355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (АТ) » Текст книги (страница 9)
Большая Советская Энциклопедия (АТ)
  • Текст добавлен: 10 октября 2016, 00:48

Текст книги "Большая Советская Энциклопедия (АТ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 9 (всего у книги 16 страниц)

Атмосферное давление

Атмосфе'рное давле'ние, гидростатическое давление, оказываемое атмосферой на все находящиеся в ней предметы. А. д. – существенная характеристика состояния атмосферы; в каждой точке атмосферы оно определяется весом вышележащего воздуха. С высотой А. д. убывает; зависимость А. д. от высоты выражается барометрической формулой. Измеряется А. д. барометром. А. д. выражают в миллибарах(мбар), в ньютонах на м2(н/м2) или высотой столба ртути в барометре в мм, приведённой к 0°С и нормальной (на уровне моря и широте 45°) величине ускорения силы тяжести.

  За нормальное А. д. принимают 760 мм рт. ст.= 1013,25 мбар = 101325 н/м2 На высоте 5 км А. д. равно приблизительно половине А. д. у земной поверхности.

  На земной поверхности А. д. изменяется от места к месту и во времени. Особенно важны непериодические изменения А. д., связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления – антициклонов и относительно быстро перемещающихся огромных вихрей – циклонов, в которых господствует пониженное давление. Отмеченные до сих пор крайние значения А. д. (на уровне моря): 808,7 и 684,0 мм рт. см. Однако, несмотря на большую изменчивость, распределение средних месячных значений А. д. на поверхности земного шара каждый год примерно одно и то же. Среднегодовое А. д. понижено у экватора и имеет минимум под 10° с. ш. Далее А. д. повышается и достигает максимума под 30—35° северной и южной широты; затем А. д. снова понижается, достигая минимума под 60—65°, а к полюсам опять повышается. На это широтное распределение А. д. существенное влияние оказывает время года и характер распределения материков и океанов. Над холодными материками зимой возникают области высокого А. д. Таким образом, широтное распределение А. д. нарушается, и поле давления распадается на ряд областей высокого и низкого давлений, которые называются центрами действия атмосферы. С высотой горизонтальное распределение давления становится более простым, приближаясь к широтному. Начиная с высоты около 5 км А. д. на всём земном шаре понижается от экватора к полюсам.

  В суточном ходе А. д. обнаруживаются 2 максимума: в 9—10 ч и 21—22 ч, и 2 минимума: в 3—4 ч и 15—16 ч. Особенно правильный суточный ход оно имеет в тропических странах, где дневное колебание достигает 2,4 мм рт. ст., а ночное – 1,6 мм рт. см. С увеличением широты амплитуда изменения А. д. уменьшается, но вместе с тем становятся более сильными непериодические изменения А. д.

  Лит.: Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958, гл. V; Бургесс Э., К границам пространства, пер. с англ., М., 1957.

Атмосферное электричество

Атмосфе'рное электри'чество,

  1) совокупность электрических явлений и процессов в атмосфере,

  2) раздел физики атмосферы, изучающий электрические явления в атмосфере и её электрические свойства. При исследовании А. э. изучают электрическое поле в атмосфере, её ионизациюи проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое др. Все проявления А. э. тесно связаны между собой и на их развитие сильно влияют метеорологические факторы – облака, осадки, метели и т. п. К области А. э. обычно относят процессы, происходящие в тропосфере и стратосфере.

  Начало А. э. как науке было положено в 18 в. американским учёным Б. Франклином, экспериментально установившим электрическую природу молнии, и русским учёным М. В. Ломоносовым – автором первой гипотезы, объясняющей электризацию грозовых облаков. В 20 в. были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сиянийи обнаружен ряд других явлений, изучению которых посвящены соответствующие науки, выделившиеся из А. э. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами. Две основные современные теории А. э. были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, – поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.

  А. э. данного района зависит от глобальных и локальных факторов. Районы, где отсутствуют скопления аэрозолей и источники сильной ионизации, рассматриваются как зоны «хорошей», или «ненарушенной» погоды, здесь преобладают глобальные факторы. В зонах «нарушенной» погоды (в районах гроз, пыльных бурь, осадков и др.) преобладают локальные факторы.

  Электрическое поле атмосферы. В тропосфере все облака и осадки, туманы, пыль обычно электрически заряжены; даже в чистой атмосфере постоянно существует электрическое поле. Исследования в зонах «хорошей» погоды, начатые в 19 в., показали, что у земной поверхности существует стационарное электрическое поле с напряжённостью Е, в среднем равной около 130 в/м. Земля при этом имеет отрицательный заряд, равный около 3 105 к, а атмосфера в целом заряжена положительно. Однако при осадках и особенно грозах, метелях, пылевых бурях и т. п. напряжённость поля может резко менять направление и величину, достигая иногда 1000 в/м. Наибольшие значения Е имеет в средних широтах, а к полюсам и экватору убывает. В зонах «хорошей» погоды Е с высотой в целом уменьшается, например над океанами. Вблизи земной поверхности, в т. н. слое перемешивания толщиной 300—3000 м, где скапливаются аэрозоли, Е может с высотой возрастать (рис. 1). Выше слоя перемешивания Е убывает с высотой по экспоненциальному закону и на высоте 10 км не превышает несколько в/м. Это убывание Е связано с тем, что в атмосфере содержатся положительные объёмные заряды, плотность которых также быстро убывает с высотой.

  Разность потенциалов между Землёй и ионосферой составляет 200—250 кв.

  Напряжённость электрического поля Е меняется во времени. Наряду с локальными суточными и годовыми вариациями Е отмечаются синхронные для всех пунктов суточные (см. кривые 1 и 2, рис. 2) и годовые вариации Е – т.н. унитарные вариации. Унитарные вариации связаны с изменением электрического заряда Земли в целом, локальные – с изменениями величины и распределения по высоте объёмных электрических зарядов в атмосфере в данном районе.

  Электрическая проводимость атмосферы. Электрическое состояние атмосферы в значительной степени определяется её электрической проводимостью l, которая создаётся ионами, находящимися в атмосфере. Наличие ионов в атмосфере и является причиной потери заряда изолированным заряженным телом при соприкосновении с воздухом (явление, открытое в конце 18 в. французским физиком Ш. Кулоном). Электрическая проводимость l зависит от количества ионов, содержащихся в единице объёма (их концентрации), и их подвижности. Основной вклад в l вносят лёгкие ионы, обладающие наибольшей подвижностью u > 10-5м2 сек-1 в-1.

  Электрическая проводимость атмосферы очень мала и может сравниться с проводимостью хороших изоляторов. У земной поверхности в среднем l = (1 – 2)·10-18ом-1 м-1 и увеличивается с высотой примерно по экспоненциальному закону; на высоте около 30 км l достигает значений, почти в 150 раз больших, чем у земной поверхности. Выше проводимость увеличивается ещё более, причём особенно резко с высот, до которых проникают ионизующие излучения Солнца и где начинается образование ионосферы, проводимость которой приблизительно в 1012 раз больше, чем в атмосфере вблизи земной поверхности.

  Основные ионизаторы атмосферы: 1) космические лучи, действующие во всей толще атмосферы; 2) излучение радиоактивных веществ, находящихся в Земле и воздухе; 3) ультрафиолетовое и корпускулярное излучения Солнца, ионизующее действие которых заметно проявляется на высотах более 50—60 км. Концентрация легких; ионов возрастает с увеличением интенсивности ионизации и уменьшением концентрации частиц в атмосфере, поэтому концентрация лёгких ионов растет с высотой. Этот факт в сочетании с увеличением подвижности ионов при уменьшении плотности воздуха объясняет характер изменения l и Е с изменением высоты.

  Электрический ток в атмосфере. Движение ионов под действием сил электрического поля создаёт в атмосфере вертикальный ток проводимости in = El, со средней плотностью, равной около (2—3)·10-12а/м2. Т. о., в зонах «хорошей» погоды сила тока на всю поверхность Земли составляет около 1800 а. Время, в течение которого заряд Земли за счёт токов проводимости атмосферы уменьшился бы до 1/е » 0,37 от своего первоначального значения, равно ~ 500 сек. Т. к. заряд Земли в среднем не меняется, то очевидно, что существуют «генераторы» А. э., заряжающие Землю. Помимо токов проводимости, в атмосфере текут значительные электрические диффузионные и конвективные токи.

  «Генераторы» атмосферного электричества. «Генераторами» А. э. в зонах нарушенной погоды являются пылевые бури и извержения вулканов, метели и разбрызгивание воды прибоем и водопадами, облака и осадки, пар и дым промышленных источников и т. д. При почти всех перечисленных явлениях электризация может проявляться весьма бурно: извержение вулканов, песчаные бури и даже метели приводят иногда к образованию молний, всё же наибольший вклад в электризацию атмосферы вносят облака и осадки.

  По мере укрупнения частиц облака, увеличения его толщины, усиления осадков из него растет его электризация. Так, в слоистых и слоисто-кучевых облаках плотность объёмных зарядов r » 3 10-12к/км3, что приблизительно в 10 раз превышает их плотность в чистой атмосфере, а в грозовых облаках r доходит до 3·10-8к/м3. Облака могут быть заряжены положительно в верхней части и отрицательно в нижней, но могут иметь и противоположную полярность, а также преимущественный заряд одного знака. Плотность тока осадков на Землю из слоисто-дождевых облаков ioc = 10-12а/м2, в то время как из грозовых ioc = 10-9а/м2. Полная сила тока, текущего на Землю от одного грозового облака, в средних широтах равна около —(0,01—0,1) а, а ближе к экватору до —(0,5—1,0) а. Сила токов, текущих в самих этих облаках, в 10—100 раз больше силы токов, притекающих к Земле. Т. о., гроза в электрическом отношении подобна короткозамкнутому генератору.

  При высоких значениях электрического поля у земной поверхности порядка 500—1000 в/м начинается электрический разряд с острых вытянутых предметов (травы, деревьев, мачт, труб и т.д.), который иногда становится видимым (т. н. огни св. Эльма, особенно яркие в горах и на море, см. Эльма огни). Возникающие при метелях, ливнях и особенно грозах токи коронирования способствуют обмену зарядами между Землёй и атмосферой.

  Т. о., электрическое поле Земли и ток Земля – атмосфера в зонах хорошей погоды поддерживаются процессами в зонах нарушенной погоды. На земном шаре одновременно существует около 1800 гроз (см. кривую 3, рис. 2); суммарная сила тока от них, заряжающего Землю отрицательным зарядом, доходит до 1000 а. Облака слоистых форм, хотя и менее активные, чем грозовые, но зато покрывающие около половины земной поверхности, также вносят существенный вклад в поддержание электрического поля Земли. Исследования А. э. позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.

  Лит.: Френкель Я. И., Теория явлений атмосферного электричества, Л.—М. 1949; Тверской П. Н., Атмосферное электричество, Л., 1949; Имянитов И. М., Приборы и методы для изучения электричества атмосферы, М., 1957; Имянитов И. М. и Шифрин К. С., Современное состояние исследований атмосферного электричества, «Успехи физических наук», 1962, т. 76, в. 4, с. 593; Имянитов И. М. и Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.

  И. М. Имянитов.

Рис. 2. Суточный ход унитарной вариации напряжённости электрич. поля Е: 1 – над океанами; 2 – в полярных областях; 3 – изменение площади S, занятой грозами, в течение суток.

Рис. 1. Изменение напряжённости электрич. поля Е с высотой Н. 1 – Ленинград; 2 – Киев: 3 – Ташкент.

Атмосферные помехи радиоприёму

Атмосфе'рные поме'хи радиоприёму,помехи радиоприёму от электрических процессов, непрерывно происходящих в атмосфере Земли. Каждое нерегулярное изменение (разряд и др.) атмосферного электричества вызывает излучение электромагнитных волн всевозможной длины, действие которых на антенну радиоприёмника проявляется на его выходе в виде шумов и тресков (громкоговоритель), штрихов или чёрточек (кинескоп) и др. Уровень принятых антенной А. п. р. зависит от расстояния и условий распространения радиоволн (в данное время дня и года) между источником их возникновения и местом приёма. Наиболее мешают А. п. р. на длинных и средних волнах радиовещательного диапазона; с переходом на короткие волны помехи резко ослабевают. Особенно сильные А. п. р. создают грозовые разряды. В СССР наиболее сильный грозовой очаг расположен на Ю.-В. страны. Для ослабления действия А. п. р. применяют направленные антенны, когда направление на принимаемую радиостанцию отлично от направления на источник помех, и специальные схемы радиоприёмников.

Атмосферный волновод

Атмосфе'рный волново'д, слой воздуха, непосредственно примыкающий к поверхности Земли или приподнятый над ней, который отклоняет распространяющиеся в нём радиоволны к поверхности Земли. При определённых метеорологических условиях, когда температура убывает с высотой медленнее, а влажность воздуха быстрее, чем при нормальных условиях, волна, вышедшая под небольшим углом к горизонту, на некоторой высоте испытывает полное отражение, отклоняется обратно к земной поверхности и отражается от неё. Этот процесс может повторяться многократно, в результате чего радиоволны распространяются вдоль поверхности Земли на большие расстояния без заметного ослабления (рис.). Такой способ распространения радиоволн в атмосфере называется волноводным, он напоминает распространение радиоволн в радиоволноводах. В А. в. могут распространяться волны, для которых длина волны l меньше некоторого критического значения lкр (обычно lкр £ 50—100 V), т. е. дециметровые, сантиметровые и более короткие волны (подробнее см. Распространение радиоволн).

  М. Б. Виноградова.

Атмосферный волновод, в котором радиоволны могут распространяться на большие расстояния вдоль поверхности Земли.

Атмосферостойкость полимерных материалов

Атмосферосто'йкость полиме'рных материа'лов, способность полимерных материалов выдерживать действие различных атмосферных агентов (солнечной радиации, тепла, кислорода воздуха, влаги, промышленных газов и т. д.) без значительного изменения внешнего вида и эксплуатационных свойств (механических, диэлектрических и др.). Устойчивость различных видов полимерных материалов к действию отдельных атмосферных агентов неодинакова. Так, волокна и плёнки наиболее чувствительны к воздействию солнечной радиации, непрозрачные пластмассы – к действию тепла, резины – озона. Критерием А. п. м. служит изменение какого-либо эксплуатационного свойства материала за определённое время экспозиции или время экспозиции, за которое происходит определённое изменение этих характеристик (например, время до появления трещин, время до разрыва и т. д.). Выбор характеристики, по которой судят об А. п. м., определяется типом материала. Так, атмосферостойкость лакокрасочных покрытий оценивается по изменению их внешнего вида (блеска, цвета, степени растрескивания и др.) и защитных свойств.

  А. п. м. во многом определяется интенсивностью воздействия атмосферных агентов и, следовательно, зависит от климата местности. Поэтому при оценке А. п. м. всегда учитывают климатическую зону, в которой проводилось испытание. Часто А. п. м. определяют не в естественных, а в лабораторных условиях ускоренными методами. Для этой цели пользуются различными приборами, например везерометрами, которые воспроизводят одновременно действие различных атмосферных агентов. А. п. м. сильно зависит от химической и физической структуры полимера и от характера введённых в него ингредиентов. Примеры полимерных Материалов с хорошей атмосферостойкостью – кремнийорганические каучуки, полиакрилонитрильные волокна, пластмассы на основе полиамидов, полиметилметакрилата, ацетилцеллюлозы и др. А. п. м. повышают различными стабилизаторами полимерных материалов.

Атмосферы звёзд

Атмосфе'ры звёзд, внешний слой звёзд, в котором происходит образование спектра их излучения. Различают собственно атмосферу – слой, в котором возникает линейчатый спектр, и более глубокую фотосферу, дающую непрерывный спектр; однако резкой границы между ними нет. Под фотосферой, свечение которой определяет блеск звезды, находятся недоступные наблюдениям глубинные слои звезды, содержащие источники энергии. Через фотосферу энергия переносится в основном лучеиспусканием. Для звёзд с постоянным блеском излучение каждого элементарного объёма фотосферы происходит за счёт поглощаемой им лучистой энергии (лучистое равновесие). Построение моделей А. з. (вычисление распределения плотности, давления, температуры и других физических характеристик атмосферы по глубине) позволяет теоретически рассчитать распределение энергии в непрерывном и линейчатом спектре звезды. Сравнение теоретического и наблюдаемого спектров для звёзд различных классов является критерием правильности положенных в основу теории предположений. Основные сведения о звёздах (химический состав, движения в атмосфере, вращение, магнитные поля) получены на основе изучения их спектров.

  Один из важнейших параметров теории А. з. – коэффициент поглощения звёздного вещества, т. к. он определяет геометрическую глубину фотосферы. Для горячих звёзд основную роль играет поглощение лучистой энергии атомами водорода (для очень горячих добавляется поглощение гелием и рассеяние свободными электронами), в атмосферах холодных звёзд – отрицательными ионами водорода. Химический состав внешних слоев А. з. определяют сравнением наблюдённой и теоретической (полученной методом кривой роста или из модели А. з.) эквивалентной ширины линий поглощения (т. е. ширины соседнего с линией участка непрерывного спектра, энергия которого равна энергии, поглощённой в линии). Наиболее распространённые элементы – водород и гелий; за ними – углерод, азот, кислород. Число атомов всех металлов составляет примерно одну десятитысячную числа атомов водорода. К 60-м гг. 20 в. подробно рассчитаны звёздные модели всех спектральных классов, которые в общем хорошо объясняют их наблюдаемые спектры. В общих чертах химический состав А. з. одинаков, однако наблюдаются существенные отклонения, связанные как с особым состоянием атмосфер (магнитные звёзды, тесные двойные звёзды), так и с реальными различиями в химическом составе (красные звёзды-гиганты, металлические «гелиевые», «бариевые» и «литиевые» звёзды и др.), вероятно, вызванными эволюционными процессами. Такие звёзды и звёздные группы изучают особенно интенсивно.

  Лит.: Мустель Э. Р., Звездные атмосферы, М., 1960; Адлер Л., Распространенность химических элементов [во вселенной], пер. с англ., М., 1963; Звездные атмосферы, пер. с англ., М., 1963; Теория звездных спектров, М., 1966; Соболев В. В., Курс теоретической астрофизики, М., 1967.

  А. Г. Масевич.

Атмосферы планет

Атмосфе'ры плане'т, внешние газовые оболочки планет. Атмосферами обладают все большие планеты Солнечной системы, за исключением, может быть, Меркурия и Плутона. Атмосфера обнаружена также у спутника Сатурна – Титана; возможно, она существует также у спутников Юпитера: Ио, Европы и Ганимеда. См. Планеты, а также статьи об отдельных планетах.

  Лит.: Мороз В. И., Физика планет, М., 1967; Брандт Дж., Ходж П., Астрофизика солнечной системы, пер. с англ., М., 1967.

Атмофильные элементы

Атмофи'льные элеме'нты, типичные для атмосферы Земли химические элементы. По геохимической классификации элементов к А. э. относятся: водород, азот и инертные газы (гелий, неон, аргон, криптон, ксенон и радон). Кислород, слагающий 47% литосферы, принадлежит к литофильным элементам.


    Ваша оценка произведения:

Популярные книги за неделю