355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Греков » Тайны космоса » Текст книги (страница 6)
Тайны космоса
  • Текст добавлен: 8 мая 2017, 19:30

Текст книги "Тайны космоса"


Автор книги: Юрий Греков



сообщить о нарушении

Текущая страница: 6 (всего у книги 26 страниц)

ПУТЕШЕСТВИЯ ТАЯТ ОПАСНОСТИ
На ракете или под парусом?

Представим себе, что в один прекрасный день мы получим телеграмму со звезд: братья по разуму зовут нас в гости. На чем, как мы к ним отправимся? Нынешние ракеты на химическом или даже атомном топливе явно не годятся. Фантасты и инженеры обычно предлагают фотонные корабли или светолеты.

Оседлавшие луч. Космолеты будущего будут выходить на орбиту, не тратя ни грамма топлива! С таким сенсационным заявлением выступили специалисты НАСА и Пентагона после осуществления на ракетном полигоне «Уайт-сандс» (Белые пески) испытаний прототипа нового летательного аппарата, аналоги которого до сих пор встречались лишь на страницах научно-фантастических книг.

Впрочем, первое испытание выглядело на редкость скромно: луч пульсирующего газового лазера мощностью 10 кВт был направлен снизу вверх на отражательное зеркало миниатюрного летательного аппарата весом всего около 60 г и длиной чуть больше 15 см, который поднялся над землей всего на 2 с небольшим метра…

Тем не менее американский изобретатель Франклин Мид и его коллеги полагают, что с экспериментов с моделью «Светолета», сделанной из алюминиевой фольги, начинается новый этап в освоении космического пространства. Отраженные от зеркальной поверхности параболического зеркала лучи фокусировались в одной точке, где излучение достигало такой мощности, что воспламеняло воздух, преобразуя его в высокотемпературную плазму. Происходил как бы мини-взрыв, который подбрасывал летательный аппарат вверх. Поначалу, как уже говорилось, на 1,5-2 м, потом – на 15 м…

Руководители программы Лейк Мирабо и Франклин Мид полагают, что к концу нынешнего, 1998 года лазер «подбросит» летательный аппарат нового типа на высоту в километр, а еще через несколько лет «Светолет» поднимется и на 100 км.

Впрочем, изобретатели понимают, что на пути в открытый космос им предстоит решить на практике еще одну важную проблему. Обогнав в 5 раз скорость звука и поднявшись на высоту более 30 км, «Светолет» попадет в разреженные слои стратосферы, и тяга двигателя резко упадет – ведь превращать в плазму будет уже практически нечего.

Чтобы компенсировать недостачу рабочего тела, Мирабо предлагает впрыскивать в фокус зеркала жидкий водород или азот, который будет находиться на борту корабля в специальном баке. Так что, как видите, хоть какое-то топливо, но «Светолету» все же понадобится.

Кроме того, изобретатель надеется облегчить взлет корабля с помощью эффекта «воздушного гвоздя». Идея тут заложена настолько любопытная, что о ней стоит поговорить особо…

Строим «летающую тарелку»? Еще в 60-х годах, работая на кафедре инженерной механики Ресселаровского политехнического института (г. Троя, штат Нью-Йорк), Лейк Мирабо придумал способ, как резко уменьшить аэродинамическое сопротивление взлетающих космических кораблей. Впрочем, сам профессор не скрывает, что зарождению и развитию проекта в немалой степени способствовали его контакты как с американскими, так и с российскими коллегами, в частности, с Юрием Райзером.

Основной узел такого космического аппарата двигатель с комбинированным циклом. Он фактически занимает собой весь объем «летающей тарелки», на которую весьма похож этот перспективный летательный аппарат. При этом внешнее сопло двигателя в кормовой части послужит и тепловым экраном при возвращении аппарата в плотные слои атмосферы.

При запуске и разгоне до скорости 1М (М – скорость звука в воздухе, округленно равная 330 м/с) двигатель работает в роторном режиме с детонационной волной. По мере ускорения аппарата большие порции ненагретого воздуха поступают в двигатель с трансзвуковой скоростью. Последний при этом переходит в режим импульсной реактивной тяги, обеспечивающий достижение скорости 5-6 М. Затем аппарат переходит в ракетный режим полета и выходит на круговую орбиту вокруг планеты.

Мирабо надеется вскоре построить демонстрационный образец нового двигателя диаметром 1,4 м и массой около 120 кг. В нем будут использованы модифицированные компоненты существующих жидкостных ракетных двигателей, а также перспективные композиционные материалы и сегменты зеркал от высокоэнергетичных лазеров.

В случае положительных результатов на испытаниях затем предполагается постройка пилотируемых одно-, двух– и пятиместных аппаратов, которым по традиции дадут те же имена, что и их предшественникам, – «Меркурий», «Джемини» и «Аполлон».

Наибольшую трудность в настоящее время представляет изготовление зеркал. Впрочем, на существующих станках с ЧПУ и алмазными резцами специалисты Ливерморской национальной лаборатории имени Лоуренса уже изготовляют зеркала диаметром 1,6 м, пригодные для перспективных космических аппаратов класса «Меркурий». Нанесение же на поверхность зеркала многослойного диэлектрического покрытия позволяет достичь коэффициента отражения более 99,9 процента.

Практически аппараты с лазерными двигателями предполагается использовать в виде небольших модулей вместимостью до 5 человек, которые смогут обеспечивать кругосветный перелет всего за 45 мин. Считается, что такие аппараты будут успешно конкурировать со сверхзвуковым самолетом, разрабатываемым для замены нынешнего сверхзвукового «конкорда», а также гиперзвуковым воздушно-космическим самолетом следующего поколения.

Для обеспечения 120 тыс. полетов в сутки (примерно столько делает современная коммерческая авиация) аппаратам с лазерными двигателями потребуется около 500 космических солнечных электростанций. С учетом нынешнего развития необходимых технологий начало таких пассажирских перевозок ожидается не ранее чем через 20-25 лет.

Энтузиасты нового способа доставки грузов на околоземную орбиту полагают, что он намного улучшит экологию запусков и сделает их примерно на порядок более экономичными. Ведь сегодня транспортировка 1 кг полезной нагрузки в космос обходится примерно в 20 тыс. долларов.

Звездные «зонтики». На этом перспективные разработки для освоения ближнего и дальнего космоса вовсе не заканчиваются. Еще одна идея была в свое время подсказана тем же А. Кларком, который сумел осуществить уже немало технических предсказаний.

«Снасти дрожали от натуги: межпланетный ветер уже наполнил круглый парус» – так начинает он свое повествование о межпланетных гонках по трассе Земля-Луна-Земля на солнечных яхтах, то есть аппаратах, которые приводятся в движение давлением света. Кларк пишет, что парящему в невесомости командиру одной из яхт Джонгу Мертону не зря показалось, что «парус заполнил все небо»: 50 млн квадратных футов было соединено с его капсулой чуть не сотней миль такелажа. «Если сшить вместе паруса всех клиперов, которые в прошлом белыми тучками летали над Индийским океаном, то и тогда они бы не сравнялись с парусом, в который „Диана“ ловила солнечный ветер. А вещества в нем чуть больше, чем в мыльном пузыре; толщина алюминированного пластика – всего лишь несколько миллионных дюйма».

Работа над первыми солнечными яхтами идет полным ходом. В нашей стране одна из первых прикидок, например, была осуществлена в рамках проекта на лучший солнечный парусник, объявленного конгрессом США. В 1992 году должна была состояться международная космическая регата «Колумбус-500» в честь 500-летия открытия Нового Света экспедицией Колумба. Планировалось запустить как минимум три парусника, представляющих соответственно Америку, Европу и Азию. Из европейцев в конкурсе участвовали итальянские специалисты, группа британских разработчиков, франко-испанский альянс и два российских коллектива.

И хотя по разным (прежде всего финансовым) причинам гонки не состоялись, подготовка к регате «Колумбус-500» вызвала небывалый всплеск идей. Причем справедливости ради надо отметить, что А. Кларк довольно точно описал возможные варианты космических летательных аппаратов с солнечными парусами (КЛАСП). Среди них вполне могут быть и парусники-"зонтики", и «баллоны», и «парашюты», и «роторы»… К последнему виду, например, относился наш «Витязь», разработанный командой конструкторов под руководством Александра Лавренева. Две пленочные бескаркасные лопасти, каждая длиной 845 и шириной 7,1 м, должны были стабилизироваться за счет центробежных сил, неизбежно возникших бы при вращении лопастей вокруг центра.

А вот американцы из Университета им. Дж. Гопкинса отдали предпочтение зонтичной структуре, которая, подобно «Витязю», должна была развернуться из компактной упаковки уже в космосе.

Совершив гравитационный маневр в поле тяготения Луны, КЛАСПы должны были полететь дальше, к Марсу и затем – к окраинам Солнечной системы. Да вот не получилось…

А жаль, ведь такой полет можно было бы рассматривать как предпосылку к созданию более совершенных КЛАСПов, способных выполнять роль межорбитальных буксиров и даже разведчиков дальнего космоса. Например, в журнале «Нью Сайнтист» недавно был опубликован проект создания космического корабля «Старвисп» – «звездный пучок». Он будет представлять собой парус-сетку шестиугольной формы около 1 км в поперечнике и массой всего-навсего… 20 г! Сетка будет сплетена из множества шестиугольных ячеек, в пересечениях которых расположатся микросхемы, обладающие развитой логикой и образующие в целом суперкомпьютер. Кроме того, каждая микросхема чувствительна к свету и может работать как фотоэлемент.

Двигать такой КЛАСП будет уже не Солнце – его свет слишком малодейственен за пределами Солнечной системы, – а мощный мазер (лазер, излучающий в невидимой части электромагнитного спектра), расположенный на околоземном спутнике. Луч, посылаемый таким генератором, будет дополнительно фокусироваться и направляться на парус специальной системой – линзой Френеля. Размер ее – около 50 км в поперечнике.

Сфокусированный на парусе луч позволит развить ускорение в 155 раз больше земного. За неделю корабль достигнет скорости 60 тыс. км/с. Затем мазер будет выключен и движение продолжится по инерции.

Когда корабль пройдет три четверти пути до ближайшей к нам звезды Проксима Центавра, расстояние до которой составляет 4,3 световых года, центр управления включит мазер и переключит все 10 трлн микросхем зонда в режим фотоприемников. Таким образом получится огромный «глаз», который увидит все, что происходит в окрестностях звезды. По мере накопления информации парус выполнит и еще одну функцию – передающей антенны: все сведения будут переправлены на Землю.

Если полученные данные окажутся интересными, а сам проект успешным, вслед за «Старвиспом» в путь отправятся другие парусники, в том числе и с экипажем на борту. Но экипажу ведь нужно возвращаться назад, и авторы проекта рассчитали все до мелочей. В конце пути от «зонтика» отделится его внешняя кольцевая часть; она-то и послужит зеркалом-ретранслятором, которое развернет излучение на 180 градусов и сфокусирует его, чтобы можно было сначала затормозить центральную часть «зонта», где расположена кабина экипажа, а потом разогнать ее снова в обратном направлении.

При подлете к Земле мазер сработает еще один раз и притормозит корабль путешественников. Авторы проекта утверждают, что полет к ближайшей звезде, а также возвращение домой может занять не так уж много времени – 51 год по земному летосчислению. Причем вследствие того что корабль будет двигаться с околосветовыми скоростями, члены экипажа, согласно теории Эйнштейна, состарятся за это время на 46 лет.

…Перечисленные идеи показались специалистам настолько интересными, что НАСА и Ассоциация университетских космических программ ныне финансируют проект «Аполлон Лайткрафт», в рамках которого изучаются возможности вывода в космос различных аппаратов, работающих на солнечной энергии. Однако подводные камни ждут строителей таких кораблей вовсе не там, где их можно было бы ожидать.


Реквием по теории

История появления теории относительности – сущий детектив. Доводы фабриковались, возражения игнорировались – короче говоря, во имя Науки творилось форменное безобразие. Так считают два современных немецких исследователя Геогр Гелецки и Петер Марквардт.

Спор об эфире. «Большинство людей убеждено в том, что Альберт Эйнштейн – один из величайших гениев в истории человечества, а его частная теория относительности – одно из крупнейших достижений науки, – пишут в своей книге „Реквием по частной теории относительности“, вышедшей во Франкфурте-на-Майне, два немецких физика. – Прежде так думали и мы. Но вот теперь всем нам впору утверждать обратное, ибо исследования показали: теория относительности лжива, гений заблуждался!»

И далее на 276 страницах ученые собрали все критические возражения против теории Эйнштейна. Впрочем, главный вывод дан уже в подзаголовке: «Относительность устарела».

Научно-критический разбор читается словно детектив, ведь речь идет о сфабрикованных доводах, о возражениях, которые были проигнорированы, об исследователях, которых попросту подкупили…

Действие детектива начинается во второй половине XIX века, когда англичанин Джеймс Клерк Максвелл и немец Генрих Герц сформулировали теорию света и электромагнитных волн. Согласно ей, свет имеет волновую природу. Но раз мы имеем дело с волнами, нам требуется среда, в которой они могли бы распространяться. Ее назвали «мировым эфиром». Сразу же возник вопрос: неподвижен ли эфир относительно Земли? А если он движется, как можно измерить его скорость?

Проблемой занялись Альберт Майкельсон и Эдвард Морли, поставившие в 1881 году свой знаменитый эксперимент. Они измерили скорость света, отражавшегося между двумя зеркалами. Во время первой серии экспериментов свет двигался в том же направлении, что и Земля; в другой – в обратном направлении. В результате Майкельсон и Морли выявили различие в скорости света. По их расчетам, скорость эфирного ветра равнялась 8 км/с. Однако приборы того времени были очень несовершенными, и погрешность измерения могла серьезно повлиять на полученный результат. Во всяком случае, сами Майкельсон и Морли не очень-то доверяли полученным результатам. Но вместо того чтобы перепроверить данные, от экспериментов попросту отмахнулись, и в учебниках физики воцаряется утверждение: скорость света всегда одинакова; следовательно, эфирного ветра не существует.

Альберт Эйнштейн крепко усвоил эту прописную истину начала века и на ее основе постулировал один из фундаментальных принципов теории относительности – скорость света всегда постоянна.

Долгое время ученый мир был согласен с ним. Но вот в 1933 году Дейтон Миллер подтвердил результаты, полученные Майкельсоном и Морли, доказывая таким образом, что эфирный ветер существует. А стало быть, частная теория относительности основана на неверной предпосылке.

Возможно, сам Эйнштейн чувствовал подвох. Вслед за частной он создал общую теорию относительности, в которой признавал, что во Вселенной, может быть, и существует нечто, передающее движение и инерцию. В 1920 году он даже заметил, что «пространство немыслимо без эфира». Как видите, теоретик сам себе противоречил!

Парадокс Эренфеста. Теперь поговорим о другом возражении против теории относительности – так называемом преобразовании Лоренца. Оно подпирает собой весь мир эйнштейновских формул и основано на теории, предложенной немецким физиком Хендриком Антоном Лоренцом. Суть его вкратце сводится к следующему: продольные – в направлении движения – размеры быстро движущегося тела сокращаются. Еще в 1909 году известный австрийский физик Пауль Эренфест усомнился в этом выводе. «Допустим, движущиеся предметы действительно сплющиваются, – рассудил он. – Хорошо, проведем опыт с диском. Будем вращать его, постепенно увеличивая скорость. Размеры диска, как говорит господин Эйнштейн, будут уменьшаться; кроме того, диск искривится. Когда же скорость вращения достигнет скорости света, он попросту исчезнет. И куда только денется?..»

Творец теории относительности попытался оспорить выводы Эренфеста, опубликовав на страницах одного из специальных журналов пару своих возражений. Но они оказались малоубедительны. И тогда Эйнштейн нашел другой «контраргумент» – помог оппоненту получить должность профессора физики в Нидерландах, к чему тот давно уже стремился. Эренфест перебрался туда в 1912 году, и тотчас же со страниц книг о частной теории относительности исчезает упоминание о так называемом парадоксе Эренфеста. О нем предпочли попросту забыть.

Лишь в 1973 году умозрительный эксперимент Эренфеста был воплощен на практике. Американский физик Томас Фипс сфотографировал диск, вращавшийся с огромной скоростью. Снимки эти должны были послужить доказательством формул Эйнштейна. Однако вышла промашка. Размеры диска вопреки теории – не изменились. «Продольное сжатие» оказалось чистейшей фикцией.

Фипс направил отчет о своей работе в редакцию популярного журнала «Нейчур» («Природа»). Но та ее отклонила: дескать, рецензенты не согласны с выводами экспериментатора. В конце концов, статья была помещена на страницах некоего специального журнала, выходившего небольшим тиражом в Италии. Однако так и осталась, по существу, незамеченной. Теория Эйнштейна уцелела и на сей раз.

Провалившиеся эксперименты. Ну а как обстоит дело с «тысячами» тех экспериментов, которые якобы подтверждают теорию относительности? Кем они проводились? Когда? Как они согласуются с тем же опытом Фипса? Оба автора книги, о которой мы ведем речь, – Георг Галецки и Петер Марквардт (подчеркнем еще раз, профессиональные физики) десятилетиями рылись в книгах и журналах, проверяли факты, изложенные в оригинальных публикациях, провели собственное расследование. И в конце пришли к выводу: в действительности было предпринято всего лишь 5 (самое большее!) попыток доказать теорию относительности экспериментальным путем. Однако ни один из этих опытов так и не удостоился тщательного научного анализа.

Два следующих примера показывают, на какую откровенную халтуру готовы порой пуститься представители так называемой «точной науки», дабы подпереть «зависшую в воздухе» теорию Эйнштейна.

Первый эксперимент, проведенный еще в 50-е годы, касался определения среднего времени жизни мюонов. Эти частицы возникают при столкновении частиц космического излучения с молекулами воздуха. Обычно мюоны живут всего две миллионные доли секунды, а затем, в свою очередь, распадаются на какие-то другие частицы. Происходит все это в 2030 км от поверхности нашей планеты. Следовательно, мюоны не могут достичь поверхности Земли. Однако их все-таки обнаруживали у самой поверхности Земли. В чем же дело?

Долгое время в ходу было следующее объяснение. Скорость движения мюонов крайне высока, значит, время для этих частиц, согласно теории относительности, меняется. Мюоны, как можно предположить, не старятся и достигают Земли, тем самым подтверждая выводы Эйнштейна. Экспериментальное доказательство налицо!

Однако результаты исследований, проведенных еще в 1941 году, выявили следующее. Во-первых, мюоны образуются на любой высоте, в том числе и невдалеке от поверхности Земли. Во-вторых, мюоны живут дольше вовсе не потому, что время для них растягивается, как гласит теория Эйнштейна, а потому, что из-за своей высокой скорости они не так часто сталкиваются с другими частицами.

В общем, мюоны вовсе не годились в адвокаты Эйнштейну!

Второй эксперимент провели в 1972 году американцы Джозеф Хефеле и Ричард Китинг. В течение пяти суток они летели на двух самолетах вокруг земного шара в противоположных направлениях. Один из них двигался строго на восток, другой – на запад. На борту обеих машин находились синхронно работавшие атомные часы. К концу эксперимента ученые должны были зафиксировать некоторую разницу во времени – так гласит теория относительности. В самом деле, вернувшись с небес на землю, оба ученых заявили, что расчетные данные подтвердились.

И вот только теперь, изучив материалы эксперимента, Галецки и Марквардт убедились, насколько сомнительны тогдашние выводы. Американские исследователи в свое время определили, что разница во времени составила 132 наносекунды. Однако погрешность измерения самих атомных часов составляла 300 наносекунд! Следовательно, разница вполне укладывалась в пределы погрешности. Хуже того, исследователи сознательно занимались статистическими манипуляциями, во время полета вновь и вновь синхронизировали часы. Таким образом, результат, полученный ими, никак не может подкрепить теорию относительности.

Какой же вывод следует из этих фактов? Нам предстоит примириться с нашим космическим одиночеством. Если время не замедляется, как обещал нам Эйнштейн, то инопланетяне никогда не доберутся до нас, равно как и мы до них. Человек, отправившийся в великое космическое путешествие, в таком случае старится теми же темпами, что и его пресловутый брат-близнец – домосед, дряхлеющий где-нибудь в городской квартирке. Рожденный ползать и рожденный летать живут по одним и тем же часам!

Гений изволил пошутить? С математической точки зрения теория относительности выстроена в самом деле безупречно. «Ошибку», заложенную в ней, мы осознаем только сейчас: формулы на бумаге не имеют никакого отношения к реальной действительности. Для чего они понадобились теоретику?

Причина тут кроется, по всей вероятности, в особенностях мышления Эйнштейна, полагают авторы книги. Для него мироздание представлялось областью чистой кинематики. Предложенные им формулы учитывали одни лишь особенности движения тел. Он не обращал внимание на силы, действующие на эти тела.

Показать это можно на простом примере. Допустим, нам надо подобрать соотношения зубчатых колес в коробке передач. Для начала в расчете учитываются лишь диаметры этих колес и количество зубьев. И лишь потом, когда подобранные пары нужно будет воплотить «в железе», начнется расчет на сопромат, будут учитываться силы трения, нагрузки и т. д.

Так вот, такого расчета на сопромат и недостает в теории относительности.

Почему же Альберт Эйнштейн подходил ко всему происходящему только с чисто кинематической точки зрения? Объяснить этот феномен если и можно, то лишь обратясь к психологии великого ученого. Умозрительные эксперименты всегда интересовали его куда больше, нежели реально происходящие события. Это было неотъемлемым свойством его характера, отмечает Абрахам Пейс, один из его биографов.

Эйнштейну повезло в том, что он появился со своей теорией как раз в тот момент, когда физики пребывали в растерянности, не зная, как справиться с обступившими их проблемами. Его математически и терминологически выверенная идея разом сметала все накопившиеся трудности. И физики-теоретики устремились за ним, восприняв частную теорию относительности как своего рода религию.

Публичные выступления Эйнштейна лишь укрепляли его славу. Великий ученый был тихим, скромным, добродушным человеком, борцом за мир, противником расовой ненависти и насилия. На него сработало даже то, что Гитлер ненавидел Эйнштейна за его «еврейство» и что для Сталина он был «буржуазным мракобесом». Так что в 30-е годы критиковать теорию относительности значило, кроме всего прочего, встать под знамена фюрера или вождя всех народов. В итоге всякое серьезное обсуждение теории относительности прекратилось. За прошедшие десятилетия теоретики квантовой физики довели до «совершенства» математизацию своей науки. В итоге этот раздел физики превратился в гигантский конгломерат формул, разобраться в котором, пожалуй, было уже не под силу и самому создателю теории. Во всяком случае, Эйнштейн, наблюдая за этим «восстанием цифр», довольно резко возражал против увлечения математической «заумью». Но было уже поздно. Все крупнейшие теоретики – от Нильса Бора и Поля Дирака, Эрвина Шредингера и Ричарда Фейнмана стали выстраивать причудливые умозрительные миры, пренебрегая реальностью. И Эйнштейн оказался сказочным «учеником чародея», который вызвал духов, но укротить их уже бессилен.

Может быть, поэтому, когда ему однажды указали на несоответствие его формул и фактов, он ответил: «Тем хуже для фактов». Что он мог еще сказать?


Погода в космосе

День космического путешественника вполне возможно будет начинаться хотя бы так…

Вселенский прогноз. "Внимание всем астронавтам! Межзвездный метеорологический центр сообщает, что на Эте Карины надвигаются бури. Всем космонавтам, направляющимся в туманность Угольного Мешка, следует помнить, что приближается абсолютное затмение; поступают также предупреждения о том, что вот-вот разразится ураган «Квазар X». Горячие торнадо затрудняют движение космолетов в туманности Ориона. В районе Плеяд наблюдается сильная облачность. Будьте осторожны при приближении к Сандулику – здесь бушуют рентгеновские ветры! Кроме того, временами возможны ливни гамма-излучения.

Напоминаем, что межгалактическая трасса, соеди няющая галактики NGC4038 и NGC4039, в ближайшие два миллиона лет будет закрыта из-за столкновения обеих галактик.

И наконец, о погоде в окрестностях нашей планеты. На всей территории от Земли до Марса усиливаются кометные и метеоритные ливни. В атмосфере Юпитера ожидаются электрические бури. Факелы в фотосфере Солнца простираются вплоть до пояса астероидов, вносят заметные осложнения в пилотирование. В районе облаков Оорта – сильный ледяной град".

Возможно, так со временем и будут звучать прогнозы погоды. Если нам в самом деле удастся завоевать космическое пространство, то погода в космосе будет для нас даже важнее, чем погода на Земле. Ведь космос таит множество смертельных опасностей так, если, скажем, межпланетные путешественники попадут под метеоритный ливень, он за несколько секунд превратит их корабль в решето.

Земные отзвуки космических бурь. Знакомство с космической погодой можно начинать уже на Земле. Обратимся к некоторым атмосферным явлениям. Вспомним, например, полярное сияние (Aurora borealis). Эти красивые сполохи, наблюдаемые нами в полярных районах, не что иное, как отголоски далеких космических бурь. С ними людям еще придется встретиться, как только они выберутся за пределы атмосферы. Эти бури порождены Солнцем – самым важным для нас небесным телом. Именно от него во многом зависит погода на нашей планете. До нас постоянно долетают электрически заряженные «градинки» – протоны и электроны. Их потоки именуют солнечным ветром. «Ветер» этот возникает вследствие взрывов, то и дело происходящих на Солнце. Во время них огромные массы материи вырываются из солнечной короны и устремляются в космос, причем под действием магнитных полей «градинки» сливаются в плотные струи. Частицы раскаленной материи, истекающей с поверхности Солнца и называемой плазмой, достигают поверхности Земли со скоростью около 400 км/с!

К счастью, наша родная планета защищена от космических ненастий особым экраном. Магнитное поле Земли отклоняет частицы плазмы, летящие к нам. Лишь возле полюсов, где атмосфера весьма разрежена, некоторые из частиц проникают ближе к поверхности планеты. Они ударяются о молекулы воздуха, и те после столкновений начинают светиться. Об этих коллизиях, происходящих, впрочем, на достаточно большой высоте, нам напоминают яркие вспышки сполохи полярного сияния. Страшный солнечный град оборачивается для нас мирным, красочным зрелищем.

Как уберечься от ожогов. Солнечный ветер – далеко не самое худшее, что можно встретить на просторах Вселенной. От него, как мы ни пытались вас застращать, все-таки можно спастись: надо лишь сделать потолще стены космического корабля или создать вокруг него сильное магнитное поле. Совсем другое дело – рентгеновские и гамма-лучи, испускаемые почти всеми звездами – и нашим Солнцем в том числе. Они способны моментально облучить наши слабые слизистые тела.

Пока мы не успели удалиться от Земли, опаснее всего для нас мощные вспышки, наблюдаемые на поверхности Солнца. В такие моменты интенсивность излучения возрастает в сотни раз. Что стало бы с космонавтом, который, не вняв предупреждениям, ринулся бы в самую гущу этого энергетического потока? Примерно то же, что и с эскимосом, вздумай он в самую жару, в полдень, скинув с себя всю одежду, позагорать до вечера где-нибудь в Сахаре.

Из-за таких вспышек даже полет к Марсу таит в себе опасность, и пока еще неясно, как избежать ее. Руководители НАСА подумывают о том, что внутри космического корабля неплохо бы соорудить бетонный бункер, в котором экипаж корабля мог бы укрываться по нескольку дней, а то и недель.

Да и на поверхности того же Марса страстей хватает. Здесь проносятся песчаные и пылевые бури, напоминающие земные торнадо. Вдобавок атмосфера Марса очень разрежена, и она не защитит нас ни от ультрафиолетового излучения, ни от куда более опасных рентгеновских и гамма-лучей.

На Венере любители инопланетных авантюр вообще не имели бы шансов выжить. Атмосферное давление там в сотни раз больше земного. Людей бы расплющило, раздавило, размозжило, ежели их бренные тела без скафандров не успели бы еще раньше сгореть или раствориться. Ведь поверхность Венеры разогрета до 500С, а с неба, из нависших повсюду облаков, хлещут струи серной кислоты.

Атаки астероидов. Но если даже мы устремим наши взоры подальше от смертельно опасной Венеры, попробуем вырваться за пределы Солнечной системы, опасностей не убавится. Например, на пути к окраинам Солнечной системы нам придется миновать пояс астероидов – скопление космических тел, снующих на всем пространстве от Марса до Юпитера. Размеры этих объектов самые разные: от песчинок до глыб величиной с нашу Луну. Мчась им навстречу, мы можем уподобиться древним мореплавателям, рискнувшим проскользнуть между Сциллой и Харибдой. Или – переходя от мифологии к реалиям наших дней – представим автомобиль, мчащийся на бешеной скорости по автостраде, по соседству с которой извергается вулкан. Во все стороны разлетаются глыбы, камни, пепел; льются потоки лавы, и любое столкновение с ними может кончиться трагически. В такие минуты остается надеяться лишь на счастливый случай – иначе надеяться вообще не на что. И все же космонавтам будет полегче, чем нашему автогонщику: крупные астероиды разделены «дистанциями огромных размеров». Поэтому простор для маневров все-таки остается. Да и автоматика управления способна помочь.

Когда, наконец, нам покажется, что все опасности позади, когда космический корабль уже достигнет орбиты Плутона – самой удаленной планеты Солнечной системы, – на пути окажется еще одна опасная зона: пояс Купера – опять глыбы, обломки, камни…

От Юпитера до Нептуна все может пройти гладко – особых препятствий нет. А вот стоит миновать Нептун, и путешественников снова одолеют проблемы. Навстречу движется облако, состоящее из ледяных комет. Это – реликт, сохранившийся с тех времен, когда Солнечная система только формировалась. Многие ученые, кстати, полагают, как уже говорилось, что вода на нашей планете появилась благодаря тому, что Земля время от времени сталкивалась с кометами. Таким образом, жизнь на Землю могли занести кометы. Впрочем, речь сейчас не об этом. Вот уже 4 млрд лет просторы космоса бороздят около 200 млн таких же ледяных глыб – комет. Столкновение с любой из них опасно для наших космонавтов.


    Ваша оценка произведения:

Популярные книги за неделю