постепенно складывается впечатление разрозненности, необязательности и несвязанности рассматриваемых в них тем. Если удалить из старого учебника логики, скажем, раздел о законе исключенного третьего, на трактовке других законов это не скажется. Можно вообще устранить из такого учебника всякое упоминание об основных законах. И при этом все оставшееся не нужно будет даже перефразировать.

Логические законы интересны, конечно, и сами по себе. Но если они действительно являются важными элементами механизма мышления – а это, несомненно, так, – они должны быть неразрывно связаны с другими элементами этого механизма. И прежде всего с центральным понятием логики – понятием логического следования, и значит, с понятием доказательства.

Современная логика устанавливает такую связь.

Доказать утверждение – значит показать, что оно является, логическим следствием других утверждений, истинность которых уже установлена. Заключение логически следует из принятых посылок, если оно связано с ними логическим законом.

Без логического закона нет логического следования и нет самого доказательства.

ЕЩЕ ЗАКОНЫ

Вернемся, однако, к конкретным законам логики.

Законы двойного отрицания позволяют снимать и вводить такое отрицание. Их можно выразить так: если неверно, что не-А, то А; если А, то неверно, что не-А. Например, «Если неверно, что Фреге не знал закона снятия двойного отрицания, то Фреге знал этот закон», и наоборот.

Закон, носящий имя средневекового логика и философа монаха Дунса Скота, характеризует ложное высказывание. Смысл этого закона можно приблизительно передать так: из ложного утверждения вытекает какое угодно утверждение. Применительно к конкретным утверждениям это звучит так: если дважды два равно четыре, то если это не так, то вся математика ничего не стоит. В подобного рода рассуждениях есть несомненный привкус парадоксальности. Особенно заметным он становится, когда в качестве заключения берется явно ложное и совершенно не связанное с посылками высказывание. Например: если дважды два равно четыре, то если это не так, то Луна сделана из зеленого сыра. Явный парадокс! Не все описания логического следования принимают данный закон в качестве правомерного способа рассуждения. Построены, хотя только сравнительно недавно, такие теории логических связей, в которых этот и подобные ему способы рассуждения считаются недопустимыми.


Известен анекдот о Б. Расселе, доказавшем своему собеседнику на каком-то вечере, что из того, что два плюс два равно пяти, вытекает, что он, Рассел, – римский папа. В доказательстве использовался закон Дунса Скота.

Отнимем от обеих сторон равенства 2 + 2 = 5 по 3. Получим: 1=2. Если собеседник утверждает, что Рассел не является римским папой, то этот папа и Рассел – два разных лица. Но поскольку 1=2, папа и Рассел – это одно и то же лицо.

Закон, названный именем еще одного средневекового монаха и логика – Клавия, лежит в основе доказательства путем приведения к абсурду. Закон Клавия говорит, что если из ложности утверждения вытекает его истинность, то утверждение истинно.

К законам доказательства путем приведения к абсурду относится и принцип, говорящий, что если из утверждения вытекает противоречие, то это утверждение ложно. Например, если из утверждения: «Треугольник имеет четыре угла» – выводится как то, что у треугольника три угла, так и то, что у него не три угла, это означает, что исходное утверждение ложно.

Приведенные формулировки законов логики и примеров к этим законам являются весьма неуклюжими конструкциями, и звучат они довольно непривычно. И это даже в случае самых простых по своей структуре законов. Естественный язык, использовавшийся в этих формулировках, явно не лучшее средство для данной цели. И дело даже не столько в громоздкости получаемых выражений, сколько в отсутствии ясности и точности в передаче законов.

Мало сказать, что о законах логики трудно говорить, пользуясь только обычным языком. Строго подходя к делу, нужно сказать, что они вообще не могут быть адекватно переданы на этом языке.

Не случайно современная ложка строит для выражения своих законов и связанных с ними понятий специальный язык. Этот формализованный язык отличается от обычного языка прежде всего тем, что следует за логической формой и воспроизводит ее даже в ущерб краткости и легкости общения.


    Ваша оценка произведения:

Популярные книги за неделю