355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ХА) » Текст книги (страница 16)
Большая Советская Энциклопедия (ХА)
  • Текст добавлен: 21 октября 2016, 21:32

Текст книги "Большая Советская Энциклопедия (ХА)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 16 (всего у книги 27 страниц)

Харакири

Хараки'ри, сэппуку (япон. – вспарывание живота), в Японии в эпоху феодализма и позднее вид самоубийства путём вспарывания живота. Принятая в среде самураев, эта форма самоубийства совершалась либо по приговору как наказание, либо добровольно (в тех случаях, когда была затронута «честь» самурая, в знак верности самурая своему сюзерену и т.д.).

Харакс

Ха'ракс, римский военный лагерь-крепость на мысе Ай-Тодор в Крыму. Основан в 1 в. при императоре Веспасиане для защиты античных городов Северного Причерноморья (особенно Херсонеса ) от скифов и др. племён. Раскапывался с середины 19 в., в 1931—35 В. Д. Блаватским. Площадь Х. – 4,5 га ; за двумя рядами стен располагались термы, гимнасий, водоём с мозаичным полом, водопровод из глиняных труб, дома, за внешней стеной – святилище 2 в. По клеймам на черепице и кирпичах установлены название частей гарнизона Х. После эвакуации римских войск Х. оставался поселением рыболовов, земледельцев и ремесленников, оставивших некрополь 4 в.

  Лит.: Блаватский В. Д., Харакс, в кн.: Материалы и исследования по археологии СССР, № 19, М. – Л., 1951.

Характер (в математике)

Хара'ктер в математике, функция специального вида, применяемая в чисел теории и теории групп .

  В теории чисел Х. называют функцию c(n ) ¹ 0, определённую для всех целых чисел n и такую, что: 1) c(nm ) = c(n )c(m ) для всех n и m , 2) существует такое целое число k (период), что c(n + k ) = c(n ) для всех n . Наименьший из положительных периодов называется основным модулем характера c, а характер с основным модулем k обозначается c(n , k ). Примерами Х. являются: 1) главный Х. по модулю k ; c(n , k ) = 0, если (n , k ) > 1, и c(n , k ) = 1, если (n , k ) = 1, 2) c(n , k ) = 0, если (n , k ) > 1, c(n , k ) = , если (n , k ) = 1,  – Якоби символ , k > 1 – нечётное натуральное число. Х. степени q по модулю k называется Х., равный единице для чисел и, для которых разрешимо сравнение xq º a (modk ) (см. Степенной вычет ). Такие Х. играют важную роль в теории алгебраических чисел. Многие вопросы теории чисел (например, вопрос о распределении простых чисел) связаны с изучением функций L (s c) =  (т. н. L -функций Дирихле). Частным случаем таких функций является дзета-функция x(s ), для которой Х (n ) º 1.

  Условие периодичности c(n + k ) = c(n ) позволяет трактовать характеры c(n , k ) при фиксированном k > 1 как функции, заданные на приведённой системе вычетов по модулю k , рассматриваемой как группа по умножению, и удовлетворяющие там функциональному уравнению:

c(ab ) = c(a ) c(b ).     (1)

  Такая трактовка понятия Х. позволяет непосредственно перенести его на любую конечную коммутативную группу G . При этом, если n – порядок, e – единица, a – произвольный элемент группы G , то [c(a )] n = c(a n ) = c(e ) = 1, т. е. c(a ) – корень n -й степени из единицы: в частности

|c(a )| º 1.     (2)

  Х. произвольной коммутативной группы G (не обязательно конечной) называют всякую функцию c(а ), определённую на G и удовлетворяющую условиям (1) и (2). Если G – топологическая группа, то требуют ещё, чтобы c(а ) была непрерывна.

  Совокупность всех Х. группы G образует группу G1 , относительно обыкновенного умножения Х. как функций. Если G конечна, то G1 изоморфна G . Для бесконечных групп это уже, вообще говоря, неверно. Например, если G – группа целых чисел, то её Х. служат c(n ) = einj , где (j – любое действительное число, приведённое по модулю 2p, так что группа Х. совпадает с группой вращений окружности. В свою очередь, группа Х. для группы вращений окружности совпадает с группой целых чисел [каждый такой Х. имеет вид: c(j) = einj ]. Эта двойственность была обобщена Л. С. Понтрягиным на широкий класс групп и применена к решению важных проблем топологии (т. н. проблем двойственности для компактов).

  Лит.: Понтрягин Л. С., Непрерывные группы, 3 изд., М., 1973; Чудаков Н. Г., Введение в теорию L-функций Дирихле, М. – Л., 1947; Ленг С., Алгебра, пер. с англ., М., 1968; Боревич З. И., Шафаревич И. Р., Теория чисел, 2 изд., М., 1972.

Характер (в психологии)

Хара'ктер (от греч. charakter – отпечаток, признак, отличительная черта) в психологии, целостный и устойчивый индивидуальный склад душевной жизни человека, её тип, «нрав» человека, проявляющийся в отдельных актах и состояниях его психической жизни, а также в его манерах, привычках, складе ума и свойственном человеку круге эмоциональной жизни. Х. человека выступает в качестве основы его поведения и составляет предмет изучения характерологии .

Характер (литератур.)

Хара'ктер литературный, образ человека, очерченный с известной полнотой и индивидуальной определённостью, через который раскрываются как обусловленный данной общественно-исторической ситуацией тип поведения (поступки, мысли, переживания, речевая деятельность), так и присущая автору нравственно-эстетическая концепция человеческого существования. Художественный Х. являет собой органическое единство общего, повторяющегося и индивидуального, неповторимого; объективного (социально-психологическая реальность человеческой жизни, послужившая прообразом для литературного Х.) и субъективного (осмысление и оценка прообраза автором). В результате Х. в искусстве предстаёт «новой реальностью», художественно «сотворённой» личностью, которая, отображая реальный человеческий тип, идеологически проясняет его. Именно концептуальность литературного образа человека отличает понятие Х. в литературоведении от значений этого термина в психологии, философии, социологии.

  Представление о Х. литературного героя создаётся посредством внешних и внутренних «жестов» (в т. ч. речи) персонажа, его внешности, авторскими и иными характеристиками, местом и ролью персонажа в развитии сюжета . Соотношение в пределах произведения Х. и обстоятельств, являющихся художественным воспроизведением социально-исторической, духовно-культурной и природной среды, составляет художественную ситуацию. Противоречия между человеком и обществом, между человеком и природой, его «земной участью», а также внутреннего противоречия человеческих Х. воплощаются в конфликтах художественных.

  Воспроизведение Х. в его многоплановости и динамике – специфическое свойство художественной литературы в целом (и большинства театральных и кинематографических жанров на словесно-сюжетной основе). Обращение к изображению Х. знаменует выделение литературы как искусства из синкретической, «долитературной» религиозно-публицистической словесности «библейского» или средневекового типа. Само понятие Х. формируется в Древней Греции, где впервые вполне осуществилось выделение литературно-художественного творчества в особую область духовной культуры.

  Однако у древних понимание Х. как лит. категории отличалось от современного: поскольку в раскрытии идейного содержания главенствовал сюжет (событие), персонажи различались прежде всего не своими Х., а своей ролью в изображаемых событиях. В новое время утверждается иное соотношение Х. и сюжета: не факты, а «... характеры действующих лиц, благодаря которым факты осуществились, заставляют поэта избрать предпочтительнее то, а не другое событие. Только характеры священны для него» (Лессинг Г. Э., Гамбургская драматургия, М. – Л., 1936, с. 92). Понимание самостоятельного идейно-художественного значения Х. персонажа возникает уже в античной литературе; например, в «Параллельных жизнеописаниях» Плутарха герои сравниваются и по типу «судьбы», и по типу Х. Подобная характерологическая двумерность доминирует вплоть до 18 в. (по Д. Дидро – соотношение прирождённого «нрава» и «общественного положения»).

  В рамках данного многовекового периода особо выделяются две эпохи: литература Возрождения и классицизма. Ренессансный Х. теряет очертания определенного «нрава», растворяясь в естественной родовой стихии человеческой «природы» (герой мог самовольно, как бы актёрствуя, менять типы поведения). При этом соотнесение общечеловеческого в Х. героя с его ситуативной функцией – судьбой – выявляло неадекватность герою его социально-исторической судьбы (предвосхищение характерологического принципа реализма 19—20 вв.: «Человек или больше своей судьбы, или меньше своей человечности», – М. М. Бахтин, «Вопросы литературы», 1970, № 1, с. 119). У Шекспира многие действующие лица предстали и в «третьем измерении» – носителями индивидуального самосознания. Классицизм, возвратившись к жёсткой статичности Х., одновременно сосредоточил внимание на самосознании личности, совершающей выбор между «долгом» и «чувством». Но воспринимаемая на «фоне» долга и безличной страсти личность в литературе классицизма не самоценна, она лишь средство соотнесения двух параллельных рядов всеобщности.

  На всех этих стадиях духовного и литературного развития Х. понимался как внеисторическая, универсальная и самотождественная данность человеческой природы, как «... абстракт, присущий отдельному индивиду» (Маркс К., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 3, с. 3). В романтизме, провозгласившем самоцельность и автономность личности, возвысившем её как над психологической «природой», так и над социальной судьбой, сложилось новое понимание Х. – как тождественного внутреннему миру личности. Наконец, воссоздание индивидуального Х. как исторически неповторимого взаимоотношения личности и среды стало открытием критического реализма 19 в. (романтическую традицию продолжили символисты и экзистенциалисты).

  В теории новое понимание художественного Х. было выдвинуто Гегелем: Х. – «... цельная человеческая индивидуальность...», в которой раскрываются те или иные «... всеобщие субстанциальные силы действия»; Х. является «подлинным средоточием» изображения, поскольку он объединяет в себе всеобщность и индивидуальность «... в качестве моментов своей целостности». Х. должен обнаруживаться во всём богатстве своих индивидуальных особенностей, а не быть «... игралищем лишь одной страсти...», ибо в таком случае он «... выступает как существующий вне себя...»; он должен быть «... целым самостоятельным миром, полным, живым человеком, а не аллегорической абстракцией какой-нибудь одной черты характера» («Эстетика», т. 1, М., 1968, с. 244—46). Эта теория, опиравшаяся на художественные достижения прошлого, во многом предвосхищала практику последующей реалистической литературы, где присутствует саморазвивающийся Х. – незавершённая и незавершимая, «текучая» индивидуальность, определяемая её непрерывным взаимодействием с исторически конкретными обстоятельствами.

  Послегегелевская литературная теория, опиравшаяся на реалистическое искусство, настойчиво подчёркивала значение индивидуально-конкретного в Х., но главное – выдвинула и разработала проблему его «концептуальности», установила необходимость «присутствия» авторского идеологического понимания в изображении Х. В реалистической литературе 19—20 вв. Х. действительно воплощают различные, порой противоположные авторские концепции человеческой личности. У О. Бальзака первоосновой индивидуальности выступает понимаемая в духе антропологизма общечеловеческая природа, а её «текучесть» объясняется незавершимостью внешних воздействий среды на первооснову, мерой которых и «измеряется» индивидуальность личности. У Ф. М. Достоевского индивидуальность воспринимается на фоне детерминизма обстоятельств как мера личностного само определения, когда Х. героя остаётся неисчерпаемым средоточием индивидуальных возможностей. Иной смысл «незавершённости» Х. у Л. Н. Толстого: потребность «ясно высказать текучесть человека, то, что он, один и тот же, то злодей, то ангел, то мудрец, то идиот, то силач, то бессильнейшее существо» (Полное собрание соч., т. 53, 1953, с. 187), объясняется стремлением открыть в индивидуальности, отчуждаемой от других людей общественными условиями жизни, общечеловеческое, родовое, «полного человека».

  У представителей «нового романа» намечается отказ от художественной индивидуальности в пользу безличной психологии (как следствия отчуждения и конформизма ), для воспроизведения которой Х. начинает играть служебную роль «подпорки».

  Творчество писателей социалистического реализма , наследуя характерологические достижения предшествующих направлений и прежде всего реалистов 19 в., утверждает новое «видение» детерминирующих обстоятельств: социально-историческую и политическую действительность в её революционном развитии, в связи с чем социально-психологическая индивидуальность Х. в их произведениях сгущается в индивидуальность конкретно-историческую. В литературе 60—70-х гг. 20 в. акцентируется нравственная активность личности, её ответственность за свой духовный мир и судьбы других людей.

  Лит.: Гегель, Эстетика, т. 1, М., 1968, с. 244—53; Социалистический реализм и классическое наследие. (Проблема характера). Сб. ст., М., 1960; Проблема характера в современной советской литературе, М. – Л., 1962; Бочаров С. Г., Характеры и обстоятельства, в кн.: Теория литературы [кн. 1], М., 1962; Бахтин М. М., Проблемы поэтики Достоевского, 3 изд., М., 1972, с. 78—129; его же, Эпос и роман, в его кн.: Вопросы литературы и эстетики, М., 1975; Лихачев Д. С., Человек в литературе древней Руси, [2 изд.], М., 1970; Гинзбург Л., О психологической прозе [Л.], 1971; Аверинцев С. С., Плутарх и античная биография, М., 1973.

  В. И. Тюпа.

Характеристика (в математике)

Характери'стика в математике, 1) целая часть десятичного логарифма .

  2) Понятие теории дифференциальных уравнений с частными производными.

  Х. дифференциального уравнения 1-го порядка

,     (1)

где Р = P (x , y , z ), Q=Q (x , y , z ), R=R (x , y , z ) заданные функции, называются кривые, определяемые системой обыкновенных дифференциальных уравнений

.     (2)

  Интегрируя систему (2), получают семейство характеристик j(x , y , z ) = C1 , y(x , y , z ) = C2 (C1 , C2 – произвольные постоянные) как совокупность кривых, касающихся в каждой своей точке вектора {P , Q , R }. Всякая интегральная поверхность уравнения (1) представляет собой геометрическое место Х., пересекающих некоторую кривую; уравнение такой поверхности может быть записано в виде F [j(x , y , z ), y(x , y , z )] = 0, где F – некоторая функция двух переменных. Обратно, чтобы найти интегральную поверхность, проходящую через заданную кривую (см. Коши задача ), достаточно построить геометрическое место Х., пересекающих эту кривую. Задача Коши имеет одно и только одно решение, если заданная кривая не является Х. Понятие Х. обобщается на случай дифференциального уравнения 1-го порядка с числом независимых переменных, большим двух.

  Х. дифференциального уравнения 2-го порядка

     (3)

были введены Г. Монжем (1784, 1795) как линии, вдоль которых удовлетворяется обыкновенное дифференциальное уравнение

.     (4)

  Если уравнение (3) принадлежит к гиперболическому типу, то получаются два семейства Х. с уравнениями x(x , y ) = C1 и h(х , у ) = C2 (C1 , C2 – произвольные постоянные); взяв x и h за новые аргументы, можно привести уравнение (3) к виду

.

  Для уравнения (3) параболического типа эти семейства совпадают; если выбрать аргумент h произвольно, то уравнение (3) приведется к виду

.

  Уравнение (3) эллиптического типа не имеет вещественных Х.; если записать решение уравнения (4) в виде x ± i h = C , то уравнение (3) преобразуется к виду

.

  Значения решения и вдоль Х. и значения  и  в какой-либо её точке полностью определяют значения этих производных вдоль всей линии [на этом основан т. н. метод Х. решения краевых задач для уравнения (3)]; для других линий такой связи нет. С другой стороны, значения u ,  и , заданные на линии, не являющейся Х., определяют значения решения вблизи этой линии; для Х. же это не так. Если два решения уравнения (3) совпадают по одну сторону от некоторой линии и различны по другую, то эта линия непременно является Х.

  Если коэффициенты уравнения (3) зависят от u ,  и  (квазилинейный случай), то Х., определяемые из уравнения (4), будут разные для разных решений. Имеются определения Х. и для уравнений и систем уравнений с частными производными любого порядка.

  Лит. см. при ст. Уравнения математической физики .

Характеристика (в технике)

Характери'стика в технике, взаимосвязь между зависимыми и независимыми переменными, определяющими состояние технического объекта (процесса, прибора, устройства, машины, системы), выраженная в виде текста, таблицы, математической формулы, графика и т.п. Например, зависимости тока от электрического напряжения на участке электрической цепи (см. Вольтамперная характеристика ), расхода топлива автомобилем от пройденного им пути и состояния дороги, громкости и качества звучания громкоговорителя от частоты, времени перемагничивания ферритового сердечника от величины намагничивающего поля.

  Х. по методике определения подразделяют на детерминированные (статические, динамические) и статистические; по виду аналитические зависимости – на линейные и нелинейные; по назначению – на эксплуатационные, настроечные и т.д. Статической Х. называется зависимость между выходной и входной величинами технической системы в установившихся состояниях. Динамические Х. (частотные, импульсные и др.) отражают реакции изучаемой системы на какие-либо типовые возмущающие воздействия: например, частотная Х. отражает зависимость амплитуды и фазы периодического сигнала на выходе системы от амплитуды и фазы входного гармонического сигнала при изменении только его частоты; импульсная Х. – зависимость изменения во времени сигнала на выходе системы от воздействия входного единичного импульса. В наиболее полной форме динамическая Х. содержатся в динамической математической модели объекта, например в виде дифференциальных уравнений. Статистические Х. (оценки) применяют к объектам, поведение которых во времени меняется случайным образом. К статистическим Х. относятся, например, дисперсия, автокорреляционная функция, спектральная плотность и т.п.

  Линейными называются все Х., которые могут быть с заданной точностью аппроксимированы выражением вида у = ax + b , где у – выходное воздействие, x – входное воздействие изучаемой системы, а и b – постоянные коэффициенты. Все остальные Х. – нелинейные; среди них выделяют линеаризуемые Х., которые по частям с известной точностью аппроксимируются указанным выше выражением (см. Линеаризация ).

  А. В. Кочеров.

Характеристическая кривая

Характеристи'ческая кривая, одна из важнейших характеристик фотографического материала, выражающая зависимость (при оговорённых условиях экспонирования и проявления) между оптической плотностью полученного на материале почернения фотографического и десятичным логарифмом экспозиции (называемым также количеством освещения), вызвавшей это почернение. См. ст. Сенситометрия (рис. 1 ) и литература при ней.

Характеристическая функция

Характеристи'ческая фу'нкция в математике,

1) то же, что собственная функция .

2) Х. ф. множества А (в современной терминологии – индикатор А ) – функция f (x ), определённая на некотором множестве Е , содержащем множество А , и принимающая значение f (x ) = 1, если x принадлежит множеству А , и значение f (x ) = 0, если x не принадлежит ему. 3) В теории вероятностей Х. ф. fX (t ) случайной величины Х определяется как математическое ожидание величины eitX . Это определение для случайных величин, имеющих плотность вероятностиpX (x ), приводит к формуле

.

  Например, для случайной величины, имеющей нормальное распределение с параметрами а и s, Х. ф. равна

.

  Свойства Х. ф.: каждой случайной величине Х соответствует определённая Х. ф. fX (t ); распределение вероятностей для Х однозначно определяется по fX (t ); при сложении независимых случайных величин соответствующие Х. ф. перемножаются; при надлежащем определении понятия «близости» случайным величинам с близкими распределениями соответствуют Х. ф., мало отличающиеся друг от друга, и, обратно, близким Х. ф. соответствуют случайные величины с близкими распределениями. Указанные свойства лежат в основе применений Х. ф., в частности к выводу предельных теорем теории вероятностей. Впервые аппарат, по существу равнозначный Х. ф., был использован П. Лапласом (1812), но вся сила метода Х. ф. была показана А. М. Ляпуновым (1901), получившим с его помощью свою известную теорему.

  Понятие Х. ф. может быть обобщено на конечные и бесконечные системы случайных величин (т. е. на случайные векторы и случайные процессы).

  Теория Х. ф. имеет много общего с теорией Фурье интеграла .

  Лит.: Гнеденко Б. В., Курс теории вероятностей, 5 изд., М., 1969; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей, 2 изд., М., 1973.


    Ваша оценка произведения:

Популярные книги за неделю