Текст книги "Большая Советская Энциклопедия (ХИ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 10 (всего у книги 18 страниц)
Химические научные общества и союзы
Хими'ческие нау'чные о'бщества и сою'зы, добровольные объединения лиц, занимающихся научными исследованиями в области химии и химической технологии, преподающих эти науки, работающих на предприятиях химической промышленности и в заводских лабораториях, а также лиц, которые независимо от своей профессии содействуют прогрессу химии и интересуются её успехами. Х. н. о. и с. стали возникать только в 1-й половине 19 в. под влиянием промышленной революции. До этого взаимное общение химиков осуществлялось путём личных контактов, переписки, чтения докладов в академиях наук и научных обществах естественнонаучного направления. Последние могут рассматриваться как предшественники отраслевых естественнонаучных обществ и союзов, в том числе и Х. н. о. и с. Были также неофициальные собрания химиков (например, у А. Л. Лавуазье в 1770—90). Первым было физико-химическое общество, основанное в 1807 (по др. данным в 1805) К. Л. Бертолле и П. С. Лапласом в парижском предместье Аркёй. Оно насчитывало около 20 членов, среди которых были Ж. Б. Био , Ж. Л. Гей-Люссак , А. Гумбольдт , О. П. Декандоль , П. Л. Дюлонг , Э. Л. Малюс, С. Д, Пуассон , Л. Ж. Тенор и др. После реставрации Бурбонов общество было закрыто как «очаг бонапартизма». Основные принципы деятельности этого общества – всестороннее обсуждение научных работ до их публикации, полная свобода выражения мнений, ответственность авторов за сообщаемые ими факты и выводы – остались руководящими для химических обществ, возникших позже. Старейшие из химических обществ: Лондонское (1841), Парижское (1857, с 1907 – Французское химическое общество), Немецкое (1867), Русское (1868; см. Химическое общество им. Д. И. Менделеева) и Американское (1876).
Химические общества имеются почти во всех странах. Общества 45 стран входят (16 непосредственно, а остальные через национальные академии наук или высшие научно-исследовательские советы) в Международный союз теоретической и прикладной химии (ИЮПАК). Помимо национальных Х. н. о. и с., существуют международные объединения химиков, призванные координировать исследования в определённых областях химической науки. Многие из них входят в состав ИЮПАК в качестве ассоциированных организаций. К таким организациям относятся: Ассоциация химиков-аналитиков, Международный комитет по поверхностно-активным веществам, Международная ассоциация по развитию исследований и технологии в области высоких давлений, Международная ассоциация по геохимии и космохимии, Международный комитет по реологии, Международная федерация по клинической химии, Международное общество по магнитному резонансу, Международное общество по электрохимии, Международное общество по химии гетероциклических соединений, Европейская фотохимическая ассоциация, Европейская федерация химиков-технологов, Федерация европейских химических обществ.
Х. н. о. и с. издают журналы и сборники работ, проводят регулярные научные совещания и сессии, созывают съезды химиков, химические конгрессы международные.
С. А. Погодин.
Химические осадки
Хими'ческие оса'дки, то же, что хемогенные отложения .
Химические реакции
Хими'ческие реа'кции, см. Реакции химические .
Химические уравнения
Хими'ческие уравне'ния, см. Уравнения химические .
Химические формулы
Хими'ческие фо'рмулы, см. Формулы химические .
Химические энциклопедии
Хими'ческие энциклопе'дии и словари, научные справочные издания, содержащие расположенные в алфавитном (реже в систематическом) порядке основные сведения по химии и химической технологии. Х. э. подразделяются на общие (охватывающие все области химии) и специальные (посвященные конкретной области химии). Во многих современных Х. э. и словарях наряду со статьями об основных химических понятиях, свойствах веществ и химических реакциях содержатся сведения о химическом лабораторном оборудовании, номенклатуре химических соединений, о т. н. «именных» реакциях, а также по отдельным вопросам смежных с химией наук (биологии, физики, медицины и др.). Крупные статьи обычно сопровождаются ссылками на важнейшие литературные источники; многотомные издания, как правило, снабжены алфавитными предметными указателями; в некоторых Х. э. и словарях помещены краткие биографии учёных-химиков.
Предшественниками Х. э. были некоторые рукописи 1—4 вв., например Плиния Старшего, Волоса из Мендеса, Зосимы из Панополиса. Изложению химико-металлургических знаний посвящены последние главы «Книги семидесяти», приписываемой арабскому алхимику Джабиру ибн Хайяну . Из др. сочинений алхимиков заслуживают внимания «Книга тайн» и «Книга тайны тайн» Рази , который первым попытался классифицировать все известные к тому времени вещества, «Книга об алхимии» Альберта Великого и «Великий труд» Р. Бэкона . Большое значение для формирования Х. э. имели труды В. Бирингуччо «О пиротехнике» (1540) и Г. Агриколы «О горном деле и металлургии» (1556).
Первые Х. э. появились в 17—18 вв.; они представляли собой 1—2-томные издания, в которых материал располагался по алфавиту, например словари М. Руланда (Ruland М., «Lexicon Alchemiae», Francofurti, 1612), У. Джонсона (Johnson W., «Lexicon chymicum», v. 1—2, L., 1652—53), П. Ж. Макера (Macquer P. J., «Dictionnaire de chymie...», t. 1—2, P., 1766). Словарь Макера неоднократно переиздавался и переводился на др. языки, русские переводы многих статей с некоторыми изменениями опубликованы в 1788—90 в журнале Н. И. Новикова «Магазин натуральной истории, физики и химии...», ч. 1—10. В начале 19 в. В. М. Севергин издал сочинения Ш. Л. Каде (Ch. L. Cadet) «Словарь химический, содержащий в себе теорию и практику химии с приложением ее к естественной истории и искусствам, обработанный на российском языке трудами Василия Севергина» (ч. 1—4, СПБ, 1810—13). Во 2-й половине 19 – начале 20 вв. появились фундаментальные многотомные Х. э., например Liebig J., Poggendorff J., Wohler Fr., Handwörterbuch der reinen und angewandten. Chemie, Bd 1—9, Braunschweig, 1837—1864; Wurtz Ch. A., Dictionnaire de chimie pure et appliquée, t. 1—3 (avec 2 suppléments), P., 1868—1908; Ladenburg A., Handwörterbuch der Chemie, Bd 1—13, Breslau, 1882—95; Frémy E., Encyclopédie chimique, v. 1—94, P., 1882—99; Muspratt J. S., Theoretische, praktische una analytische Chemie in Anwendung auf Künste und Gewerbe, 4 AufL, Bd 1—12, Braunschweig, 1888—1922.
Среди современных Х. э. наиболее известны: «Ullmanns Eneykiopädie der technischen Chemie», 3 Aufl., Bd 1—19, Münch. – В., 1951—69, 4 Aufl., Bd 1—8, Münch. – В. – W., 1972—74; Thorpe J. F., Dictionary of applied chemistry, 4 ed., v. 1—12, L. – N. Y., 1937—56; Kirk R., Othmer D. (ed.), Encyclopedia of chemical technology, 2 ed., v. 1—22, L. – N. Y., 1963—70: «Краткая химическая энциклопедия». гл. ред. И. Л. Кнунянц, т. 1—5, М., 1961—67: «Encyclopedia of polymer science and technology. Plastics, resins, rubbers, fibers», ed. Н. F. Mark, N. G. Gaylord, N. М. Bikales, 1—16, N. Y., 1964—72; «The International encyclopedia of physical chemistry and chemical physics», topics 1—21, ed. E. A. Guggenheim, Oxf. – [a. o.], 1963—75 (в этой энциклопедии каждой теме посвящены несколько томов, написанных видными специалистами); Römpp Н., Chemie Lexicon, 7 AufL, Bd 1—5, Stuttg.,1973—75.
Среди современных кратких Х. э. и словарей представляют интерес следующие издания: по общей и неорганической химии – Albu С. D., Brezeanu М., Mică enciclopedie de chimie, Buc., 1974; «Brockhaus ABC Chemie», Bd 1—2, Lpz., 1971; Carraro F., Dicionário de quimica, Porto Alegre, 1970; «The condensed chemical dictionary», ed. A. Rose, E. Rose, 7 ed., N. Y., 1966; «New dictionary of chemistry», ed. L. Miall, 3 ed., L., 1961; DuvaI C., DuvaI R., Dolique R., Dictionnaire de la chimie et de ses applications, 2 ed., P., 1959; «The encyclopedia of chemistry», ed. C. A. Hampel, G. G. Hawley, 3 ed., N. Y., 1973; Giua М., Giua-Lollini C., Dizionario de chimica. Generale e industriale, 2 ed., v. 1—3, Torino, 1948—50; Kingzett's chemical encyclopaedia. A digest of chemistry and its industrial applications, ed. D. Hey, 9 ed., L., 1966; «Кратка химическа энциклопедия», редактор С. Гуцов и др., т. 1—2, София, 1971—72; «The Merck Index. An encyclopedia of chemicals and drugs», ed. P. Stecher, 8 ed., Rahway – N. Y., 1968; Sittig M., Inorganic chemical and metallurgical process encyclopedia, L., 1968; Van Nostrand's International encyclopedia of chemical science, N. Y. – [а. о.], 1964; «Неорганическая химия. Энциклопедия школьника», гл. ред. И. П. Алимарин, М., 1975; по фической химии – «The encyclopedia of electrochemistry», ed. C. Hampel, N. Y. – L., 1964; Clark G. L., The encyclopedia of x-rays and gamma-rays, N. Y., 1963; по химии полимеров – «Энциклопедия полимеров», гл. ред. В. А. Кабанов, t. 1—3, М., 1972—1977; «Characterization of polymers. Encyclopedia reprints», ed. N. Bikales, N. Y. – L., 1971; по аналитической химии и лабораторной технике – «Encyclopedia of industrial chemical analysis», ed. F. D. Snell, C. L. Hilton, Z. S. Ettre, v. 1—20, N. Y., 1966—74; «The encyclopedia of microscopy», ed. G. Clark, N. Y. – L., 1961; «Encyclopedia of microscopy and microtechnique», ed. P. Gray, N. Y., 1973; Parr N. L., Laboratory Handbook, L., 1963; по прикладной химии и химической технологи и – «Dictionary of chemistry and chemical technology». In six languages, ed. Z. Sobecka, Oxf. – Warsz., 1965; Stewart J., An encyclopedia of the chemical process industries, N. Y., 1956; «The encyclopedia of chemical process equipment», ed. W. J. Mead, N. Y., 1974.
Сведения по химии и химической технологии включаются также в универсальные энциклопедии и технические энциклопедии и словари, например в Большой советской энциклопедии (3 изд.) более 4000 статей, посвященных основным вопросам теоретической и прикладной химии.
Лит.: Терентьев А. П., Яновская Л. А., Химическая литература и пользование ею, 2 изд., М., 1967; Фигуровский Н. А., Очерк общей истории химии. От древнейших времён до начала XIX в., М., 1969; Джуа М., История химии, пер. с итал., 2 изд., М., 1975; Mellon M. G., Chemical publications, their nature and use, 4 ed., N. Y., 1965.
А. М. Дубинская, Э. Л. Призмент.
Химический потенциал
Хими'ческий потенциа'л (mi ), термодинамическая функция, применяемая при описании состояния систем с переменным числом частиц. В случае системы, состоящей из i компонентов, Х. п. определяется как приращение внутренней энергииU системы при добавлении к системе бесконечно малого количества молей i -того компонента, отнесённое к этому количеству вещества, при постоянных объёме V , энтропии S и количествах молей каждого из остальных компонентов nj (j ¹ i ). В общем случае Х. п. может быть определён как приращение любого из остальных потенциалов термодинамических системы при различных постоянных параметрах: гиббсовой энергииG – при постоянных давлении р , температуре Т и nj ; гельмгольцевой энергииА – при постоянных V , Т и nj ; энтальпииН – при постоянных S , р и nj . Таким образом:
(1)
Х. и. зависит как от концентрации данного компонента, так и от вида и концентрации др. компонентов системы (фазы). Только в простейшем случае – смеси идеальных газов – mi зависит лишь от концентрации рассматриваемого компонента и от температуры:
mi = mi + RT In pi ,
где pi – парциальное давление компонента i в смеси, R – газовая постоянная , mi – значение mi при pi = 1 атм . Для смеси неидеальных газов в равенстве (2) должна стоять фугитивность этого компонента. Х. п. характеризует способность рассматриваемого компонента к выходу из данной фазы (путём испарения, растворения, кристаллизации, химического взаимодействия и т.д.). В многофазных (гетерогенных) системах переход данного компонента может происходить самопроизвольно только из фазы, в которой его Х. п. больше, в фазу, для которой его Х. п. меньше. Такой переход сопровождается уменьшением Х. п. этого компонента в 1-й фазе и увеличением во 2-й. В результате разность между Х. п. данного компонента в этих двух фазах уменьшается и при достижении равновесия Х. п. компонента становится одинаковым в обеих фазах. В любой равновесной гетерогенной системе Х. п. каждого компонента одинаков во всех фазах.
Если в различных фазах или в разных местах одной фазы Х. п. какого-либо компонента неодинаков, то в системе самопроизвольно (без затраты энергии извне) происходит перераспределение частиц, сопровождающееся выравниванием Х. п.
Из условий термодинамического равновесия систем, в которых возможны химические реакции, фазовые переходы и др. процессы перераспределения частиц, и уравнения, учитывающего баланс частиц, вытекают важнейшие термодинамические соотношения: действующих масс закон , фаз правило Дж. У. Гиббса , основные законы разбавленных растворов (см. Вант-Гоффа закон , Рауля законы , Генри закон и др.) и т.д.
Х. п. в качестве нормировочной постоянной входит в распределение Больцмана, а также в распределения по энергиям Бозе – Эйнштейна и Ферми – Дирака для частиц идеального газа (см. Статистическая физика ). Х. п. вырожденного газа электронов (ферми-газа ) тождественно совпадает с граничной ферми энергией .
Х. п. был введён Гиббсом, численно выражается в единицах энергии на единицу количества вещества (дж/моль ) или на единицу массы (дж/кг ).
Лит. см. при статьях Термодинамика , Статистическая физика .
И. А. Кузнецов.
Химический ракетный двигатель
Хими'ческий раке'тный дви'гатель,ракетный двигатель , у которого для создания тяги используется химическая энергия топлива. Основной вид ракетного двигателя. В Х. р. д. применяется жидкое, твёрдое и гибридное ракетное топливо ; соответственно различают жидкостные ракетные двигатели , твердотопливные ракетные двигатели и ракетные двигатели гибридного топлива. Для вспомогательных систем космических летательных аппаратов разработаны также Х. р. д., использующие пары жидкого ракетного топлива, газообразные продукты электролиза воды или газообразное монотопливо. Двигательные установки с Х. р. д. имеют тягу от долей н до десятков Мн и удельный импульс до 5 кн ×сек/кг (экспериментальный Х. р. д. на топливе фтор – литий – водород). При создании топлив на основе свободных атомов и радикалов либо возбуждённых атомов и молекул ожидается увеличение удельного импульса Х. р. д. до 10—20 кн ×сек/кг .
Химических волокон монополии
Хими'ческих воло'кон монопо'лии капиталистических стран. Группа монополий, господствующая на капиталистическом рынке химических волокон. В большинстве это мощные международные химические концерны, выпускающие волокна наряду с др. химическими продуктами (см. табл.).
Крупнейшие монополии по производству химических волокон в капиталистических странах (1974)
Общий оборот по продаже, млн. долл. | Доля волокон в общем обороте по продаже, %1 | |
«Хёхст» (ФРГ) | 7821 | 13 |
«Импириал кемикал индастрис»(«ИКИ», Великобритания) | 6912 | 9 |
«Дюпон» (США) | 6910 | 35 |
«Монтэдпсон» (Италия) | 6190 | 13 |
«Рон-Пуленк» (Франция) | 4234 | 33 |
«АКЗО» (Нидерланды) | 4010 | 47 |
«Монсанто компани» (США) | 3498 | 22 |
«Кортолдс» (Великобритания)2 | 2684 | 85 |
«Селаниз» (США) | 1928 | 58 |
«Торэй индастрис» (Япония)2 | 1434 | 88 |
«Тэйдзин» (Япония)3 | 1080 | 90 |
1 Включая другие текстильные товары. Оценка. 2 Финансовый год, окончившийся 31 марта 1975.
3 Финансовый год, окончившийся 30 сентября 1974.
В середине 1972 на долю 11 компаний приходилось примерно 60% всех мощностей по производству химических волокон в капиталистических странах. Свыше 10% их было сосредоточено на предприятиях крупнейшего концерна «Дюпон», производственные мощности которого оценивались в 1135 тыс. т в год. Мощности 2-го крупнейшего производителя химических волокон – концерна «АКЗО» на середину 1972 оценивались в 200 тыс. т целлюлозных и 580 тыс. т синтетических волокон в год (около 7% мощностей по выпуску химических волокон в капиталистических странах). Корпорация «Кортолдс», специализировавшаяся на выработке целлюлозных волокон, в конце 60-х гг. начала усиленно развивать производство синтетических волокон. В 1972 её мощности составляли 500 тыс. т волокон, в том числе 170 тыс. т синтетических. Годовые мощности примерно в 500 тыс. т имели также компании «Монтэдисон», «Рон-Пуленк» и «Селаниз».
В ряде стран промышленность химических волокон практически подчинена 1—2 монополиям. В Великобритании на долю «ИКИ» и «Кортолдс» приходится около 80% мощностей по производству химических волокон в стране; в ФРГ 70% выработки волокон сосредоточено у компаний «АКЗО» (через фирму «Энка гланцштофф») и «Хёхст»; химические концерны «Рон-Пуленк» во Франции и «Монтэдисон» в Италии фактически контролируют производство и сбыт волокон в этих странах. В США около 80% производственных мощностей принадлежит 8 компаниям, из которых самые крупные – «Дюпон», «Селаниз», «Монсанге». Особенно велика роль монополий на рынках отдельных видов химических волокон. В частности, в Великобритании производство целлюлозных волокон полностью монополизировано «Кортолдс», а на рынке полиамидных и полиэфирных волокон господствует концерн «ИКИ».
Под влиянием бурного роста производства и обострения конкуренции в начале 70-х гг. в промышленности химических волокон усилился процесс концентрации производства, возросло число слияний, увеличилась интеграция с текстильной промышленностью. Последнее особенно характерно для компаний «ИКИ» и «Кортолдс», скупивших значительную часть текстильных предприятий страны.
Перепроизводство и кризис сбыта химических волокон, охвативший эту отрасль в 1970—1971 и в 1974—75, усилили стремление монополий к диверсификации производственных программ, к снижению издержек путём организации полного цикла производства – от сырья до готовых текстильных изделий. Вместе с тем одной из форм расширения рынков сбыта стало создание монополиями филиалов и дочерних компаний в др. странах. Конкурируя с монополиями США, стремящимися расширить сферу влияния на рынках стран Западной Европы, западно-европейские компании создают предприятия в США. В начале 70-х гг. Х. в. м. расширили деятельность по строительству предприятий в развивающихся странах. В 1975 концерн «Дюпон» имел предприятия по выпуску химических волокон в 10, «АКЗО» – в 13, «Кортолдс» – в 8, «ИКИ» – в 9 развитых капиталистических и развивающихся странах.
Высокая монополизация позволяет крупнейшим корпорациям заключать картельные соглашения, предусматривающие раздел сфер влияния и поддерживание определенного уровня цен. Однако это не снимает конкурентной борьбы между монополиями, которая носит острый характер, особенно в периоды кризисного состояния экономики капиталистических стран.
См. также Химические монополии .
В. Н. Терёшина.
Химического строения теория
Хими'ческого строе'ния тео'рия , теория, описывающая строение органических соединений, т. е. последовательность (порядок) расположения атомов и связей в молекуле, взаимное влияние атомов, а также связь строения с физическими и химическими свойствами веществ.
Впервые основные положения Х. с. т. были высказаны А. М. Бутлеровым в докладе «О химическом строении веществ» (съезд немецких естествоиспытателей, г. Шпейер, 1861); он писал: «Исходя от мысли, что каждый химический атом, входящий в состав тела, принимает участие в образовании этого последнего и действует здесь определенным количеством принадлежащей ему химической силы (сродства), я называю химическим строением распределение действия этой силы, вследствие которого химические атомы, посредственно или непосредственно влияя друг на друга, соединяются в химическую частицу» (Избранные работы по органической химии, 1951, с. 71—72). Впоследствии эти положения были развиты им в ряде статей и книге «Введение к полному изучению органической химии» (Казань, 1864—66; немецкое издание: Лейпциг, 1867—1868) – первом руководстве по органической химии, в котором весь материал систематизирован с позиций Х. с. т. Созданию Х. с. т. предшествовали установление таких важных понятий, как атом и молекула (1-й Международный конгресс химиков, Карлсруэ, 1860), а также постулирование Ф. А. Кекуле и А. С. Купером четырёхвалентности углерода (1857—58). Графические формулы органических соединений, близкие формулам, вытекающим из Х. с. т., были предложены в 1858 Купером (см. Органическая химия ).
Основные положения Х. с. т. заключаются в следующем: а) в органических молекулах атомы соединяются между собой в определённом порядке согласно их валентности, что определяет химическое строение молекул; б) химические и физические свойства органических соединений зависят как от природы и числа входящих в их состав атомов, так и от химического строения молекул; в) для каждой эмпирической формулы можно вывести определённое число теоретически возможных структур (изомеров); г) каждое органическое соединение имеет одну формулу химического строения, которая даёт представление о свойствах этого соединения; д) в молекулах существует взаимное влияние атомов как связанных, так и непосредственно не связанных друг с другом. Последнее положение теории было развито учеником Бутлерова В. В. Марковниковым (см. Марковникова правило ) и в дальнейшем – многими другими учёными.
Х. с. т. позволила объяснить остававшиеся непонятными для химиков того времени известные случаи изомерии (положения и скелета). Оправдалось предвидение Бутлерова (1863) о возможности определения пространственного расположения атомов в молекуле. В 1874 Я. Вант-Гофф и независимо от него французский химик Ж. Ле Бель высказали идею о том, что четыре валентности углерода имеют чёткую пространственную ориентацию и направлены к вершинам тетраэдра, в центре которого находится атом углерода. Это положение об определённой пространственной ориентации химических связей легло в основу нового раздела органической химии – стереохимии . Оно позволило объяснить ряд уже известных к тому времени случаев геометрической и главным образом оптической изомерии, а также явление, получившее в дальнейшем название таутомерии (Бутлеров, 1862; немецкий химик К. Лаар, 1885).
Правильность своей теории Бутлеров подтвердил синтезом ряда органических соединений. Х. с. т. обладала огромной предсказательной способностью в направлении синтеза органических соединений и установлении строения уже известных веществ. Поэтому теория Бутлерова способствовала бурному развитию химической науки, в том числе синтетической органической химии, и химической промышленности.
Дальнейшее развитие Х. с. т. обогатило органическую химию новыми представлениями, например о циклическом строении бензола (Кекуле, 1865) и осцилляции (перемещении) двойных связей в его молекуле (1872) (это представление сыграло очень большую роль в химии ароматических и гетероциклических соединений), об особых свойствах соединений с сопряжёнными связями (теория парциальных валентностей, Ф. К. И. Тиле , 1899) и др. Развитие стереохимии привело к созданию теории напряжения (А. Байер , 1885), объясняющей различную устойчивость циклов в зависимости от их размера, и в дальнейшем – к конформационному анализу (немецкие химики Г. Заксе, 1890, и Э. Мор, 1918). Основные положения Х. с. т. получили подтверждение при изучении органических соединений химическими, физическими и расчётными методами.
Фундаментальное значение в Х. с. т. имеют представления о взаимном влиянии атомов в молекулах органических соединений. Однако Х. с. т. не могла объяснить природу этого влияния, его внутренний механизм. Это стало возможным благодаря успехам физики, позволившим раскрыть сущность понятий «валентность» и «химическая связь». С начала 20 в. возникают электронные представления в органической химии (см. Электронные теории в органической химии ), в основе которых лежат электронные трактовки природы ионов (Дж. Дж. Томсон ), ионной связи (В. Коссель ) и ковалентной связи (немецкий физик И. Штарк, Г. Н. Льюис ). Электронные представления позволили объяснить причину взаимного влияния атомов (статическим и динамическим смещением электронной плотности в молекуле) и предсказывать направленность реакций в зависимости от химического строения реагентов. С конца 20-х гг. 20 в. химическую связь стали трактовать с позиций квантовой химии .
Теория Бутлерова лежит в основе номенклатуры и систематики органических соединений (см. Номенклатура химическая ), а применение его структурных формул помогает как определению путей синтеза новых веществ, так и установлению строения сложных (в т. ч. и природных) соединений.
Лит.: Бутлеров А. М., Соч., т. 1—3, М., 1953—1958; Марковников В. В., Избр. труды, М., 1955; Столетие теории химического строения. Сб. статей, М., 1961; Быков Г. В., История классической теории химического строения, М., 1960; его же, История электронных теорий органической химии, М., 1963; Жданов Ю. А., Теория строения органических соединений, М., 1971; Реутов О. А., Теоретические основы органической химии, [2 изд.], М., 1964; Татевский В. М., Классическая теория строения молекул и квантовая механика, И., 1973.