355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (АТ) » Текст книги (страница 8)
Большая Советская Энциклопедия (АТ)
  • Текст добавлен: 10 октября 2016, 00:48

Текст книги "Большая Советская Энциклопедия (АТ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 8 (всего у книги 16 страниц)

  Изучение А. Хотя изучение А. началось ещё в античное время, наука об А. – метеорология — сложилась только в 19 в. В состав метеорологии входит ряд дисциплин, которые различаются по применяемым в них методам исследований и по изучаемым объектам. Сюда относятся: физика атмосферы, химия атмосферы, климатология, синоптическая метеорология, динамическая метеорология и др. Влияние атмосферных факторов на биологические процессы изучается биометеорологией, включающей с.-х. метеорологию и биометеорологию человека. Классификация этих дисциплин окончательно не установилась и находится в стадии развития.

  Для наблюдения за А. на земной поверхности создана обширная сеть метеорологических станций и постов, оборудованных стандартными метеорологическими приборами и аэрологическими приборами, в труднодоступных районах устанавливаются автоматические метеорологические станции. Важное значение в системе наземных метеорологических наблюдений приобрела радиолокация, позволяющая обнаруживать и исследовать облака и осадки, турбулентные и конвективные образования в А., измерять скорость и направление ветра на высотах (см. Радиолокация в метеорологии). Широко применяется также пеленгация грозовых очагов путём регистрации атмосфериков. Важная роль в метеорологических наблюдениях принадлежит вертикальным зондированиям А. при помощи радиозондов для измерений атмосферного давления, скорости и направления ветра, температуры, влажности воздуха в свободной А.

  Для изучения различных характеристик А. применяются самолёты и автоматические аэростаты, например при исследовании облаков и разработке методов активных воздействий на них, а также для измерений в области актинометрии, атмосферной оптики и атмосферного электричества. В период Международного геофизического года (1957—58) и в последующие годы началось использование ракет метеорологических для измерений температуры и атмосферных давления в верхней стратосфере и мезосфере. Важнейшим средством получения метеорологической информации, особенно существенным для акватории океанов и территорий труднодоступных районов, стали спутники метеорологические.

  Лит.: Метеорология и гидрология за 50 лет Советской власти, под ред. Е. К. Федорова, Л., 1967; Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958; Зверев А. С., Синоптическая метеорология и основы предвычисления погоды, Л., 1968; Хромов С. П., Метеорология и климатология для географических факультетов, Л., 1964; Тверской П. Н., Курс метеорологии, Л., 1962; Матвеев Л. Т., Основы общей метеорологии. Физика атмосферы, Л., 1965; Будыко М. И., Тепловой баланс земной поверхности, Л., 1956; Кондратьев К. Я., Актинометрия, Л., 1965; Хвостиков И. А., Высокие слои атмосферы, Л., 1964; Мороз В. И., Физика планет, М., 1967; Тверской П. Н., Атмосферное электричество, Л., 1949; Шишкин Н. С., Облака, осадки и грозовое электричество, М., 1964; Озон в земной атмосфере, под ред. Г. П. Гущина, Л., 1966; Имянитов И. М., Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.

  М. И. Будыко, К. Я. Кондратьев.

Вертикальное распределение температуры в атмосфере и связанная с этим терминология.

Схема строения атмосферы: 1 – уровень моря; 2 – высшая точка Земли – г. Джомолунгма (Эверест), 8848 м ; 3 – кучевые облака хорошей погоды; 4 – мощно-кучевые облака; 5 – ливневые (грозовые) облака; 6 – слоисто-дождевые облака; 7 – перистые облака; 8 – самолёт; 9 – слой максимальной концентрации озона; 10 – перламутровые облака; 11 – стратостат; 12 – радиозонд; 1З – метеоры; 14 – серебристые облака; 15 – полярные сияния; 16 – американский самолёт-ракета Х-15; 17, 18, 19 – радиоволны, отражающиеся от ионизованных слоев и возвращающиеся на Землю; 20 – звуковая волна, отражающаяся от тёплого слоя и возвращающаяся на Землю; 21 – первый советский искусственный спутник Земли; 22 – межконтинентальная баллистическая ракета; 23 – геофизические исследовательские ракеты; 24 – метеорологические спутники; 25 – космические корабли «Союз-4» и «Союз-5»; 26 – космические ракеты, уходящие за пределы атмосферы, а также радиоволна, пронизывающая ионизованные слои и уходящая из атмосферы; 27, 28 – диссипация (ускальзывание) атомов Ни Не; 29 – траектория солнечных протонов Р; 30 – проникновение ультрафиолетовых лучей (длина волны l > 2000  и l < 900  ).

Атмосфера кабины

Атмосфе'ра каби'ны космического корабля, искусственная газовая среда в замкнутом объёме герметической кабины космического летательного аппарата. Для человека оптимальна А. к., полностью соответствующая по физическим свойствам и химическому составу земной атмосфере. А. к. может быть одногазовой – из газообразного кислорода при избыточном давлении от 33 до 56 кн/м2 (1 кн/м2 = 7,5 мм рт. ст.), или многогазовой – из нескольких газов (O2, N2CO2 и др.). Преимущество одногазовой А. к. – некоторое уменьшение возможности декомпрессионных расстройств и снижение эффекта разгерметизации кабины при выходе космонавтов в космическое пространство или на поверхность другого небесного тела. Но при применении одногазовой А. к. должно быть повышено давление кислорода по сравнению с его парциальным давлением в земной атмосфере, что сопряжено с повышенной пожарной опасностью. Кроме того, при одногазовой А. к. усложняется система терморегуляции. При длительном (более 2—3 нед.) воздействии на человека одногазовой А. к. отмечаются некоторые нарушения физиологических функций человека, снижающие устойчивость организма к действию факторов космического полёта, поэтому в длительном полёте использование одногазовой А. к. недопустимо.

  Ряд важнейших преимуществ имеет многогазовая Л. к. при нормальном барометрическом давлении. Однако при длительных космических полётах в такой А. к. могут возникнуть некоторые отклонения от нормальной земной атмосферы. Допустимы колебания общего барометрического давления в кабине в пределах 40—120 кн/м2. Парциальное давление кислорода должно составлять 20—40 кн/м2, падение его ниже 20 кн/м2 может привести к появлению признаков кислородного голодания, снижению сопротивляемости организма, неблагоприятному воздействию факторов космического полёта и понижению работоспособности членов экипажа. Повышение давления св. 40 кн/м2 может вызвать изменения со стороны органов дыхания и также снизить сопротивляемость организма. Парциальное давление углекислого газа не должно быть больше 1 кн/м2, чему соответствует объёмная концентрация в 1% (при нормальном барометрическом давлении); повышение концентрации может вызвать отрицательные реакции организма. Физиология, значение азота для живого организма ещё недостаточно выяснено. Исключение азота из А. к. вызывает снижение общего барометрического давления с соответствующими вредными последствиями для организма.

  Перспективна замена азота другим инертным газом, например гелием, в 7 раз более лёгким и более теплопроводным, что позволяет повысить температуру в кабине и снизить мощность системы терморегулирования. Однако гелий более текуч, чем азот (усложняется борьба с утечками из кабины). Возможность кратковременного (до 10 сут) пребывания человека в гелиевой, вернее гелиево-кислородной, среде доказана экспериментально. В А. к. должна поддерживаться относит. влажность в пределах 30—70%, при t = 20±1°C, скорость перемещения газовых потоков – не более 0,2—0,3 м/сек, скорость изменения давления в процессах регулирования и др. – не более 300 н/(м2сек) (2 мм рт. ст. в 1 сек). Все физические свойства А. к. и её химический состав поддерживаются системой жизнеобеспечения.

Атмосфера однородная

Атмосфе'ра одноро'дная, условная атмосфера, в которой с высотой плотность воздуха не меняется, а давление линейно убывает. Высота А. о. Земли при температуре у её поверхности 0°С должна быть 8000 м. Температура А. о. уменьшается при подъёме на каждые 100 м на 3,42°С. Понятие А. о. используют в теоретической метеорологии.

Атмосфера стандартная

Атмосфе'ра станда'ртная международная (МСА), условная атмосфера, в которой распределение давления с высотой в земной атмосфереполучается из барометрической формулыпри определённых предположениях о распределении температуры по вертикали; служит для градуировки альтиметров (высотомеров). Для А. с. принимают следующие условия: давление на среднем уровне моря при f = 15°C равно 1013мб (101,3 кн/м2 или 760 мм рт. cm.), температура уменьшается по вертикали с увеличением высоты (вертикальный градиент) на 6,5°С на 1 км до уровня 11 км (условная высота начала стратосферы), где температура становится равной —56,5 °С и почти перестаёт меняться (см. рис.).

Распределение давления р, температуры t и плотности r в Международной стандартной атмосфере; р и r – Давление и плотность на уровне моря.

Атмосферики

Атмосфе'рики, электрические сигналы, создаваемые радиоволнами, излучаемыми разрядами молний. Вблизи земной поверхности происходит около 100 разрядов молний в 1 сек. Поэтому в любой точке земного шара можно практически непрерывно регистрировать А. При радиоприёме на слух А. воспринимаются как шорохи или характерные свисты, создающие атмосферные помехи радиоприёму. Разряд молнии имеет 2 стадии: предразряд и основной разряд, различающиеся силой тока и спектром излучаемых радиоволн (см. рис.). Основной разряд излучает сверхдлинные волны, а предразряд – длинные волны, средние волны и даже короткие волны. Максимум энергии А. лежит в области частот порядка 4—8 кгц. Если А. создаются местными грозами, то их спектр определяется только спектром излучения грозового разряда. Если же источник – удалённая гроза, то спектр определяется также и условиями распространения радиоволн от очага грозы до радиоприёмного устройства.

  Некоторые А. воспринимаются на слух как сигналы, частота которых непрерывно уменьшается. Такие А. называются свистящими. Их особенность связана с механизмом распространения сверхдлинных волн. При распространении таких волн в волноводе, образованном нижней границей ионосферы и поверхностью Земли, происходит частичное «просачивание» их через ионосферу. Просочившиеся волны, распространяясь вдоль силовых линий магнитного поля Земли, удаляются от поверхности Земли на десятки тыс. км и затем снова возвращаются к Земле. Скорость их распространения зависит от частоты, высокочастотные составляющие сигнала распространяются с большей скоростью и приходят раньше. Это и приводит к возникновению на выходе приёмного устройства характерного свиста, высота тона которого непрерывно меняется.

  Исследования А. дают сведения о механизме распространения сверхдлинных волн, а также о свойствах самых нижних и очень высоких областей ионосферы, в которых распространяются А. Для расчётов линий радиосвязи построены специальные карты и номограммы, по которым можно определить уровень А. в каждой точке Земли.

  Лит.: Альперт Я. Л., Распространение радиоволн и ионосфера, М., 1960; Долуханов М. П., Распространение радиоволн, 2 изд., М., 1960; Краснушкин П. Е., Атмосферики, в кн.: Физический энциклопедический словарь, т. 1, М., 1960, с. 100—102.

  М. Б. Виноградова.

Спектр радиоволн, излучаемых разрядом молнии; сплошная линия – спектр основного разряда, точечный пунктир – спектр предразряда, штриховой пунктир – суммарный спектр; f – частота радиоволн, Е – напряжённость электрического поля волны.

Атмосферная акустика

Атмосфе'рная аку'стика, раздел акустики, в котором изучаются распространение и генерация звука в реальной атмосфере и исследуется атмосфера акустическими методами. А. а. как метод исследования является также разделом физики атмосферы. Изучение распространения звука в атмосфере началось с зарождения акустики. В конце 17 —18 вв. У. Дарем (Англия) изучал зависимость скорости звука от скорости ветра, Бьянкони (Италия) и Ш. М. Кондамин (Франция) изучали влияние температуры на скорость звука. Большой вклад в исследования распространения звука в неоднородной движущейся среде внесли советские учёные Н. Н. Андреев и И. Г. Русаков (1934), Д. И. Блохинцев (1947).

  Распространение звука в свободной атмосфере имеет ряд особенностей. Звуковые волны благодаря теплопроводности и вязкости воздуха поглощаются тем сильнее, чем выше частота звука и чем меньше плотность атмосферы. Поэтому резкие вблизи звуки выстрелов или взрывов на больших расстояниях становятся глухими. Неслышимые же звуки очень низких частот (т. н. инфразвуковых) с периодами от нескольких сек до нескольких мин затухают мало и могут распространяться на тысячи км и даже огибать несколько раз земной шар. Это даёт возможность, например, обнаруживать ядерные взрывы, являющиеся мощным источником таких волн.

  Важные задачи А. а. связаны с явлениями, возникающими при распространении звука в атмосфере, которая представляет собой с точки зрения акустики движущуюся неоднородную среду. Температура и плотность атмосферы уменьшаются с увеличением высоты; на больших высотах температура снова возрастает. На эти регулярные неоднородности накладываются зависящие от метеорологических условий изменения значений температуры и ветра, а также их случайные турбулентные пульсации различных масштабов. Т. к. скорость ветра определяется температурой воздуха и звук «сносится» ветром, то все перечисленные неоднородности сильно влияют на распространение звука. Возникает искривление звукового луча – рефракция звука, в результате чего наклонный звуковой луч может вернуться к земной поверхности, образуя акустические зоны слышимости и зоны молчания, происходит рассеяние и ослабление звука на турбулентных неоднородностях, сильное поглощение звука на больших высотах и т. д.

  Сложную обратную задачу приходится решать при акустическом зондировании атмосферы. Распределение температуры и ветра на больших высотах определяют по измерениям времени и направления прихода звуковых волн от наземных взрывов или взрывов бомб, сбрасываемых с ракеты. При исследовании турбулентности определяют температуру и скорость ветра, измеряя время распространения звука на небольших расстояниях; для получения необходимой точности пользуются ультразвуковыми частотами.

  Большое значение получила проблема распространения промышленных шумов, в особенности ударных волн, возникающих при движении сверхзвуковых реактивных самолётов. Если атмосферные условия благоприятствуют фокусировке этих волн, то у земной поверхности давления могут достичь значений, опасных для сооружений и здоровья людей.

  В атмосфере наблюдаются различные звуки естественного происхождения. Длительные раскаты грома происходят вследствие большой длины грозового разряда, а также потому, что из-за рефракции звуковая волна распространяется по различным путям и приходит с различными запаздываниями. Некоторые геофизические явления – полярные сияния, магнитные бури, мощные землетрясения, ураганы, морские волнения – являются источниками звуковых и особенно инфразвуковых волн. Их исследование важно не только для геофизики, но, например, для заблаговременного штормового оповещения. Разнообразные слышимые шумы вызываются или срывом вихрей с различных препятствий (свист ветра) или колебаниями каких-либо предметов в потоке воздуха (гудение проводов, шелест листьев и т. п.).

  Лит.: Красильников В. А., Звуковые и ультразвуковые волны в воздухе, воде и твердых телах, 3 изд., М., 1960; Блохинцев Д. И., Акустика однородной движущейся среды, М.—Л., 1946.

  В. М. Бовшеверов.

Атмосферная оптика

Атмосфе'рная о'птика, раздел физики атмосферы, в котором изучаются оптические явления, возникающие при прохождении света в атмосфере. Сюда относятся не только такие красочные явления, как зори, радуги, изменения цвета неба, а и менее заметные, но очень важные для практики явления, как рассеяние и излучение атмосферой видимой и невидимой радиации, поляризация небесного света, видимость предметов и т.д. А. о. составляет часть физической оптики; она тесно переплетается с оптикой коллоидов и аэрозолей, планетных атмосфер, моря, с радиационной теплопередачей и др. Важные для А. о. результаты были получены при решении проблем физической химии, астрофизики, океанологии, техники, а методы и результаты А. о. часто находят применение в этих науках.

  Изучение оптических свойств воздуха, моря и суши составляет прямые задачи А. о. Обратные задачи А. о. – разработка оптических методов зондирования, т. е. определения по измеренным оптическим свойствам воздуха, моря и суши других их физических характеристик.

  Оптические явления в нижних и верхних слоях атмосферы (слой озона и выше) различны. В верхних слоях под влиянием солнечного излучения происходят главным образом фотохимические реакции. Возникающие при этом возбуждённые частицы высвечивают запасённую энергию (полярные сияния, свечение ночного неба и др.). Изучением этих явлений занимается аэрономия. В данной статье они не рассматриваются.

  Интерес к оптическим явлениям в атмосфере возник очень давно. Цвет неба и облаков, зори, ложные солнца и т. д. с давних пор считались предвестниками погоды. Таких примет довольно много и одно время считалось даже, что их изучение и есть главная задача А. о. Этой точки зрения придерживался русский геофизик П. И. Броунов (30-е гг. 20 в.). Однако более подробные исследования показали, что хотя между оптическими и другими физическими явлениями в атмосфере связь несомненно существует, но часто она бывает очень сложной и неоднозначной; оптические признаки погоды иногда противоречат друг другу. Постепенно стало ясно, что найти связь между оптическими явлениями и погодой можно, лишь изучая природу оптических явлений и одновременно проникая в механизм физических явлений, вызывающих изменения погоды.

  Первые попытки объяснить синий цвет неба относятся к 16 в. Леонардо да Винчи объяснял синеву небесного свода тем, что белый воздух на тёмном фоне мирового пространства кажется синим. Л. Эйлер считал (1762), что «сами частицы воздуха имеют синеватый оттенок и в общей массе создают интенсивную синеву». В начале 18 в. И. Ньютон объяснял цвет неба интерференционным отражением солнечного света от мельчайших капель воды, всегда взвешенных в воздухе. В 1809 французский физик Д. Араго открыл, что свет неба сильно поляризован (см. Поляризация света).

  Первое правильное объяснение синего цвета неба дал английский физик Рэлей (Дж. У. Стрётт) (1871, 1881). По теории Рэлея цветные лучи, образующие солнечный спектр, рассеиваются молекулами воздуха пропорционально l-4 (где l – длина световой волны). Синие лучи рассеиваются, примерно, в 16 раз сильнее, чем красные. Поэтому цвет неба (рассеянный солнечный свет) – синий, а цвет Солнца (прямой солнечный свет), когда оно низко над горизонтом и лучи его проходят большой путь в атмосфере, – красный. При этом рассеянный свет должен быть сильно поляризован, а под углом 90° от направления на Солнце поляризация должна быть полной.

  Измерения яркости, цвета и поляризации света неба подтвердили теорию Рэлея. Но в 1907 русский физик Л. И. Мандельштам показал, что если тело, в том числе и воздух, строго однородно, то лучи, рассеянные отдельными молекулами, должны в результате взаимной интерференции гасить друг друга так, что никакого рассеяния вообще наблюдаться не будет. В действительности из-за хаотического теплового движения в среде всегда возникают флуктуации плотности (т. е. случайно расположенные области сгущений и разрежений), на которых и происходит рассеяние. Строгая теория флуктуационного рассеяния, разработанная польским физиком М. Смолуховским (1908) и А. Эйнштейном (1910), привела к тем же формулам, которые были ранее получены в молекулярной теории Рэлея. Однако все эти работы не учитывали запылённости атмосферы. Воздух, даже самый чистый, – высоко в горах, в Арктике и Антарктике – всегда засорён органической и минеральной пылью, частицами дыма, капельками воды или растворов. Эти частицы очень малы (радиус около 0,1 нм), их масса, а следовательно, и вес ничтожны, поэтому они так медленно падают на Землю, что малейший ток воздуха снова вздымает их вверх. Т. к. воздух непрерывно перемешивается, то в атмосфере всегда парит как бы сеть из мельчайших пылинок и капель, особенно густая в нижних приземных слоях. Это атмосферный аэрозоль, который и является главной причиной мутности воздуха. Он уменьшает дальность видимости в реальной атмосфере, по сравнению с идеальной, приблизительно в 20 раз. Кроме аэрозоля, большую роль в оптических явлениях в атмосфере играют водяной пар, углекислый газ и озон, хотя они составляют всего несколько % от объёма газов, из которых состоит воздушная смесь. Только эти газы поглощают солнечное и земное излучение и сами излучают радиацию.

  В рассеянии света в атмосфере решающее значение имеет аэрозоль. Немецкий физик Г. Ми (1908) построил теорию рассеяния света частицей произвольного размера, которой широко пользуются в А. о. Эта теория была существенно развита н дополнена советскими учёными В. В. Шулейкиным (1924), В. А. Фоком (1946), К. С. Шифриным (1951) и голландским учёным ван Хюлстом (1957). Расчёты показывают, что характер рассеяния зависит от отношения радиуса частицы a к длине волны l и от вещества частицы. Малые частицы (a/l “ 1) ведут себя так же, как молекулы в теории Рэлея, но чем больше частицы, тем слабее зависимость рассеяния от длины волны. Большие частицы (a/l “ 1) рассеивают свет нейтрально – все волны одинаково. Это, в частности, относится к каплям облаков, радиусы которых в 10—20 раз больше длины волны видимого света. Именно поэтому облака имеют белый цвет. По этой же причине небо становится белесоватым, если воздух пыльный или содержит капельки воды. В исследование яркости и поляризации неба большой вклад внесли советские учёные В. Г. Фесенков, И. И. Тихановский, Е. В. Пясковская-Фесенкова, а в исследование прозрачности облаков, туманов, нижних слоев атмосферы – А. А. Лебедев, И. А. Хвостиков, С. Ф. Родионов, американские учёные Д. Стреттон и Г. Хаутон, французские учёные Э. и А. Васей, Ж. Брикар.

  Наряду с экспериментальными работами создавались также методы расчёта распределения яркости и поляризации по небу, для чего необходимо учитывать многократность рассеяния света и отражения от земной поверхности. Для этого случая русским физиком О. Д. Хвольсоном (1890) было предложено уравнение переноса излучения. Для безоблачного неба влияние многократного рассеяния не очень велико, но для облаков, которые представляют собой сильно мутные среды, это – основной фактор, без которого нельзя правильно рассчитать прозрачность облаков, отражение и световой режим внутри них. Большой вклад в разработку методов решения уравнения переноса внесли советские учёные В. А. Амбарцумян (1941—43), В. В. Соболев (1956), Е. С. Кузнецов (1943—45) и индийский учёный С. Чандрасекар (1950).

  Видимость предметов обусловлена прежде всего прозрачностью воздуха, а также их отражательными свойствами. Отражение диффузно, т. е. рассеяно во все стороны (за исключением отражения от поверхности спокойной воды) и для разных поверхностей происходит по-разному, в результате чего (для несамосветящихся тел) возникает яркостный контраст предмета с фоном. Если контраст больше некоторого порогового значения, то предмет виден; если меньше, то предмет теряется на общем фоне. Дальность видимости предмета зависит от прозрачности воздуха и от освещённости (в сумерки и днём порог различения неодинаков). Видимость (прозрачность атмосферы) входит в число основных метеорологических элементов, наблюдения над которыми ведут метеорологические станции. Исследование условий, влияющих на горизонтальную и наклонную видимость (на фоне неба или Земли) – важная прикладная задача А. о. В её решении значительные результаты получили советские учёные В. В. Шаронов, Н. Г. Болдырев, В. А. Берёзкин, В. А. Фаас, немецкий учёный Х. Кошмидер, канадский учёный Д. Мидлтон.

  Большое значение имеет изучение условий распространения в атмосфере невидимых инфракрасных волн длиной 3– 50 мкм, которые обусловливают лучистую передачу тепла (механизм её состоит в поглощении и последующем переизлучении). Очень важны прямые измерения в свободной атмосфере, которые могут быть выполнены с самолётов или с искусственных спутников Земли (ИСЗ). В исследовании лучистой теплопередачи существенные результаты были получены советскими учёными А. И. Лебединским, В. Г. Кастровым, К. Я. Кондратьевым, Б. С. Непорентом, Е. М. Фейгельсоном и американскими – Д. Хоуардом и Р. Гуди.

  При постановке обратных задач А. о. возникают две трудности: во-первых, нужно установить, что в оптической информации содержатся нужные данные, и, во-вторых, – указать способ их извлечения и необходимую точность измерений. В. Г. Фесенков ещё в 1923 показал, что по изменению яркости сумеречного неба можно судить о строении атмосферы на высотах более 30 км. Через 30 лет сведения о строении стратосферы и ионосферы, полученные непосредственно с помощью ракет, подтвердили данные сумеречного метода. В развитие сумеречного метода внесли значительный вклад советские учёные Г. В. Розенберг, Н. М. Штауде. Удалось разработать несколько методов, позволяющих исследовать строение мутных сред по особенностям их светорассеяния, которые нашли применение не только в геофизике. Наибольший интерес вызывает разработка методов зондирования атмосферы с ИСЗ для определения температуры земной поверхности или облаков по инфракрасному излучению, приходящему на спутник. Исследуется также способ определения вертикальных профилей температуры и влажности по характеру приходящего излучения. В разработке этого метода важные результаты получены советским учёным М. С. Малкевичем, американским – Л. Капланом и японским – Г. Ямамото.

  Работу по развитию и согласованию исследований в области А. о. проводит Академия наук СССР совместно с Главным управлением гидрометеорологической службы СССР.

  Лит.: Броунов П. И., Атмосферная оптика, М., 1924; Шифрин К. С., Рассеяние света в мутной среде, М.– Л., 1951; Пясковская-Фесенкова Е. В., Исследование рассеяния света в земной атмосфере, М., 1957; Розенберг Г. В., Сумерки, М., 1963; Кондратьев К. Я., Актинометрия, Л., 1965.

  К. С. Шифрин.


    Ваша оценка произведения:

Популярные книги за неделю