355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЛЮ) » Текст книги (страница 8)
Большая Советская Энциклопедия (ЛЮ)
  • Текст добавлен: 7 октября 2016, 18:27

Текст книги "Большая Советская Энциклопедия (ЛЮ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 8 (всего у книги 12 страниц)

Люксметр

Люксме'тр (от латинского lux – свет и... метр), переносный прибор для измерения освещённости, один из видов фотометров. Простейший Л. состоит из селенового фотоэлемента, который преобразует световую энергию в энергию электрического тока, и измеряющего этот фототек стрелочного микроамперметра со шкалами, проградуированными в люксах. Разные шкалы соответствуют различным диапазонам измеряемой освещённости; переход от одного диапазона к другому осуществляют с помощью переключателя, изменяющего сопротивление электрической цепи. (Например, Л. типа Ю-16 имеет 3 диапазона измерений: до 25, до 100 и до 500 лк.) Ещё более высокие освещённости можно измерять, используя надеваемую на фотоэлемент светорассеивающую насадку, которая ослабляет падающее на элемент излучение в определённое число раз (постоянное в широком интервале длин волн излучения).

  Кривые относительной спектральной чувствительности селенового фотоэлемента и среднего человеческого глаза неодинаковы; поэтому показания Л. зависят от спектрального состава излучения. Обычно приборы градуируются с лампой накаливания, и при измерении простыми Л. освещённости, создаваемой излучением иного спектрального состава (дневной свет, люминесцентное освещение), применяют полученные расчётом поправочные коэффициенты. Погрешность измерений такими Л. составляет не менее 10% от измеряемой величины.

  Л. более высокого класса оснащаются корригирующими светофильтрами, в сочетании с которыми спектральная чувствительность фотоэлемента приближается к чувствительности глаза; насадкой для уменьшения ошибок при измерении освещённости, создаваемой косо падающим светом; контрольной приставкой для поверки чувствительности прибора. Пространственные характеристики освещения измеряют Л. с насадками сферической и цилиндрической формы. Имеются модели Л. с приспособлениями для измерения яркости. Точность измерений лучшими Л. – порядка 1%.

  Д. Н. Лазарев.

Люкс-секунда

Люкс-секу'нда, единица количества освещения (световой экспозиции) в Международной системе единиц. Сокращённое обозначение: русское лк·сек, международное lx·s. 1 лк·сек – световая экспозиция, создаваемая в течение 1 сек при освещенности 1 лк. 1 лк·сек = 10-4фот·сек = 2,77×10-8фот·ч.

Люлебургаз

Люлебурга'з (Lüleburgaz), город на северо-западе Турции, в вилайете Кыркларели. 27,5 тысячи жителей (1970). Узел шоссейных дорог, торговый центр сельскохозяйственного района (сахарная свёкла, зерновые, подсолнечник).

Люли

Люли', немногочисленная группа среднеазиатских цыган. Живут в Узбекской ССР и Таджикской ССР. Говорят на узбекском и таджикском языках с некоторыми элементами цыганской лексики. Верующие – мусульмане-сунниты. В прошлом делились на оседлых, занимавшихся различными ремёслами, и бродячих. В советское время переходят на оседлость, осваивают земледелие (преимущественно хлопководство), разводят овец и крупный рогатый скот. В городах работают главным образом в промышленности и строительных организациях.

Люлли Жан Батист

Люлли' (Lully) Жан Батист (итал. – Джованни Баттиста Лулли, Lulli) (28.11.1632, Флоренция, – 22.3.1687, Париж), французский композитор, основоположник национальной оперной школы. Родился в семье итальянского мельника. С 14 лет жил в Париже, занимался музыкой под руководством французских органистов, играл на скрипке в придворном оркестре, сочинял арии. С 1653 придворный композитор. Автор многочисленных балетов, сотрудничал с Ж. Б. Мольером (музыка к комедиям-балетам «Брак поневоле», «Мещанин во дворянстве» и другим). В 1672 возглавил оперный театр в Париже («Королевская академия музыки»), получил монопольное право оперных постановок во Фракции. Создал тип «лирической трагедии» (связана с классицизмом в искусстве) – монументального музыкального спектакля на античные мифологические сюжеты: «Альцеста, или Торжество Алкида» (1674), «Тесей» (1675), «Атис» (1676), «Армида» (1686) и другие. В творчестве Л. сложилась форма классической французской увертюры.

  В 1930 в Париже было начато издание Полного собрания сочинений Л. под редакцией А. Прюньера (до 1939 вышло 10 томов).

  Лит.: Асафьев Б. В., Люлли и его дело, в сборнике: «De Musica», в. 2, Л., 1926; Роллан Р., Заметки о Люлли, Собрание сочинений, т. 16, Л., 1935; Borrel Е., J.-B. Lully..., Р., 1949.

Люлька Архип Михайлович

Люлька Архип Михайлович [родился 10(23).3.1908, село Саварка, ныне Богуславского района Киевской области], советский конструктор авиационных двигателей, академик АН СССР (1968; член-корреспондент 1960), Герой Социалистического Труда (1957). Член КПСС с 1947. По окончании Киевского политехнического института (1931) работал в авиационной промышленности (в Харькове, Ленинграде, Москве). В 1933—37 занимался проблемой применения газовой турбины в качестве авиационного двигателя, научно обосновал целесообразность создания турбореактивных двигателей для скоростных самолётов. В 1939—41 разработал конструктивную схему двухконтурного турбореактивного двигателя, явившуюся прототипом ныне существующих схем; определил аналитическую зависимость так называемой зоны «вырождения» для турбореактивных двигателей. С 1946 генеральный конструктор авиационных двигателей. При его непосредственном участии и под его руководством был создан первый отечественный турбореактивный двигатель, прошедший в 1948 государственные испытания; позднее Л. сконструировал ряд мощных турбореактивных двигателей. Им разработаны и осуществлены предложения по использованию новых энергетических веществ. Государственная премия СССР (1948, 1951). Награжден 3 орденами Ленина, орденом Октябрьской Революции, орденом Трудового Красного Знамени и медалями.

А. М. Люлька.

Люмбаго

Люмба'го (от латинского lumbus – поясница), прострел, острая боль в пояснице; см. Поясничные боли.

Люмен

Лю'мен (от латинского lumen – свет), единица светового потока в Международной системе единиц. Сокращённое обозначение: русское лм, международное lm. 1 Л. – световой поток, испускаемый точечным изотропным источником в телесном угле 1 стер при силе света в 1 свечу.

Люменометр

Люмено'метр, то же, что фотометр интегрирующий.

Люмен-секунда

Лю'мен-секу'нда, единица световой энергии в Международной системе единиц. Сокращённое обозначение: русское лм·сек, международное lm·s. 1 лм·сек – световая энергия, соответствующая световому потоку 1 лм, излучаемому или воспринимаемому в течение 1 сек.

Люмет Сидней

Лю'мет, Ламет (Lumet) Сидней (родился 25.6.1924, Филадельфия), американский кинорежиссёр. С детских лет выступал в радиоспектаклях и на сцене театра в Нью-Йорке. Учился в Колумбийском университете. В середине 50-х годов – один из наиболее известных режиссёров американского телевидения. В 1957 осуществил экранизацию телепьесы Р. Роуза «Двенадцать рассерженных мужчин», которая стала одним из достижений прогрессивного направления в американском кино. Большую известность получили также фильмы: «Ростовщик» (1964), «Холм» (1965, поставлен в Великобритании), «Отказавшая система безопасности» (1965), «Группа» (1967), «Прощай, Браверман» (1968), «Чайка» (1969, по А. П. Чехову) и другие.

Люминал

Люмина'л, лекарственный препарат; то же, что фенобарбитал.

Люминесцентная дефектоскопия

Люминесце'нтная дефектоскопи'я, метод капиллярной дефектоскопии, при котором дефекты обнаруживают с помощью индикаторных составов (пенетрантов), наносимых на поверхности контролируемых изделий. Пенетранты составляют на основе люминофоров.

Люминесцентная камера

Люминесце'нтная ка'мера, сцинтилляционная камера, прибор для наблюдения и регистрации траектории (следов, треков) ионизирующих частиц, основанный на свойстве люминофоров (сцинтилляторов) светиться при прохождении через них быстрых заряженных частиц. Заряженная частица теряет в веществе энергию, ионизуя и возбуждая атомы и молекулы, находящиеся вблизи её траектории. В сцинтилляторах часть энергии, потерянная частицей, преобразуется в энергию световой вспышки, которую можно регистрировать с помощью фотоэлектронных умножителей, а в некоторых случаях – ощущать хорошо адаптированным глазом (см. Сцинтилляция, Люминесценция, Спинтарископ).

  Длительность свечения следа определяется свойствами люминофора и составляет обычно от 10-4 до 10-7сек в неорганических и до 10-9сек в органических сцинтилляторах. С каждого см длины следа ионизирующей частицы даже в лучших сцинтилляторах испускается не более 105—107 световых квантов (фотонов). Поэтому след не может быть непосредственно сфотографирован.

  Впервые Л. к. была создана в 1952 советским физиком Е. К. Завойским с сотрудниками. Основными её элементами являются: сцинтиллятор, в котором образуются следы ионизирующих частиц, и высокочувствительное электронно-оптическое устройство, позволяющее в достаточной степени усилить яркость изображения следов для их наблюдения неадаптированным глазом, а также для их фотографирования или телевизионной передачи (см. Электронно-оптический преобразователь).

  Схема одного из вариантов Л. к., в которой сцинтиллятором служат кристаллы йодистого цезия CsI или антрацена 1, а усилителем яркости изображения – многокаскадный электронно-оптический преобразователь (ЭОП), показана на рис. 1, а. Объектив 3 проектирует изображение следа 2 частицы в кристалле на фотокатод 4 многокаскадного электронно-оптического преобразователя. Изображение, усиленное ЭОП по яркости в 105—106 раз, появляется на выходном люминесцентном экране 5 преобразователя и может быть сфотографировано фотоаппаратом 6. На рис. 1, б показан другой вариант Л. к., где изображение следа, усиленное с помощью преобразователя, не фотографируется непосредственно, а сначала преобразуется с помощью передающей телевизионной трубки7 в видеосигнал. В результате изображение может быть воспроизведено на экране телевизора 8, находящегося в удалённом помещении, записано с помощью магнитофона 9 или введено для обработки в быстродействующую ЭВМ 10. Контрастность и яркость изображения могут регулироваться радиотехническими средствами. В некоторых Л. к. применяется волоконная оптика: свет распространяется от следа до фотокатода электронно-оптического преобразователя за счёт полного внутреннего отражения от стенок многочисленных тонких трубочек, наполненных жидким сцинтиллятором, или тонких нитей из сцинтиллирующей пластмассы 1, совокупность которых и составляет рабочий объём Л. к. (рис. 1, в, г). Это даёт выигрыш в эффективности собирания света в десятки или даже сотни раз по сравнению с использованием самых светосильных объективов. Однако при этом ухудшается пространственное разрешение и чёткость изображения следов.

  Следы ионизирующих частиц в Л. к. (рис. 2) во многом аналогичны следам в толстослойных ядерных фотографических эмульсиях, Вильсона камере, диффузионной камере, искровой камере, пузырьковой камере (трековые детекторы). Ширина светящихся следов a-частиц не превышает несколько мкм. Многочисленные разрывы объясняются квантовыми флуктуациями, заметно проявляющимися из-за малости полного числа фотонов, приходящих от следа на фотокатод преобразователя. Каждая светлая точка на фотографиях следов протонов (рис. 2, б) и релятивистских мезонов (рис. 2, а) образована одиночным световым квантом люминесценции, вырвавшим фотоэлектрон с фотокатода (рис. 1). Плотность таких точек на следах прямо пропорциональна величине потерь энергии частиц в веществе. Преимуществом Л. к. перед другими трековыми детекторами является высокое временное разрешение, ограниченное только величиной времени высвечивания сцинтиллятора, так как объектив и электронно-оптический преобразователь принципиально могут обеспечить временное разрешение ~10-13—10-14сек. Для отбора представляющих интерес ядерных явлений запуск Л. к. производится от системы сцинтилляционных или других детекторов частиц, включенных в схемы совпадений или антисовпадений и позволяющих установить факт попадания в объём Л. к. той или иной частицы, её остановки, вылета и т.п. Это позволяет исследовать редкие и сложные явления, в которых важно знать взаимное расположение траекторий отдельных частиц.

  Быстрые нейтроны регистрируются обычно по протонам отдачи, возникающим при столкновении нейтронов с водородными атомами, входящими в состав сцинтиллятора, медленные нейтроны (тепловые) – по заряженным частицам, образующимся в результате ядерных реакций, возбуждаемых нейтронами. Л. к. чувствительна также и к электромагнитному излучению: рентгеновские и g-kванты образуют в её рабочем объёме электроны большой энергии, благодаря фотоэффекту, эффекту Комптона и образованию пар (см. Гамма– излучение).

  Л. к. может использоваться также как высокочувствительный и безынерционный детектор в авторадиографии, дефектоскопии, рентгеноскопии.

  Лит.: 3авойский Е. К. [и др.], Люминесцентная камера, «ДАН СССР», 1955, т. 100, № 2, с. 241; их же, О люминесцентной камере, «Атомная энергия», 1956, № 4, с. 34; 3авойский Е. К. и Смолкни Г. Е., О межмолекулярном переносе энергии возбуждения в кристаллах, «ДАН СССР», 1956, т. 111, № 2, с. 328; Демидов Б. А., Фанченко С. Д., Наблюдение релятивистских заряженных частиц в люминесцентной камере, «Журнал экспериментальной и теоретической физики», 1960, т. 39, в. 1(7), с. 64; Принципы и методы регистрации элементарных частиц, под ред. Л. К. Л. Юан и Ву Цзян-сюн, перевод с английского, М., 1963.

  С. Д. Фанченко.

Рис. 2. Фотографии треков a-частиц, p-мезонов и протонов в кристаллах CsI и NaI, полученные с помощью люминесцентной камеры, изображенной на рис. 1, а: а – следы a-частиц, испускаемых 210Po, с энергией 5,2 Мэв, полученные при замене объектива 3 микроскопом; б – следы протонов с энергией 200 Мэв; в – следы релятивистских мезонов; г – следы протонов с энергией 100 Мэв; д – двухлучевая «звезда», образованная космической частицей в кристалле NaI.

Рис. 1 а, б, в, г. Схематические изображения люминесцентных камер: 1 – люминесцентный кристалл; 2 – след частицы; 3 – светосильный объектив; ЭОП – электронно-оптический преобразователь; 4 – его фотокатод; 5 – его выходной люминесцентный экран; 6 – фотоаппарат; 7 – передающая телевизионная трубка; 8 – телевизор; 9 – магнитофон; 10 – электронная вычислительная машина.

Люминесцентная киносъёмка

Люминесце'нтная киносъёмка, киносъёмка с использованием свечения люминофоров. В производстве кинофильмов Л. к. применяется главным образом для получения кадров с изображениями «висящих в пространстве» объектов, например декоративных «космических объектов», ракет, самолётов и др. С этой целью объекты окрашиваются красками с примесью люминофоров и облучаются при съёмке ртутно-кварцевыми лампами со светофильтрами, пропускающими только ультрафиолетовые лучи. В результате на киноплёнке экспонируются только люминесцирующие объекты, а поддерживающие их подпорки, подвесы и тому подобные приспособления, а также фон не экспонируются. Доснимая фон второй экспозицией, можно получать методами проекционного совмещения самые различные изобразительные эффекты (см. Проекционных совмещений метод).

  Другим вариантом Л. к. являются съёмки с усилением яркостного или цветового контраста. Для этого элементы декораций, реквизита, костюмов, а также кукол и рисунков (в мультипликационном фильме) подкрашиваются люминофорами, излучающими свет необходимой цветности при возбуждении видимыми лучами. При освещении белым светом увеличивается насыщенность цвета и яркость подкрашенных деталей. Если же свечение люминофора возбуждается излучениями определённых длин волн, то перемежающейся подсветкой создаётся возможность подчеркнуть в кинофильме «блеск драгоценных камней» или изобразить «вспышки глаз» дракона и т.п.

  Лит. см. при статье Комбинированная киносъёмка.

  В. Б. Толмачев.

Люминесцентная лампа

Люминесце'нтная ла'мпа, газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких %. Л. л. широко применяются для общего освещения, при этом их световая отдача и срок службы в несколько раз более, чем у ламп накаливания того же назначения. Наиболее распространённой разновидностью подобных источников является ртутная Л. л. (рис. 1). Она представляет собой стеклянную трубку с нанесённым на внутреннюю поверхность слоем люминофора. В торцы трубки введены вольфрамовые спиральные электроды; для повышения эмиссионной способности на электроды наносится оксидная суспензия, изготовляемая из карбонатов или перекисей щёлочноземельных металлов. В лампу вводят каплю ртути и некоторое количество инертного газа (Ar, Ne и др.), который способствует увеличению срока службы лампы и улучшению условий возбуждения атомов ртути. При подключении Л. л. к источнику переменного тока между электродами лампы возникает электрический ток (десятые доли а), возбуждающий свечение атомов ртути. Давление ртутных паров в Л. л. зависит от температуры стенок лампы и составляет при нормальной рабочей температуре 40 °С примерно 0,13—1,3 н/м2 (10-2—10-3мм рт. ст.). Такое низкое давление обеспечивает интенсивное излучение разряда в ультрафиолетовой области спектра (преимущественно с длиной волны l 184,9 и 253,7 нм), которое и возбуждает свечение люминофорного слоя ламп.

  Наиболее распространённым люминофором является галофосфат кальция, активированный Sb и Mn (см. Кристаллофосфоры). Изменяя соотношение активаторов, можно получить люминофоры разных марок и изготавливать лампы разной цветности. В СССР максимальную световую отдачу имеют лампы ЛБ (белого света) – 75 – 80 лм/вт. Световая отдача ламп ЛХБ (холодно-белого света) около 65 лм/вт. Для обеспечения наиболее правильной цветопередачи освещаемых объектов используют лампы ЛДЦ (см. Лампа дневного света). Лампы с диффузноотражающим слоем (рефлекторные лампы) имеют пониженный общий световой поток, но почти вдвое большую силу света в отражаемом покрытием направлении. Срок службы ламп превышает 10 тысяч ч. Мощности Л. л. колеблются от 4 до 200 вт; длина от 136 до 2440 мм; по конфигурации различают лампы: прямые, U-oбразные, W-oбразные, кольцевые, панельные, свечеобразные.

  Широкое распространение получают Л. л. с амальгамами In, Cd и других элементов. Более низкое давление паров ртути над амальгамой даёт возможность расширить температурный диапазон оптимальных световых отдач до 60 °С вместо 18—25 °С для чистой ртути.

  При повышении температуры окружающей среды сверх допускаемой нормы (25 °С для чистой ртути и 60 °С для амальгам) возрастают температура стенок и давление паров ртути, а световой поток снижается. Ещё более заметное уменьшение светового потока наблюдается при понижении температуры (рис. 2), а значит, и давления паров ртути. При этом резко ухудшается и зажигание ламп, что делает невозможным их использование при температурах ниже 0 °С без утепляющих приспособлений. В связи с этим представляют интерес безртутные Л. л. с разрядом низкого давления в инертных газах. В этом случае люминофор возбуждается излучением с l от 58,4 до 147 нм. Поскольку давление газа в безртутных Л. л. практически не зависит от окружающей температуры, неизменными остаются и их световые характеристики.

  Световая отдача Л. л. повышается при увеличении размеров (длины) за счёт снижения доли анодно-катодных потерь в общем световом потоке. Для Л. л. характерны малая поверхностная яркость ламп и пульсация светового потока при работе ламп на переменном токе (стробоскопический эффект). Снижение пульсаций достигается равномерным включением ламп в три фазы питающей сети. Срок службы ламп ограничен дезактивацией и распылением катодов. Отрицательно сказываются на сроке службы колебания напряжения питающей сети и частые включения и выключения ламп. Световая отдача снижается в процессе горения.

  Будучи газоразрядным прибором, Л. л. имеет падающую вольтамперную характеристику, что требует применения пуско-регулирующих аппаратов (ПРА) – индуктивных или ёмкостных. Для повышения термоэмиссии и обеспечения тем самым зажигания ламп катоды в пусковой период должны быть прогреты. Это достигается включением их в сеть последовательно с ПРА с помощью стартера (стартерные схемы) или с помощью трансформаторов накала (бесстартерные схемы).

  Л. л. широко применяются в качестве источников света: например, ЛБ и ЛХБ – для общего освещения; ЛТБ (тепло-белого света) – для освещения помещений, богатых бело-розовыми тонами; ЛСР (синего света рефлекторные) – в электрофотографических копировально-множительных аппаратах; лампы из увиолевого стекла, частично прозрачного для ультрафиолетового излучения, – для профилактического облучения людей.

  Выпуск Л. л. осуществляется на механизированных поточных линиях сборки производительностью 700—800 штук в 1 ч. В СССР и за рубежом ведутся работы по повышению световой отдачи ламп до 85 лм/вт и срока службы до 12—15 тысяч ч при 8-кратном включении и выключении ламп в течение суток (вместо современного 4-кратного включения), по разработке оборудования производительностью 2500—3000 штук в 1 ч.

  Лит.: Фабрикант В. А., Физика и техника люминесцентных ламп, «Успехи физических наук», 1945, т. 27, в. 2; Вавилов С. И., О «теплом» и «холодном» свете, М., 1956; Федоров В. В., Новое в физике и технике люминесцентных ламп, «Светотехника», 1966, № 9—10; его же, Производство люминесцентных ламп, 2 изд., М., 1969.

  В. В. Федоров.

Рис. 1. Ртутная люминесцентная лампа: 1 – трубка-колба; 2 – катод; 3 – цоколь; 4 – штырёк; 5 – изолирующая прокладка.

Рис. 2. Зависимость светового потока ламп с жидкой ртутью от температуры стенок.


    Ваша оценка произведения:

Популярные книги за неделю