355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ИМ) » Текст книги (страница 10)
Большая Советская Энциклопедия (ИМ)
  • Текст добавлен: 15 октября 2016, 03:36

Текст книги "Большая Советская Энциклопедия (ИМ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 10 (всего у книги 12 страниц)

Импульс

Импульс (от лат. impulsus – удар-толчок), 1) импульс механический, мера механического движения; представляет собой векторную величину, равную для материальной точки произведению массы m этой точки на её скорость v и направленную так же, как вектор скорости: p = mv; то же, что количество движения. Для частицы, движущейся со скоростью, близкой к скорости с света в вакууме, необходимо учитывать зависимость её массы от скорости:

где mмасса покоящейся частицы (так называемая масса покоя). В этом случае И. свободной частицы равен  (см. Относительности теория), а связь полной энергии E частицы с её И. даётся соотношением: E = p2c2+m2с4 Для частицы с нулевой массой покоя (фотон, нейтрино) р = E/c, такие частицы всегда движутся со скоростью света с.

  И. обладают все формы материи, в том числе электромагнитное (см. Импульс электромагнитного поля) и гравитационное поля. Для полей вводят вектор плотности И. (И. единицы объёма, занятого полем), который выражают через напряжённости полей, потенциалы и т. п.

  2) Импульс волновой, однократное возмущение, распространяющееся в пространстве или в среде. Пример такого И. – звуковой И. (звук пистолетного выстрела и др.), который представляет собой внезапное и быстро исчезающее повышение давления, дающее начало фронту волны кратковременного повышения давления, распространяющейся от места возмущения. Подобный одиночный И. представляет собой совокупность составляющих всех частот сплошного спектра – от самых низких до таких, период которых близок к продолжительности И. Таким звуковым И. пользуются для определения частотных характеристик приёмников, в архитектурной акустике для обнаружения эха и определения времени реверберации в помещениях и др.

  Другой пример И. волнового – электромагнитное возмущение, распространяющееся от места быстрого изменения электрического или магнитного поля, вызванного, например, мощной искрой, молнией или другим импульсным электрическим процессом. Спектр подобного электромагнитного И. также непрерывный и содержит все частоты от самых низких вплоть до весьма высоких.

  Световой И. – это кратковременное (0,01 сек и менее) испускание света источником оптического излучения. Спектральный состав светового И. определяется типом источника, которым может служить импульсный электрический разряд в газах, свечение, сопровождающее взрыв тонкого проводника при пропускании через него сильного электрического тока и т. д. Малая длительность таких И. позволяет получить высокие мгновенные значения мощности светового излучения, достигающие в отдельных случаях 106квт. Световые И. применяются для исследования быстро протекающих процессов (например, при скоростной фото– и киносъёмке, фотографировании следов элементарных частиц в трековых приборах), для оптической накачки лазеров, в автоматических устройствах с фотоэлектрическими каналами управления и информации, в светосигнальной аппаратуре и т. д.

  В физике и технике обычно пользуются И. в виде короткого цуга или группы волн. Такой И. может быть одиночным или повторяться через промежутки времени, большие его длительности или сравнимые с ней. В акустике часто применяют звуковой сигнал (И.) определённой частоты, продолжительность которого составляет не очень большое число (10—100) периодов. Звуковые и ультразвуковые И. широко применяются в гидроакустических исследованиях, в частности для измерения глубин, в гидролокации, а также в ультразвуковой дефектоскопии и др.

  Световые И., представляющие собой короткий цуг волн, могут испускать лазеры, которые работают в импульсном режиме. Длительность сверхкоротких лазерных И. может составлять 10-10 и 10-12сек, а мощность – достигать миллиарда квт.

  Одиночный, кратковременный скачок электрического тока или напряжения называется И. тока или И. напряжения (см. Импульс электрический).

Импульс нервный

И'мпульс не'рвный, волна возбуждения, распространяющаяся по нервному волокну; обеспечивает передачу информации от периферических рецепторных (чувствительных) окончаний к нервным центрам, внутри центральной нервной системы и от неё к исполнительным аппаратам – скелетной мускулатуре, гладким мышцам внутренних органов и сосудов, железам внешней и внутренней секреции. Главное биоэлектрическое проявление И. н. – потенциал действия (ПД) – пикообразное колебание электрического потенциала, связанное с изменениями ионной проницаемости мембраны (см. Биоэлектрические потенциалы). Повышение проницаемости во время ПД приводит к усилению потоков катионов (Na+ и Ca2+) внутрь нервного волокна и из него (К+). Вследствие этого усиливаются распад богатых энергией соединений – аденозинтрифосфата и креатинфосфата, распад и синтез белков и липидов; активируются гликолиз и тканевое дыхание; освобождаются из связанного состояния некоторые биологически активные соединения (ацетилхолин, норадреналин и др.); повышается теплопродукция нервного волокна. Скорость проведения И. н. варьирует от 0,5 м/сек (в наиболее тонких волокнах вегетативной нервной системы) до 100—120 м/сек (в наиболее толстых двигательных и чувствительных нервных волокнах). Распространение И. н. обеспечивается так называемыми локальными токами, возникающими между возбуждённым, заряженным электроотрицательно, и покоящимися участками волокна.

  В естественных условиях, как в периферических отделах нервной системы, так и внутри центральных отделов, по нервным волокнам непрерывно бегут серии И. н. Частота этих ритмических разрядов зависит от силы вызвавшего их раздражителя. При умеренной двигательной активности в двигательных нервных волокнах частота разряда составляет 50—100 импульсов в сек; в большинстве чувствительных волокон она достигает 200 в сек. Некоторые нервные клетки (например, вставочные нейроны спинного мозга) разряжаются с частотой до 1000—1500 в сек. О переходе И. н. с нейрона на нейрон или на исполнительные аппараты см. Синапсы, Двигательная бляшка.

  Б. И. Ходоров.

Импульс силы

И'мпульс си'лы, мера действия силы за некоторый промежуток времени; равняется произведению среднего значения силы Fcp на время t1 её действия: S = Fcp t1. И. с. – величина векторная и направлен он так же, как Fcp. Точное значение И. с. за промежуток времени t1 определяется интегралом:

При движении материальной точки под действием силы F её количество движения получает за время t1 приращение, равное И. с.

(mv и mv1соответственно количество движения точки в начале и в конце промежутка времени t1).

  Понятие о И. с. широко используется в механике, в частности в теории удара, где величина, равная импульсу ударной силы F за время удара t, называется ударным импульсом.

Импульс электрический

Импульс электри'ческий, кратковременное изменение электрического напряжения или силы тока. Под кратким понимается промежуток времени, сравнимый с продолжительностью переходных процессов в электрических цепях. И. э. разделяют на импульсы высоковольтные, импульсы тока большой силы, видеоимпульсы и радиоимпульсы. И. э. высокого напряжения обычно получаются при разряде конденсатора на активную нагрузку и имеют апериодическую форму. Такую же форму имеют обычно и разряды молнии. Одиночные И. э. подобной формы с амплитудой от нескольких кв до нескольких Мв с фронтом волны 0,5—2 мксек и длительностью 10—10-2мксек применяют при испытаниях электрических устройств и оборудования в технике высоких напряжений. Скачки тока большой силы по форме могут быть аналогичны И. э. высокого напряжения (см. Импульсная техника высоких напряжений).

  Видеоимпульсами называются И. э. тока или напряжения (преимущественно одной полярности), имеющие постоянную составляющую, отличную от нуля. Различают прямоугольные, пилообразные, трапецеидальные, экспоненциальные, колоколообразные и др. видеоимпульсы (рис. 1, а—г). Характерными элементами, определяющими форму и количественные параметры видеоимпульса (рис. 2) являются амплитуда А, фронт tф, длительность tи, спад tс и скос вершины (DА), выражаемый обычно в % от А. Периодическая последовательность видеоимпульсов характеризуется частотой повторения и скважностью (отношением периода повторения к длительности И. э.). Длительность видеоимпульсов – от долей сек до десятых долей нсек (10-9сек). Видеоимпульсы используют в телевидении, вычислительной технике, радиолокации, экспериментальной физике, автоматике и т. д.

  Радиоимпульсом называются прерывистые ВЧ или СВЧ колебания электрического тока или напряжения (рис. 1, д), амплитуда и продолжительность которых зависят от параметров модулирующих колебаний. Длительность и амплитуда радиоимпульсов соответствуют параметрам модулирующих видеоимпульсов; дополнительный параметр – несущая частота. Радиоимпульсы используют главным образом в радиотехнике и технике связи. Длительность радиоимпульсов находится в пределах от долей сек до нсек.

  Лит.: Ицхоки Я. С., Импульсные устройства, М., 1959; Основы импульсной техники, М., 1966; Браммер Ю. А., Пащук И. Н., Импульсная техника, 2 изд., М., 1968.

  В. В. Богомазов.

Рис. 2. Видеоимпульс: А – амплитуда; tф – передний фронт; а – вершина; tс – спад; б – хвост; tи – длительность импульса; DА – скос вершины.

Рис. 1. Электрические импульсы: а, б, в, г – видеоимпульсы прямоугольной, трапецеидальной, экспоненциальной и колоколообразной формы; д – радиоимпульс.

Импульс электромагнитного поля

И'мпульс электромагни'тного по'ля, динамическая характеристика поля – количество движения, которым обладает электромагнитное поле в данном объёме. Тела, помещенные в электромагнитное поле, испытывают действие механических сил. Воздействие поля на тело при этом связано с поглощением телом электромагнитных волн или изменением направления их распространения (отражение, рассеяние, преломление). При излучении телом электромагнитных волн, в частности света, импульс тела также меняется. Так как импульс замкнутой материальной системы в результате излучения, поглощения или отражения электромагнитных волн не может измениться (в силу закона сохранения полного импульса системы), то из этого следует, что электромагнитная волна также обладает импульсом. Существование И. э. п. впервые было экспериментально обнаружено в опытах по давлению света (П. Н. Лебедев, 1899).

  Из классической теории электромагнитного поля – Максвелла уравненийследует, что И. э. п. распределён в пространстве с объёмной плотностью  – в системе СГС (Гаусса), или  – в системе СИ, где [ЕН] векторное произведение напряжённостей электрического Е и магнитного Н полей, численно равное EH sin a, a – угол между E и H, с = 3×1010см/секскорость света в вакууме. Таким образом, вектор плотности И. э. п. g перпендикулярен Е и Н и направлен в сторону поступательного движения правого буравчика, рукоятка которого вращается в направлении от Е к H.

  В квантовой теории электромагнитного поля (квантовой электродинамике) носителем энергии и импульса поля являются кванты этого поля – фотоны. Фотон частоты n обладает энергией hn и импульсом h n/c, где hПланка постоянная. Существование импульса у фотона проявляется во многих явлениях. Например, обмен импульсом между электромагнитным полем и частицей имеет место в Комптона эффекте (упругом рассеянии фотонов на электронах).

  Г. В. Воскресенский.

Импульсивные состояния

Импульси'вные состоя'ния, психические расстройства, выражающиеся в действиях и влечениях, характеризующихся внезапным, немотивированным, непреодолимым стремительным порывом. И. с. присущи психическим больным и страдающим психопатией. И. с. могут выражаться в хаотических разрушительных поступках (уничтожение, порча предметов), нелепых или агрессивных актах (дурашливость, бранные выкрики, декламирование, нанесение телесных повреждений, самоубийства и др.). Импульсивные влечения проявляются также в форме приступов бродяжничества, запоя, непреодолимого стремления к поджогам, кражам, в которых нельзя усмотреть злого умысла и корыстных мотивов.

Импульсная лампа

И'мпульсная ла'мпа,импульсный источник света высокой интенсивности, в котором используется свечение плазмы, возникающее, например, при конденсированном искровом разряде в инертном газе или при сжигании металлической фольги в кислороде. От газоразрядных источников светанепрерывного горения И. л. отличаются бо'льшими значениями плотностей тока и более высокой температурой плазмы, достигающей 30000 К (температура плазмы в дуговых угольных лампах не более 6000 К). Промышленный выпуск И. л. в СССР и за рубежом начался в конце 40-х гг. 20 в. Конструктивно И. л. подразделяют на 2 основных вида: трубчатые с искровым промежутком l= 1—200 см, энергией вспышки W = 1—105дж, длительностью вспышки t = 10-4—10-2сек, световой отдачей h = 30—50 лм×сек/дж, амплитудной яркостью В до 1010нт, частотой вспышек f до 100 гц, шаровые с l = 0,1—1 см, W = 0,001—10 дж, t = 10-7—10-5сек, h = 5—15 лм×сек/дж, В до 3×1011нт, f до 104 гц. И. л. применяются для фотосъёмки (см. Лампа-вспышка), в оптической локации и световой сигнализации, в устройствах автоматики и телемеханики, фотохимии и полиграфии, для оптической накачки лазеров (см. Лампа накачки).

Импульсная модуляция

И'мпульсная модуля'ция,модуляция колебаний, в результате которой гармонические колебания приобретают вид кратковременных радиоимпульсов, характеристики которых определяются формой модулирующего видеоимпульса (см. Импульс электрический). И. м. применяется, например, в радиолокации, где расстояние до цели определяется по времени прихода радиоимпульса, отражённого от цели. И. м. используется также в системах импульсной радиосвязи. При этом передаваемый сигнал (видеоимпульс) может изменять различные параметры исходной последовательности радиоимпульсов – высоту (амплитудно-импульсная модуляция), смещение импульсов во времени без изменения их длительности (фазово-импульсная модуляция), длительность (ширину) импульсов (широтно-импульсная модуляция). В случае импульсно-кодовой модуляции различным видам передаваемого сигнала соответствует передача различных кодовых групп импульсов. Чаще всего при И. м. применяются видеоимпульсы прямоугольной и колоколообразной формы длительностью 10-9—10-5сек. Скважность (отношение периода повторения к длительности импульсов) может изменяться от 102—103 (у радиолокационных станций) до нескольких единиц (в многоканальной радиосвязи). И. м. обычно осуществляется с помощью импульсных модуляторов.

  Лит.: Ицхоки Я. С., Импульсные устройства, М., 1959; Меерович Л. А., Зеличенко Л. Г., Импульсная техника, М., 1953; Евтянов С. И., Радиопередающие устройства, М., 1950.

Импульсная радиосвязь

И'мпульсная радиосвя'зь, связь, в которой непрерывные сообщения передаются с помощью кратковременных (импульсных) радиосигналов. В качестве первичных переносчиков сообщений в системах И. р. используются периодические последовательности импульсов прямоугольной формы. Изменением их параметров получают 4 основные вида импульсной модуляции. Кроме того, в И. р. широко применяют импульсно-кодовую модуляцию, которая осуществляется посредством квантования исходного сигнала (см. Квантование сигнала).

  Системы И. р. обладают высокой помехоустойчивостью. На их основе строятся системы многоканальной связи с временным уплотнением (см. Линии связи уплотнение). Это возможно благодаря тому, что при большой скважности импульсов (отношении периода следования импульсов к длительности импульса) между ними остаются большие промежутки времени, в которых можно разместить последовательность других импульсов. Например, при 2-канальной передаче 2 различных сообщений модулированные последовательности импульсов 1-го и 2-го каналов складываются. В результате сложения получается групповой сигнал, которым затем производится модуляция высокочастотных колебаний передатчика, излучающего (посредством антенны) радиосигнал. На приёмном конце системы И. р. радиосигнал подвергается детектированию и вновь преобразуется в групповой сигнал. Последний с помощью аппаратуры разделения каналов приводится к первоначальному виду индивидуальных сигналов, принадлежащих тому или иному каналам системы И. р. Многоканальная И. р. широко применяется при построении различных систем связи (в том числе и с использованием ИСЗ), телеметрии, телеуправления и др.

  Лит.: Борисов Ю. П., Пенин П. И., Основы многоканальной передачи информации, М., 1967; Назаров М. В., Кувшинов Б. И., Попов О. В., Теория передачи сигналов, М., 1970.

  М. В. Назаров.

Импульсная система

И'мпульсная систе'ма управления в технике, система автоматического управления, в которой управление осуществляется кратковременными (импульсными) сигналами, возникающими в определённые моменты времени. Импульсный характер управления чаще всего обусловлен принципом действия системы. Например, радиолокационная станция излучает короткие электромагнитные импульсы, которые, отразившись от цели, используются наземной системой управления. Импульсный характер управления удобен в многоканальных системах, когда последовательности сигналов управления различными каналами разнесены во времени (по фазе). В технике связи использование импульсных сигналов повышает помехозащищенность передачи сообщений и улучшает условия их кодирования. Иногда последовательность сигналов управления периодически прерывается специально для улучшения качества работы системы (в так называемых «системах прерывистого управления»).

  И. с. состоит из элемента, осуществляющего импульсную модуляцию, и непрерывной части, подверженной воздействию модулированной последовательности импульсов. Можно считать, что в И. с. последовательность управляющих импульсов подвергается модуляции непрерывным сигналом, воздействующим на амплитуду, длительность, положение (фазу) или количество импульсов в единицу времени. В связи с этим различают И. с. с амплитудной, широтной, фазовой и частотной модуляцией. Искусственное прерывание сигнала представляет собой особый вид модуляции («ключевые И. с.»). Если непрерывная часть системы линейна, то И. с. линейна при амплитудной модуляции и (приближённо) при широтной модуляции малой глубины. В И. с. возможно достижение конечного времени переходных процессов. Математически И. с. описывается системой уравнений в конечных разностях. Наиболее удобно для аналитического исследования линейных И. с. z-преобразование («дискретное преобразование Лапласа»). Коррекция свойств И. с., помимо применения корректирующих устройств, может производиться путём изменения периода следования импульсов или их формы. При малом периоде следования импульсов (по сравнению с основными постоянными времени системы) свойства И. с. приближаются к свойствам непрерывной системы управления.

  Лит.: Цыпкин Я. 3., Теория линейных импульсных систем, М., 1963.

  Р. С. Рутман.

Импульсная техника

И'мпульсная те'хника, область техники, исследующая, разрабатывающая и применяющая методы и технические средства генерирования (формирования), преобразования и измерения электрических импульсов (см. Импульс электрический). В И. т. также исследуют и анализируют процессы, возникающие при воздействии электрических импульсов на различные электрических цепи, устройства и объекты.

  Электрические импульсы тока и напряжения широко используются для тех или иных целей в различных областях науки и техники (см. Импульсная техникавысоких напряжений). Наиболее широко электрические импульсы применяются в электронике при импульсном режиме работы электронных устройств различного назначения. Здесь находят применение как одиночные импульсы (радиоимпульсы и видеоимпульсы), так и главным образом последовательности импульсов (серии импульсов), образующих импульсные сигналы, несущие информацию или выполняющие функции управления работой электронных устройств.

  При импульсном режиме электронные устройства подвергаются воздействию электрических сигналов не непрерывно (в течение всего времени работы устройства), а прерывисто. При этом прерывистая структура импульсных сигналов составляет принципиальную основу полезных функций устройства, работающего в импульсном режиме. Импульсные сигналы различаются по амплитуде и длительности импульсов, частоте их следования, а также по относит. взаимному расположению в серии. На рис. 1 изображен импульсный сигнал в виде серии из 3 импульсов, сгруппированных согласно некоторому условному коду, определяемому, в частности, расстановкой импульсов в серии. Импульсные сигналы могут иметь более сложную структуру, зависящую от вида модуляции и формы импульса. Некоторые электрические колебания сложной формы (рис. 2), в отличие от синусоидальных, имеют разрывной характер; им свойственны весьма широкий частотный спектр и наличие характерных точек, точнее участков весьма малой временной протяжённости, в которых скорость изменения колебательного процесса претерпевает резкие скачки (разрывы). Эти свойства сближают колебания сложной формы с типичными импульсными процессами. В И. т. часто применяют импульсные сигналы с частотным заполнением от десятков гц до десятков Ггц.

  При импульсном режиме работы может быть достигнута высокая степень концентрации энергии во времени; так, например, в мощных импульсных модуляторах в течение длительного промежутка времени между импульсами происходит относительно медленное запасание энергии в накопительных элементах, затем в течение отрезка времени, протяжённость которого значительно меньше периода накопления, запасённая энергия выделяется в нагрузочном элементе. В результате удаётся получать электрические импульсы, мощность которых значительно превосходит номинальную мощность источников питания, что имеет существенное значение при конструировании радиоэлектронной аппаратуры; например, мощность в радиоимпульсе, излучаемом радиолокационной станцией, достигает десятков Мвт и более. Благодаря резким перепадам амплитуды электрических импульсов возможна весьма точная фиксация времени воздействия импульсных сигналов, а также чёткое разделение двух возможных состояний электронной схемы: «есть ток» – «нет тока» («да» – «нет»). Импульсные электронные устройства, выполняющие функции бесконтактных электронных ключей, способны за 10-6 и даже 10-9сек переключать электрические цепи.

  С понятием «импульс» обычно связывается представление о малой его длительности. Однако кратковременность импульса – понятие относительное: в зависимости от области использования длительность импульса может изменяться в значительных пределах. В автоматике, например, оперируют с импульсами длительностью порядка 0,01 – 1 сек, в импульсной радиосвязи10-6сек, в физике быстрых частиц – 10-9сек. Однако даже в одной и той же области техники часто применяют импульсы с различной длительностью и частотой следования. Так, например, в радиолокации работают с электрическими импульсами длительностью от 10-3 до 10-9сек с частотой повторения от единиц гц до 104гц. В И. т. проявляется тенденция к укорочению импульсов и увеличению частоты их следования, стремлением повысить эффективность электронных устройств, разрешающую способность (например, радиолокаторов) или быстродействие (в ЭВМ). Иногда более важно отношение длительности паузы между импульсами к длительности импульса (скважность), которое в цифровой автоматике обычно не превышает 10, в радиосвязи – порядка 10 – 100, в радиолокации колеблется от 100 до 10000. При воздействии импульсов электрического тока или напряжения на цепь, обладающую свойством запасать энергию, возникают переходные процессы, значение которых в И. т. весьма велико. Явления, связанные с переходными процессами, часто используют в работе импульсных устройств, но в ряде случаев они оказывают вредное влияние и приводят к схемному и конструктивному усложнению устройств. Поэтому анализу переходных процессов в И. т. уделяется особенно большое внимание. Специфичность методов и средств формирования, преобразования, измерения и регистрации импульсных сигналов и анализа процессов в импульсных устройствах обусловлены главным образом их нестационарностью.

  Для получения импульсов различной формы, функционального преобразования импульсных сигналов, селекции импульсов по тому или иному признаку, а также для выполнения логических операций над ними служат типовые импульсные логические схемы и устройства. К ним относятся линейные устройства формирования импульсов, преобразования их формы, амплитуды, полярности и временного положения (формирующие линии, дифференцирующие и интегрирующие цепи, импульсные трансформаторы и усилители, электромагнитные и ультразвуковые линии задержки); нелинейные устройства преобразования импульсов и переключения цепей (ограничители, фиксаторы уровня, пик-трансформаторы, магнитные генераторы импульсов, электронные ключи и др.); регенеративные спусковые схемы, и генераторы импульсов (пересчётные схемы, триггеры, мультивибраторы, блокинг-генераторы); импульсные делители частоты повторения; электронные генераторы линейно-изменяющегося тока и напряжения (в т.ч. фантастроны, санатроныи др.); селекторы импульсов; логич. схемы и спец. устройства обработки импульсных сигналов (кодирующие и декодирующие устройства, дешифраторы, регистры, матрицы, элементы памяти ЭВМ и др.).

  Импульсные методы работы широко используются в телевидении, где сигналы изображения и синхронизации – импульсные; с помощью радиоимпульсов удалось решить такую важную задачу, как измерение расстояний, что обусловило развитие импульсной радиолокации и радионавигации (в системах обнаружения, в радиовысотомерах, в навигации кораблей и самолётов). Импульсное кодирование сообщений, основанное на различных принципах импульсной модуляции, позволяет осуществлять радиосвязь с высокой помехозащищенностью, а также многоканальную радиосвязь (с разделением каналов по времени) в телеметрии. Перспективно использование импульсных режимов в радиоуправлении на большом расстоянии, например искусственными спутниками Земли, космическими кораблями, луноходами.

  Импульсные методы имеют существенное значение в информационно-измерительной технике, используемой, в частности, в космической электронной аппаратуре и при исследованиях в области физики быстрых частиц. Методы и средства И. т. лежат в основе работы современных электронных ЦВМ, разнообразных цифровых автоматов, применяемых не только как средство автоматизации вычислительного процесса, но и для решения различных логических задач при автоматической обработке информации. Для этого производятся соответствующие преобразования над импульсными сигналами, несущими информацию (обычно в сопровождении помех), и с помощью логических схем и устройств селекции импульсов выполняются логические операции над импульсами. Т. о. выделяют, анализируют, распознают и регистрируют полезную информацию, содержащуюся в обрабатываемых импульсах. Исключительно широко применяются методы И. т. в радиоизмерительных устройствах (частотомерах, осциллографах, анализаторах спектра, измерителях временных интервалов и др.).

  Первое практическое применение импульсных режимов работы электрических устройств связано с изобретением русским учёным П. Л. Шиллингом электромагнитного телеграфа (1832), усовершенствованного русским академиком Б. С. Якоби и американским изобретателем С. Морзе. Изобретатель радио А. С. Попов для генерации радиоволн применил импульсный искровой передатчик (1895). В 1907 русский учёный Л. И. Мандельштам выдвинул идею использования изменяющихся по известному закону электрических величин для создания точного масштаба времени, которая была реализована в устройстве временной развёртки осциллографа; так был открыт способ исследования кратковременных импульсных процессов. В том же 1907 русский учёный Б. Л. Розинг впервые в мире использовал электроннолучевую трубку для приёма сигналов изображения. Этим было положено начало телевидению. В 1918 советский учёный М. А. Бонч-Бруевич разработал и исследовал «катодное реле», позволяющее скачком изменять силу тока электронных ламп и напряжение на их электродах. В 1919 в журнале «Annales de Physique» американские учёные Х. Абрагам и Е. Блох опубликовали статью с описанием др. подобного устройства – мультивибратора; тогда же американские учёные В. Иклс и Ф. Джордан разработали схему триггера; мультивибратор и триггер широко используются в современной И. т. В конце 20-х гг. в связи с распространением коротковолновой радиосвязи возникла необходимость измерения высоты ионизированных слоев атмосферы. Первая в СССР установка для импульсного измерения расстояний была создана в 1932 под рук. М. А. Бонч-Бруевича. Принципы работы этой установки впоследствии нашли применение в импульсной радиолокации. Быстрое развитие И. т. стимулировалось совершенствованием радиосвязи, телевидения, радиолокации, радионавигации, телеуправления, телеметрии, вычислительной техники. Этому способствовало также решение ряда теоретич. проблем, в том числе теории нелинейных и разрывных колебаний, разработанной советскими радиофизиками А. А. Андроновым, А. А. Виттом и С. Э. Хайкиным. Исключительно важно для совр. состояния и дальнейшего развития И. т. совершенствование полупроводниковой электроники и интегральных схем.

  Лит.: Моругин Л. А., Глебович Г. В., Наносекундная импульсная техника, М., 1964; Магнитные генераторы импульсов, М., 1968;ГольденбергЛ.М., Теория и расчёт импульсных устройств на полупроводниковых приборах, М., 1969; Справочник по импульсной технике, под ред. В. Н. Яковлева, К., 1970; Алексенко А. Г., Основы микросхемотехники, М., 1971; Ицхоки Я. С., Овчинников Н. И., Импульсные цифровые устройства, М., [1972]; Миллман Я., Тауб Г., Импульсные и цифровые устройства, пер. с англ., М. – Л., 1960; Харли Р. Б., Логические схемы на транзисторах, пер. с англ., М., 1965; Чжоу В. Ф., Принципы построения схем на туннельных диодах, пер. с англ., М., 1966; Vabre I.-P., Electronique des impulsions, t. 3, P., 1970.

  Я. С. Ицхоки.

Рис. 2. Электрические колебания сложной формы: а – пиковые; б – пилообразные.

Рис. 1. Импульсный сигнал из трёх прямоугольных импульсов.


    Ваша оценка произведения:

Популярные книги за неделю