Текст книги "В защиту науки (Бюллетень 1)"
Автор книги: Комиссия по борьбе с лженаукой и фальсификацией на
сообщить о нарушении
Текущая страница: 11 (всего у книги 16 страниц)
"Разгрузка общеобразовательного ядра", "отказ от сциентистского и предметоцентрического подходов", а также "существенное сокращение объема образования" – главные лозунги людей, почти погубивших наши высокие технологии и теперь взявшихся за «реформу» образования. Это, прежде всего, деятели из либерал-экстремистской Высшей школы экономики (см. статью автора в журнале "Здравый смысл" 2005. № 2 (35), имеющуюся и на сайте www.ufn.ru/tribune.html). Трудно отделаться от мысли, что теперь они хотят закрепить успех, и на десятилетия вперед предотвратить возможность восстановления отечественной науки и высоких технологий. Либерал-экстремисты не являются правящей партией, но, как известно, определяют и поныне политику правительства в области экономики и финансов. Они внедряют рыночные отношения, борьбу за существование в сферу социальной политики, от чего давно отказались во всех успешно развивающихся странах. Напомним, что социал-дарвинизм был составной частью идеологии Германской национал-социалистической рабочей партии…
Необходимо напомнить нашим неучам, что нормальные ученые – как и более честные из фантазеров – тоже в конечном счете движимы любопытством к чудесному, но они не придумывают чудеса, а разгадывают их – после чего они становятся нормальными природными явлениями. Процесс этот медленный и трудный, но именно благодаря неуклонному продвижению на этом пути и существуют ныне все блага цивилизации. Да, все они – не что иное, как побочный продукт любознательности ученых. Многие об этом забыли; в России распространяется мнение, что финансировать фундаментальную науку – все равно, что отапливать атмосферу. У людей короткая память. Между появлением статьи в научном журнале и бытового прибора или лекарства часто укладывается человеческая жизнь. Новому поколению кажется, что это было всегда и ученые здесь ни при чем. Между тем каждый шаг городского жителя связан с тем или иным достижением науки, и, прежде всего, физики.
Более двух тысяч лет электричество было известно человечеству, но казалось лишь забавной игрушкой. Только в 1820 г. Эрстед и Ампер обнаружили воздействие электрического тока на магнитную стрелку и уже в следующем году в руках Фарадея заработал прообраз первого электромотора. К 1873 г., раньше чем в городах пошли первые трамваи, Максвелл, основываясь на опытах Фарадея и его идее силовых линий поля, создал теорию электромагнитного поля, объединившую электричество и магнетизм. Более того, он пришел к выводу, что "свет состоит из поперечных колебаний той же самой среды, которая вызывает электрические и магнитные явления". Успех такого же ранга пришел в науку лишь сто лет спустя, с объединением электромагнитных и слабых взаимодействий. Практической пользы от этой теории пока нет…
Уравнения Максвелла казались очень трудными для понимания и никому не нужными – но недолго. Через 15 лет Герц сообщил о своих опытах по созданию "электрических лучей". Оказалось, что существуют и распространяются в пространстве со скоростью света электромагнитные колебания и с большей длиной волны, чем видимые глазом, как это и следовало из уравнений Максвелла. И 7 мая 1895 г. Попов передал по созданному им беспроволочному телеграфу на расстояние в 200 м слова "Генрих Герц". Вскоре появилось новое слово – радио. В 1897 г. Томсон (лорд Кельвин) открыл электроны, в 1900 г. Планк догадался, что существует наименьшая неделимая далее порция энергии – квант действия, а в 1905 г. Эйнштейн создал специальную теорию относительности, а также показал, что и свет распространяется отдельными квантами – фотонами, что позволило ему же объяснить в 1920 г. явление фотоэффекта. Дуализм волновой и квантовой природы электромагнитных излучений был разрешен к 1927 г. созданием квантовой механики. Ее уравнения тоже долго казались ненужной абстракцией; они и поныне составляют проблему для понимания, но они работают, давно уже работают в каждой квартире! И не только в квартире. Теория индуцированного излучения возбужденного атома, созданная еще в 1930-х годах на основе новых знаний об элементарных частицах и строении атома, позволила Басову, Прохорову и Таунсу создать к 1960 г. приборы, усиливающие микроволновое (мазеры), а затем и световое (лазеры) излучения. В данном случае, как и в ряде других, одни и те же люди и совершенствовали теорию, и сами строили на ее основе приборы, довольно быстро принявшие форму привычных ныне бытовых устройств и лазерного оружия. Теория мазеров, между прочим, сразу же позволила объяснить некоторые загадочные источники космического радиоизлучения.
Электричество, радио, телевизоры и лазерные устройства появились первоначально как абстрактные уравнения, но были претворены в предметы потребления 30–50 лет спустя. Опыты Фарадея казались некоторым напрасной тратой времени и денег. На вопрос властей, зачем нужно это электричество, мудрый ученый ответил: когда-нибудь вы будете брать с него налоги. Знал бы он, как нас будет обдирать за это электричество г-н Чубайс!
А теперь представьте, что всего этого больше нет. Согласитесь, что вся жизнь в городе будет парализована. Ни умыться, ни попить, ни доехать до работы. Да и на работе делать нечего – ничто не работает. Остается сидеть дома без света, радио, телевизора и без телефона. А вскоре иссякнут запасы продовольствия – на лошадях много не привезешь… Правда, паровой двигатель был изобретен без помощи ученых, но и недавно еще существовавшие паровозы были основаны на инженерных расчетах. А все они покоятся на законах механики, открытых Галилеем и Ньютоном на основании наблюдений звезд и планет и развитых Лагранжем и другими в XVIII–XIX вв.
Изучение звезд, элементарных частиц и ядер атомов, над очевидной бесполезностью чего долго смеялись, дало не только атомную бомбу, но и в перспективе почти неисчерпаемые источники энергии. Всего лишь через три месяца после открытия немецкими учеными в конце 1938 г. делимости ядер урана встал вопрос об освобождении их энергии. Как говорил позднее Вер-нер Гейзенберг, летом 1939 г. двенадцать человек могли, договорившись друг с другом, предотвратить появление атомной бомбы. Этого не случилось, и никому не нужные занятия горстки чудаков внезапно превратились в вопрос жизни и смерти государств.
Наша наука оказалась на высоте, хотя сейчас часто говорят, что бомбой мы обязаны шпионам, а не физикам. Однако о том, что идут над ней работы, наши физики догадались сами, просто по исчезновению дальнейших публикаций о делении ядер урана. Первую бомбу ядерного деления мы сделали по американским чертежам, но лишь для того, чтобы ускорить работу. Что же касается бомбы ядерного синтеза, то американцы первыми взорвали лишь стационарное устройство величиной с хороший дом; первая же транспортабельная водородная бомба была взорвана нами. Она оказалась достаточно легкой потому, что использование изотопа лития, предложенное В.Л. Гинзбургом (см.: Гинзбург В.Л. О науке, о себе и о других. М.: Наука. 1997. С. 205) позволило обойтись без огромных охлаждающих устройств. Затем появились идеи Сахарова и Зельдовича (оба они ушли затем в космологию, где физика примерно та же), которые позволили почти неограниченно увеличивать мощность бомб. Сахаров был уверен, что именно это спасло в свое время мир на планете. Термоядерными реакциями синтеза, превращения водорода в гелий (обеспечивающими свечение звезд) физика скоро научится управлять и превратит их в неиссякаемый источник энергии на Земле.
Конечно, и химия, и биология, и другие науки также необходимы для благоденствия человечества. Зеленая революция и успехи медицины возникли, в конечном счете, из бескорыстного изучения травинок и невидимых глазу козявок. Однако физика и ее составные части – астрофизика и космология – занимают особое место в естествознании. Предельно глубокие вопросы, которыми задается человек, – о мироздании и о себе самом, – в конце концов упираются в бесконечно большое и бесконечно малое, в проблемы устройства и эволюции Вселенной в целом и в законы мира элементарных частиц. Химию называют физикой молекул – их можно рассчитать, но гораздо проще и быстрее решать задачи химии ее же методами. Сводимость биологии и, тем более, сознания к физике остается ареной дискуссий. Проблема прояснится с обнаружением жизни в других мирах. Ныне даже поиски братьев по разуму начинают обретать почву под ногами. Каждый год растет число открываемых вокруг звезд планет; скоро мы сумеем определять состав их атмосфер и, вероятно, найдем такие, где может существовать жизнь, подобная земной.
На современном этапе развития астрофизики и космологии проблемы этих наук становятся в то же время и проблемами физики микромира, фундаментальными проблемами физики вообще. Недавнее определение (с помощью астрономических наблюдений на больших наземных телескопах и специализированных спутниках) плотности энергии вакуума дало для нее небольшое положительное значение, тогда как физики ожидали, что она равна нулю или в крайнем случае величине, образованной из комбинации фундаментальных постоянных. Решить проблему можно только последующими наблюдениями, поскольку тут лабораторией может служить лишь вся наша Вселенная. Более тридцати лет назад акад. Арцимович говорил, что будущее принадлежит астрофизике. Можно сказать, что физика и астрофизика роют туннель с двух сторон горы; они смыкаются в космологии.
Это относится не только к физическому вакууму, но и к проблеме черных дыр. Астрономы практически обнаружили сверхмассивные (в миллионы масс Солнца) черные дыры в ядрах трех сотен галактик, а крупнейшие физики развивают теорию этих предсказанных общей теорией относительности объектов. Обнаруживаются все новые их поразительные свойства; черные дыры, возможно, способны сохранять и, может быть, даже освобождать информацию об объектах, всосанных в них сверхсильным гравитационным полем.
Черные дыры могут служить туннелями в другие времена и пространства; они могут соединять нас с другими вселенными. Существование множества вселенных – вывод наиболее популярных космологических моделей. В вечном вакууме то там, то тут зарождаются из квантовых флуктуаций исходные протов-селенные, которые очень быстро расширяются – и наша расширяющаяся Вселенная лишь одна из них. Это предположение является самым естественным объяснением удивительной «подгонки» всевозможных физических и астрономических законов и параметров к самой возможности нашего существования. В других вселенных другая физика (и даже, может быть, математика), но там, скорее всего, некому спрашивать – а почему…
Впрочем, может существовать и эволюционная последовательность вселенных, подобных нашей. Теоретически уже известно, как создавать черные дыры в лаборатории. Внутренность вновь возникшей черной дыры начнет немедленно расширяться в другое пространство, образуя новую Вселенную, которая затем теряет связь с нашей. Новая Вселенная, зачатая в нашей Вселенной, должна сохранить ее физические законы и когда-нибудь в ней также появятся разумные обитатели, способные к созданию новых вселенных… Гипотеза бога снова и снова оказывается ненужной.
Говорить о бездуховности науки бессмысленно. Наука – и прежде всего физика – решает глубочайшие проблемы и Мироздания, и человеческого существования. И проблемы эти решаются не путем умозрительных рассуждений или комментирования древних текстов, как в философии или в теологии, а в конкретной работе, за компьютером, у телескопа или ускорителя. И даже за листком бумаги. Теории, выдержавшие проверку в экспериментах и в общечеловеческой практике, открывают новые горизонты и ставят новые задачи; старое знание, если оно истинно, при этом не отменяется, а становится частным случаем нового. Горизонт отодвигается, но завоеванная территория – наша!
Высочайшее предназначение человека – постигать создавший его Мир. Единственным орудием этого является наука, которая попутно создает и все блага цивилизации… Горе тем, кто этого не понимает.
«Фундаментальная» – «лежащая в основании»
А.С. Кингсеп
Что там, за ветхой занавеской тьмы? В гаданиях запутались умы, Когда же с треском рухнет занавеска, Увидим все, как ошибались мы.
Казалось бы, бесспорно, что в цитированном рубаи Омара Хайяма говорится о конце человеческого бытия. Только ли? Ведь теми же словами можно передать ощущение научного открытия – в общем, примерно так оно обычно и воспринимается его авторами. И нет оснований сомневаться в том, что Хайям хорошо это понимал. Ведь он был не только великим поэтом, но и великим математиком своего времени; в частности, календарь, им составленный, был более точным, нежели тот, которым мы пользуемся сегодня. Было это, напомним, 900 лет тому назад.
XIX в. – золотой век русской культуры – дал и на нашей земле примеры столь же гармонического сочетания служения науке и искусству: последние могли не только сосуществовать, но даже строиться и совершенствоваться одними и теми же руками. Имена общеизвестны: Н.П. Бородин был замечательным композитором и одновременно выдающимся химиком-органиком, а профессор зоологии Военно-медицинской академии Н.А. Холодковский был и по сей день считается одним из лучших переводчиков «Фауста» на русский язык (к «Фаусту» мы еще вернемся).
Конечно, приведенные примеры представляют не правило, а исключение, но правилом является то, что естественные науки и гуманитарная цивилизация в своем развитии идут рука об руку. Знание – единственный продукт естественных наук – используется как основа технологий и одновременно является базой, на которой строятся мировоззренческие дисциплины. (Не лишне отметить, что основой мировоззрения может быть не только знание, но и незнание или наша убежденность в невозможности познания.)
Мы живем в эпоху очередной научно-технической революции, главным содержанием которой является развитие информатики и компьютеризация как технологических процессов, так и нашей повседневной жизни. И за этим как-то забывается, – а многими из нас просто остается незамеченным, – что основой материальной культуры является все же именно естественно-научное знание, а не способы его обработки. (Чего стоит хотя бы популярный термин "компьютерная томография" – как будто сам компьютер, а не рентгеновская или ЯМР аппаратура производит физические измерения, которые и поставляют нам всю необходимую информацию.)
Говоря о естественных науках как источнике знания и основе материальной культуры, мы не всегда можем отделить эти науки друг от друга, по крайней мере, пока и поскольку речь идет о фундаментальных законах природы. Она ведь – природа – не знает, что мы разделили ее на главы и параграфы. Поэтому довольно-таки схоластическими представляются попытки авторов некоторых учебников определить различие между химической физикой и физической химией; а, например, в молекулярной биологии физика, химия и собственно биология пересекаются и друг в друга переходят. И все же… Если говорить о самых общих, самых фундаментальных (и самых простых) законах природы, то можно уверенно назвать науку, которая за них ответственна, – это физика. Все остальные естественные науки, так или иначе, явно или неявно, основываются на физических законах и опираются на сумму знаний, наработанную в рамках физической науки.
Есть и другая, не менее важная причина, почему физика может считаться основой всех естественных наук. Дело в том, что история ее становления как науки в современном понимании, это есть одновременно и история развития и становления того, что принято называть "современным научным подходом". Сейчас трудно представить себе, что первые (не слишком успешные) попытки четко сформулировать правила движения тел при различных условиях предпринимались уже около двух с половиной тысяч лет назад в Греции, в знаменитой школе «перипатетиков» ("прогуливающихся"), руководимой выдающимся мыслителем древности Аристотелем. Но как отличить ошибочное правило от истинного, и что вообще понимать под истинными законами движения или каких-либо других явлений природы? Чтобы найти ответы на эти естественные вопросы, потребовалось более двух тысячелетий напряженной работы бесчисленной армии исследователей в различных областях знания, пока не были выработаны общие принципы установления, формулировки и проверки законов, описывающих наблюдаемые явления природы, и именно эти принципы лежат в основе того, что называется современным научным мировоззрением.
Именно при изучении законов физики можно одновременно осваивать и основные элементы современного метода познания любых явлений природы, понимать принципиально приближенный характер наших знаний о природе, представить себе место и взаимосвязь теории и эксперимента и, наконец, даже грамотно вести спор на профессиональную тему. Все это не менее важно, чем знание законов, представленных в учебниках, и умение решать задачи из задачника, так как понимание логики научного мышления оказывается неоценимым подспорьем и при изучении других наук, и при овладении любой новой профессией, да и при решении многих проблем повседневной жизни.
Полезно особо акцентировать то обстоятельство, что физика – наука естественная, а следовательно – экспериментальная. Среди естественных наук физика – в силу фундаментальности объектов исследования и их свойств – наиболее формализована. Все ее конечные результаты естественным образом представляются в математической форме. Как следствие, первичное изучение физики нередко порождает у школьников и даже у студентов иллюзию «выводимости» или аксиоматич-ности физических законов. На самом деле, вся базовая информация в естественных науках поставляется экспериментом, им же проверяются, в конечном счете, любые теоретические модели.
Великий немецкий поэт и достаточно известный в свое время натуралист Иоганн Вольфганг Гёте к теории относился скептически. И как великий поэт мог это выразить в форме яркой и убедительной ("Фауст"):
Grau, teurer Freund, ist alle Theorie, Und gruen des Lebens goldner Baum.
Дословно: сера, дорогой друг, любая теория, но зелено золотое дерево жизни. В поэтических переводах всегда присутствует некоторая неточность, поэтому мы и приводим подлинный текст Гёте. (К сожалению, недостаток образования не позволяет автору проверить адекватность перевода Г. Гулиа цитируемого выше стихотворения Омара Хайяма.)
Гёте можно понять, если иметь в виду, что предметом его ученых занятий были в основном ботаника и минералогия. В этих науках, если можно вообще говорить о теории, ей отводится исключительно описательная и сугубо подчиненная роль. Но роль и место теории в физической науке отнюдь не сводятся к описанию и представлению результатов. Именно в силу высокого уровня формализации физики теория приобретает и определенную предсказательную силу, во-первых, в решении задач на базе законов, которые мы считаем с достоверностью установленными, а во-вторых, именно тогда, когда опыт дает основания усомниться в их достоверности либо требует установления границ применимости и степени точности физических законов. Тогда теория оказывается инструментом и средством построения гипотез, которые расширяют круг наших представлений и дают очередной толчок к развитию физической науки, но, в конечном счете, должны обязательно проходить экспериментальную проверку.
Высочайшим классом физической теории можно считать работы Ньютона (механика), Максвелла (электродинамика) и Эйнштейна (теория относительности). Во всех приведенных случаях теория строилась на базе немногочисленных и несовершенных экспериментов. Затем эксперименты становились все более и более точными и надежными, и оказывалось, что результаты их все лучше и лучше соответствовали теоретическим предсказаниям – пока не возникала необходимость в совершенствовании самой модели. Но, например, между механикой Ньютона и релятивистской механикой Эйнштейна – дистанция продолжительностью в 200 лет и огромный массив информации, с достаточной точностью адекватной именно механике Ньютона.
Хотелось бы, однако, подчеркнуть еще раз: при всей привлекательности физической теории как рода занятий – не только для самих физиков-теоретиков, но и для "состоящих при сем" писателей и журналистов, – все-таки главное содержание и сущность физической науки представляются экспериментом, и главная (во многих отношениях) часть сообщества физиков – физики-экспериментаторы. Последние, как правило, тесно сотрудничают с инженерами, и не так уж редко, работая рука об руку, они различаются лишь дипломами об образовании или, быть может, мен-тальностью – взглядом на проблемы, которыми им приходится заниматься.
По мере такого сотрудничества рождаются и новые технологии – как следствие переноса знаний сначала в прикладные дисциплины, затем – в опытно-конструкторские работы и, наконец, – в промышленные разработки. Роль инженера (в иных случаях – агронома, врача, зоотехника) при этом никак не менее важна, чем роль ученого. Представления же о том, что фундаментальная наука может быть "реальной производительной силой", еще недавно активно внедрявшиеся в сознание общества, или требования самоокупаемости науки, популярные сегодня, в лучшем случае наивны, на самом же деле – весьма и весьма вредны.
Если базой уже упомянутой современной научно-технической революции были достижения математики и физики твердого тела, то ее реализация обусловлена развитием программирования и компьютерных технологий соответственно. Нобелевская премия за разработку квантовых генераторов вручена Басову, Прохорову и Таунсу по результатам их работ первой половины 50-х годов, тогда как первый лазер был создан Мейманом лишь в 1961 г. (Правда, как раз в данном направлении авторы первоначальных работ впоследствии внесли большой вклад и в прикладные разработки.)
Говоря о мировоззренческой роли фундаментальных наук – физики прежде всего – также следует избегать упрощений. В частности, абсолютно несостоятельна идея о том, что все ученые-естественники суть либо сознательные, либо стихийные материалисты. Многие – безусловно, да. Но Эрнст Мах – знаменитый механик – был субъективным идеалистом, известный бельгийский астроном Леметр – католическим аббатом, а наш замечательный математик и физик-теоретик Н.Н. Боголюбов – православным христианином. Нет прямой причинной связи между знаниями и убеждениями, как нет и не может быть в рамках естественных наук доказательства либо опровержения существования Бога. Естественные науки формируют контекст наших понятий и убеждений, и в этом контексте существуют вера, атеизм или агностицизм. Но ответственность за сами убеждения, за само наше мировоззрение – то, что является делом нашей совести, – на науку переложить невозможно.
Обратимся еще раз к «Фаусту», но не к «Фаусту» Гёте, а к средневековой рукописной повести, послужившей ему литературной первоосновой. Там, в частности, Мефистофель, в ответ на вопрос главного героя, произносит такие слова: "Мир, Фауст, никогда не начинался и никогда не кончится". Богобоязненный переписчик в этом месте начертал на полях рукописи: "Ты лжешь, бес!". И вот что интересно: по нашим сегодняшним понятиям, прав, скорее, именно он, а не Мефистофель. Наука, однако, не стоит на месте, и завтра-послезавтра ее базовые понятия могут измениться, но пока что Большой взрыв и пульсирующая Вселенная принимаются как истина подавляющим большинством физического сообщества.
Случайно ли теория научных революций Куна и теория зарождения и гибели этносов Л.Н. Гумилева появились примерно в то же время, что и теория Большого взрыва? На наш взгляд – неслучайно. По-видимому, это еще одно свидетельство того, что естественное и гуманитарное мышление пребывают в определенной гармонии, хотя бы и не слишком заметной, быть может, даже и для самих участников процесса развития и совершенствования цивилизации.
Гораздо заметнее то влияние, которое наука, особенно в период ее интенсивного развития, оказывает на художественное и даже на обыденное мышление. Великий американский физик Ричард Фейнман как-то сказал (точнее – написал): "Позитрон – это электрон, путешествующий вспять по времени". Это было всего лишь образное представление некоторых математических зависимостей в рамках квантовой электродинамики. Но данное утверждение оказалось настолько ярким, что было замечено за пределами научного сообщества. Оно, в частности, вдохновило А.А. Вознесенского на написание целой главы в поэме «Оза»; Произошло это в первой половине 1960-х годов. А уже в конце тех же 60-х автору этих строк довелось услышать, как "специалист по паранауке" объяснял на базе этого утверждения явление телекинеза.
К сожалению, шутки физиков не всегда были безобидны для них самих. Сюда автор отнес бы, например, данное еще в XIX в. определение науки, авторство которого установить затруднительно (нашей общественности оно известно, поскольку было процитировано академиком Л.А. Арцимовичем): "удовлетворение собственного любопытства за государственный счет". В разных обстоятельствах цитируют это утверждение немного по-разному, но суть его при этом не меняется. И время от времени оно используется как формула обвинения, предъявляемого академической и вообще фундаментальной науке.
Но даже если и воспринимать данную шутку хотя бы отчасти всерьез, она представляет собой лишь часть истины, притом достаточно малую. Наука, прежде всего, – серьезный и тяжелый труд, жесткий и для многих болезненный профессиональный отбор, неизбежные продолжительные серии неудач и провалов, предваряющих "краткий миг торжества", увы, далеко не обязательный. Но это и радость – и не только радость успеха; прежде всего, по мнению автора, – это радость общения, чувство принадлежности к научному сообществу. А еще, коль скоро речь идет о физике, – сознание причастности к самой глубокой и самой прекрасной из наук, открывающих тайны мироздания и закладывающих основы прогресса человеческого общества. Хотелось бы надеяться, что трудности, которые сейчас испытывает наука в России, преходящи, и что отечественная физика, которой мы имели все основания гордиться в ХХ в., еще займет подобающее ей место в стране и в мире.