355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Чирков » Яблони на Марсе » Текст книги (страница 17)
Яблони на Марсе
  • Текст добавлен: 30 марта 2017, 18:30

Текст книги "Яблони на Марсе"


Автор книги: Юрий Чирков


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 17 (всего у книги 18 страниц)

Как было бы заманчиво – собрать все посевные площади страны в одну да добиться, чтоб она плодоносила круглый год. Как бы при этом упростились трудности в организации полевых работ и переработке продукции! А еще бы лучше сделать это поле «механическим»: автоматизировать все до одной операции – от закладки семян до возврата транспирированной влаги и сбора урожая. Чтобы как на заводе: все шло слаженно, ритмично, поточно. Не надо будет пахать поля, и громоздкие тракторы и комбайны уйдут в прошлое. Проще будет бороться с потерями урожая. Все станет централизованным, непрерывным, любой процесс нетрудно будет держать под контролем, рационализировать…

Скажут, маниловщина! Ан нет. Вспомним про фитодром. Он-то и поможет нам провести ревизию земных дел.


Зимовщики – «агрономы»

И на земле немало мест, где обстановка почти космическая. Например, затерявшаяся где-нибудь в сибирских топях компрессорная станция на линии газопровода Уренгой – Помары – Ужгород. Или забравшаяся высоко в горы метеорологическая станция. Или Арктика.

На острове Большой Медвежий, к примеру, что вблизи полуострова Таймыр, расположена одна из многих на Севере гидрографических станций. Тяжел труд гидрографов, но именно они указывают дорогу атомоходам. На станциях отрезанные от всего мира непогодой и просторами живут несколько человек. Каждый день поставлять полярникам свежую зелень? Фантастика? Нет, реальность! Ее можно добиться с помощью движущихся растений.

«Космические оранжереи» здесь, на Земле, быстро нашли признание прежде всего на полярных станциях. По заказу полярников специалисты института создали компактные устройства фитодромного типа. Эти мини-фитодромы величиной с письменный стол, с площадью «поля» в половину квадратного метра, назвали «Самород-Арктика». Вторая часть названия – по области применения. Первая же по тому, что в самом деле самород. На обслуживание устройства уходит три минуты в сутки. Операции просты: снять урожай, заложить новую кассету с семенами, впрыснуть суточную дозу раствора минеральных солей, что делается простым поворотом трех ручек – не труднее включения телевизора.

Такой простоты конструкторы добились не сразу. Сотрудники лаборатории Головина, теперь уже с улыбкой, припоминают монтаж первого варианта установки в Заполярье. А тогда, пять лет назад, было не до смеха. На вертолете в 44-градусный мороз доставили ящик высотой под 3 метра и длиной 2. Этот «мамонт» ни в одно из жилых помещений полярников не входил. Пришлось распаковку и демонтаж вести прямо на улице, посменно колдуя по 10 минут над схваченными далеко не московским морозом болтами. Теперь же «Самород-Арктика» вполне свободно, подобно книжной полке, способен разместиться и на стене жилой комнаты. На той же «грядке» к праздникам из запасенных луковиц полярники могут выгонять тюльпаны. Яркие цветы в унылом белом безмолвии Арктики, пожалуй, не менее целительны, чем витамины.

Сегодня таких установок по выращиванию зелени в Заполярье работает уже с десяток. На островах Карского моря и побережье Восточно-Сибирского они ежедневно дарят зимовщикам капусту, салат, лук, петрушку, кинзу. И растений этих можно собирать ровно столько, сколько требуется к сегодняшнему столу, и зелень эта буквально только что снята с грядки!

Такие компактные домашние «огороды» для условий Крайнего Севера незаменимы. И теперь многие гидрографы, метеорологи, гляциологи осваивают еще одну очень приятную и необременительную профессию – агрономическую. На удивление, никаких особых навыков огородничества, никаких особых биологических познаний здесь не требуется. И немудрено: создан настоящий автомат, «штампующий» зелень.

А еще нужно добавить вот что. Выращивание круглый год укропа, петрушки, всякой зелени может стать доступным любой домохозяйке – чертежи малогабаритной установки «Самород» практически готовы, нет только завода-изготовителя. Так что, чтобы стать обладателем фитодрома, вовсе не обязательно быть полярником!


Содружество идей

В фитодроме сошлись несколько прогрессивных идей растениеводства и техники. Создать шагающие растения московским ученым помогла гидропоника. Многие поколения агрохимиков и физиологов растений шаг за шагом познавали секреты плодородия почвы. Итог этих исследований парадоксален: возникла мысль вовсе отказаться от почвы!

Но в фитодроме гидропоника особая, новейшего толка. Питание корней водой, минеральными солями осуществляется периодически, каждые полчаса в кассеты подается питательный раствор, его уровень медленно поднимается, постепенно затопляя корни растений. В растворе в оптимальных концентрациях содержатся все необходимые для роста элементы. Затем, после фазы «выдоха», начинается «вдох». Уровень влаги в кассетах неторопливо опускается. Все, что не усвоилось растениями, сливается в хранилище до следующего цикла. А освобожденные от влаги корни дышат кислородом воздуха, что для развития растений совершенно необходимо.


Большие достоинства гидропоники умножило движение растений. Как лучше автоматически раздвигать развивающиеся ростки? Ученые рассчитали и перепробовали различные варианты – «треугольный», «спиральный», «затылочный» – постепенного рассредоточения растений в фитодроме. Остановились на простейшем. Особый шнек (винт) с переменным шагом заставляет шеренги растений («грядки»-кассеты) раздвигаться по мере роста растений и их движения вперед, от посадки к урожаю.

Гидропоника… Движение… Им в помощь пришла третья уже чисто техническая идея.

Тысячелетия земледелия. Приемы, передаваемые от поколения к поколению, от отцов к сыновьям безо всяких изменений. Быстрая модернизация взглядов на сельское хозяйство началась только в наше время. Человек создал для растений искусственный климат: вокруг здания оранжереи Ботанического сада АН СССР еще голые мерзнущие деревья, а внутри здания – жаркие тропики! Лампы заменили солнце. День и ночь поменялись местами. Темной ночью окрестности вокруг теплицы, где выращиваются овощи, озарены ярким светом, льющимся из-под стеклянного колпака. В лабораториях ученых в вегетационно-климатических шкафах удовлетворяются любые прихоти растений. Ростки тут увешаны многочисленными датчиками, опутаны сетью тонких проводов, залиты искусственным светом. Посмотрев на панель такого шкафа, видишь, что можно менять для растений и влажность и температуру. Казалось бы, что еще новенького можно придумать?

Было время, когда конвейер совершил переворот в индустрии. Почему же не попытаться использовать его и в сельском хозяйстве? Что? Посадить растения на конвейер? До этого и Генри Форд не додумался! Однако конвейер революционизирует и растениеводство. Теперь, как изделия в технике, двигаться будет растение, а все машины, обрабатывающие растения, станут неподвижными. И все это нацелено на то, чтобы перейти к гарантированному почти фабричному воспроизводству растений. И главное, добиться невиданных урожаев.


Площадью с Московскую область

Разгадка высокой урожайности фитодромов проста. Никому не нужен трехколесный автомобиль. ОТК забракует его. А вот «трехколесный» колос с поля берут. Тут и за недоделанное приходится говорить спасибо. Понятно, в поле уследить за всем трудно: ни погода, ни хорошие почвы, ни другие «делающие» урожай условия пока не в нашей власти. В фитодроме же растение может получить все сполна. Кроме того, гидропоника в нем экономит массу воды и удобрений, движение сокращает расход лучистой энергии и площадь посевов, конвейерность позволяет строить настоящие фабрики, непрерывно поставляющие (вспомните, как на автозаводах ежеминутно открываются и закрываются двери, выпускающие новешенькие автомобили) готовые, свежие, сразу на стол – долой амбары и погреба! – растения.

А урожайность? Полярные установки «Самород-Арктика» и им подобные ежедневно, буднично показывают результаты мирового класса. Они могут выращивать ежесуточно, как показали контрольные испытания, свыше 500 граммов зелени. Размер этих мини-фитодромов 0,5 квадратного метра: значит, больше килограмма с квадратного метра площади. Зимой в теплицах также выращивают 1 килограмм, скажем петрушки, с квадратного метра, но… за месяц!

Вот она высшая математика сельского хозяйства!

Много лет в институте велись всесторонние исследования. Для теплиц были сконструированы фитодромы с длиной конвейеров от полутора до двадцати метров. За сутки – в пересчете на гектар – собирали до трех с половиной тонн зеленой массы! На полях берут 50 тонн, но ведь это за сезон! Эти установки можно делать и многоярусными, что существенно увеличивало общую площадь посевов. Такие установки вполне можно монтировать и в заводских цехах, в коридорах промышленных предприятий, организаций, даже в свободных подвалах. Один квадратный метр такого конвейера при искусственном освещении способен обеспечить витаминной зеленью 10–20 человек ежесуточно!

Тепличные варианты фитодромов созданы, многократно опробованы в длительных экспериментах. Эти устройства можно увидеть, потрогать руками, убедиться, что их конструкции не сложны, что они недороги и просты в эксплуатации. Ученые и конструкторы считают их в своей работе вчерашним днем. Желая говорить о будущем, они перешли к фитодромам, действующим не при искусственном, а при естественном освещении. Эксперименты вели в Крыму под Симферополем.

Несколько лет под открытым небом действовали шесть экспериментальных фитодромов по 30 метров длиной. Тут выращивались корма для животноводства – люцерна, соя. Ученые убедились: можно вполне реально получать от 700 до 1400 тонн зеленой массы с гектара за вегетационный период!

Конечно, окончательные итоги подводить рано: есть еще проблемы, которые надо решать. Но ученые уже смотрят и в более отдаленное будущее. Замыслены еще более смелые проекты. В частности, есть план перевода процесса выращивания кормовых культур в стране на промышленную основу. Для этого надо развернуть сеть фитодромов с площадью 10 на 10 километров. Эти «поля» для выращивания кормовых трав, конечно же, не обязательно должны быть точными геометрическими квадратами. Напротив, под посевы могут быть заняты неудобья, неплодородные, смытые склоны балок, каменистые горные осыпи, глинистые такыры и солонцы в пустынях. Все эти пустующие земли словно бы прибавятся к пахотному клину.

Еще более ошеломляющий план, он тоже основательно проработан, – создать механическое поле, которое одно смогло бы прокормить всю страну! Все, что собирается сейчас со многих миллионов гектаров земель, может быть взято с общей площади, не превышающей размеры Московской области. Автор видел рисунки-схемы фитодрома, способного обеспечить пищей 400 миллионов человек. Размеры его: 300 на 100 километров. Поясняющие слова, цифры и символически изображенные растения – все показывало, что на этой относительно небольшой площади найдется место и для пищевых растений, и для кормов, и для технических культур.

Заманчивая идея: посадить «марсианские яблони» сначала на Земле. Пока все это лишь мечты о будущем, но несомненно: заводское, промышленное выращивание растений – наш неизбежный завтрашний день. И может быть, недолго ждать, когда, скажем, в Москве на Пушкинской площади над зданием газеты «Известия» бегущие цепочки рекламных букв начнут по вечерам выводить над головами прохожих крупную световую надпись:

МОСКОВСКОМУ ИМЕНИ К. А. ТИМИРЯЗЕВА ФИТОДРОМУ НА ПОСТОЯННУЮ РАБОТУ ТРЕБУЮТСЯ…

Говорят, все гениальное просто. Подаренная земледельцу космонавтикой идея зеленого фитодромного конвейера поистине революционна. Рождается сельское хозяйство совершенно нового типа.

Глава 14
На пыльных тропинках далеких планет

Придет время, и люди будут летать в космос по профсоюзным путевкам.

Академик С. П. Королев

«Когда Колумб отправлялся в плавание по Атлантике, он знал, что ему предстоит совершить нечто великое, но не знал, что же именно. Такая же ситуация сейчас с космонавтикой. Все, что говорят в оправдание космических полетов и что я сам собираюсь сказать в этой статье, вполне может оказаться не меньшим заблуждением, чем доводы Колумба в пользу своего плавания на запад. Важно, что он поплыл на запад и что в наше время человек проник в космос. Истинные исторические последствия подобных событий становятся известными лишь много позднее. Мне лично космонавтика представляется самой светлой надеждой на неприглядно темном фоне будущей судьбы человечества…» (из статьи Фримена Дайсона «Назад… в космос!»).

Зачем человек отправляется в космос? Есть ли тут какие-то не сиюминутные, а дальние, высшие, конечные цели?


Сила без разума

Бывший нацистский, затем американский ракетостроитель Вернер фон Браун утверждал, что человека толкает в космос некий биологический инстинкт, направленный на максимальную экспансию жизни за пределы Земли.

Вот другое мнение. Аргентинский философ Эстебан Лиза считает выход человека в космос реализацией мистической предустановленной гармонии между Человеком и Вселенной.

Биологизм, мистицизм. Иной, материалистической позиции придерживались замечательные представители русского космизма. Одним из них был мыслитель-утопист Николай Федорович Федоров (1828–1903).

Удивительная жизнь этого человека малоизвестна. Внебрачный сын князя П. И. Гагарина и пленной черкешенки, он учился в Одессе в Ришельевском лицее, учительствовал в уездных городах, преподавал географию в Липецке, Богородске, Угличе, Боровске, Подольске, затем был библиотекарем Румянцевского музея, ныне Государственная библиотека имени В. И. Ленина.

Федоров был аскетом, странным и тяжелым в быту человеком. Свое небольшое жалованье раздавал бедствующим студентам, питался хлебом и водой, спал на досках, положив под голову книги и завернувшись в свое единственное одеяло… Не имел семьи, почитал грехом всякую собственность, даже на идеи, считая их достоянием всего человечества. Потому ничего не опубликовал, кроме нескольких статей, изданных без подписи. Его мысли, записи на бесчисленных клочках бумаги, под названием «Философия общего дела» были обнародованы в двух томах учениками Федорова уже после его смерти. Погиб Федоров из-за того, что однажды «благодетели» убедили его, в любой мороз ходившего в похожем на рогожку пальтишке, набросить на плечи шубу… Набросил, с непривычки вспотел, простудился…

Усматривая основное зло для человека в смерти, порабощенности его слепыми силами природы, Федоров выдвинул идею регуляции природы средствами науки и техники. Атомы, прошедшие через живое, утверждал Федоров, сохраняют свою индивидуальность и могут быть собраны снова в человека как индивидуальность. Высшая цель регуляции: воскрешение предков – отцов и достижение всеобщего бессмертия.

Путь к этому лежит через овладение природой («человечество должно быть не праздным пассажиром, а прислугою, экипажем нашего земного корабля…» – считал философ), через переустройство человеческого организма, через освоение космоса (Федоров писал про эфиронавтические аппараты) и управление космическими процессами.

«…Космос, – учил Федоров, – нуждается в разуме для того, чтобы быть космосом, а не хаосом, каким он (пока) есть: разумные же существа нуждаются в силе. Космос (каков он есть, но не каковым он должен быть) есть сила без разума, а человек есть (пока) разум без силы».

Философские взгляды Федорова вызывали большой интерес у Федора Михайловича Достоевского, Льва Толстого, Владимира Сергеевича Соловьева. Федоров оказал влияние на литературное творчество Андрея Платонова и Николая Заболоцкого.


Лучистое человечество

Во времена, когда жил Федоров, его мысли могли казаться фантазиями чистейшей воды. Однако ныне многие из его пророчеств созрели для реального осуществления. И гомо сапиенс – человек разумный начинает превращаться в гомо космикус – человека космического. Космонавт Георгий Михайлович Гречко писал: «Два-три года, необходимые для полета на Марс, можно выдержать и остаться в живых. Но после этого мы, видимо, не смогли бы вернуться на Землю. Получилось бы как с Ихтиандром, который навсегда остался в море».

Да, человек в космосе, пытаясь создать для себя «миниатюрную Землю», все же оказывается как бы и не в космосе, и не на Земле. Для него становится не обязательным строгий земной суточный цикл, он не знает времен года, отказывается от преимущественного «двухмерного» восприятия, характерного для жизни на поверхности Земли. Ему приходится развивать хватательные движения, он привыкает спать в необычной позе и местах. Космонавт Валерий Рюмин спал в «Салюте» на потолке станции: отдыхать в другом месте ему не позволял высокий рост. Так космонавт оказывается как бы в «третьей среде».

В дальнейшем человек, очевидно, начнет варьировать эту «третью среду». Станет создавать зоны искусственной гравитации, расширять пространство обитания, конструируя самые разнообразные экосферы, точнее экопространства, ибо сферическое построение перестает быть обязательным в открытом космосе.

Человек будет менять Вселенную, но при этом неизбежно начнет изменяться и сам. Откроются новые направления эволюции человеческого организма. Быть может, видоизменятся функции некоторых органов его тела, скажем, функция ходьбы, способ расположения и ориентировки тела в пространстве. Переменятся некоторые ритмы жизни, способы приема пищи, сама пища.

Вот так исподволь и возникнет гомо космикус.

Мысли Федорова о необходимости «цефализации» космоса и его реконструкции подхватил и развил Циолковский. По свидетельству его ученика и друга основоположника гелиобиологии Александра Леонидовича Чижевского (1897–1964), Циолковского постоянно мучил вопрос вопросов: «Зачем все это?» Зачем существует материя, растения, животные, человек и его мозг? Зачем существует Вселенная?

Циолковский в беседе с Чижевским сказал: «Этот вопрос не требует ни лабораторий, ни трибун, ни афинских академий. Его не разрешил никто: ни наука, ни религия, ни философия. Он стоит перед человечеством – огромный, бескрайний, как весь этот мир, и вопиет: зачем? зачем?..»

Циолковский обращал внимание на то, что в мире неизмеримо больше камня, чем мысли, больше огня, чем мозговой материи. Да и сама материя, занимая в космосе исчезающе малый объем по сравнению с объемом «пустого» пространства, выглядит во Вселенной «случайной»: средняя плотность вещества ничтожно мала – в среднем 10–30 грамма в кубическом сантиметре. Примерно 1 атом водорода в одном кубическом метре космического пространства.

Во Вселенной, в основном заполненной различными видами лучистой энергии, мысль, сознание кажутся уж и совсем лишними. И все же Циолковский полагал, что раз мысль существует, значит, она нужна природе. Значит, вовсе не случайно природа потратила миллиарды лет на создание мыслительного аппарата человека. И он необходим не только Земле, но и всей Вселенной!

Вот почему, говорил Циолковский, «вступление в космическую эру человечества – это поважнее, чем восшествие на престол Наполеона Бонапарта. Это грандиозное событие…».


Ученый делил космическое бытие человечества на несколько эр. Удивителен конец этого космического «восхождения» – «терминальная эра». «Когда разум (или материя) узнает все (ответит наконец на вопрос „зачем?“. – Ю. Ч.), тогда само существование отдельных индивидов и материального или корпускулярного мира он сочтет ненужным и перейдет в лучевое состояние высокого порядка, которое будет все знать и ничего не желать, то есть в то состояние сознания (лучистое человечество!), которое разум человека всегда считал прерогативой богов. Космос превратится в великое совершенство».


До Марса за 14 дней

Лучистого состояния, по оценкам Циолковского, человечество достигнет через тысячу миллиардов лет. Ну а что ждет нас в ближайшие десятилетия? В первом веке третьего тысячелетия? Большинство экспертов склоняется к тому, что главным должен стать полет человека на Марс.

Благодаря космической технике люди познакомились с экзотическими пейзажами других миров. Удалось разглядеть пыльную поверхность Луны, залитую светом, застилающим звезды, но сохраняющим черноту неба. Представить сумеречные дни вечно облачной Венеры с камнями и скалами, разогретыми до температуры красного каления. Понаблюдать полдюжины одновременно огнедышащих вулканов Ио – спутника Юпитера, еще более фантастические в реальности, чем в описаниях фантастов, кольца Сатурна. Но, пожалуй, наиболее взволновало человека темно-фиолетовое небо Марса с его пылевыми ураганами.

Представления о соседних планетах меняются поразительно быстро. В 1969 году, наблюдая в сильный телескоп на Марсе большие темные пятна, астроботаники Казахстана высказали предположение, что эти области покрыты растениями, похожими на кактусы. Эта версия была основана на спектрофотометрическом анализе кактусов, растущих в наиболее суровых пустынях Земли, и изучении спектрограмм участков поверхности Марса. Так полагали. Но теперь мы знаем, что там, где еще полвека назад мыслилось существование высокоразвитой цивилизации, не обнаружено ни единой бактерии.

Уже составлены подробные космические карты Марса. Космические картографы, появилась и такая специальность, использовали снимки, полученные межпланетными автоматическими станциями «Марс-4» и «Марс-5». Площадь закартографированной поверхности составила 5 миллионов квадратных километров. На картах на фоне оранжевых красок пустыни четко вырисовываются хаотично разбросанные кольца кратеров, долины, извилистые русла «рек».

Инициатором предложения о проведении совместной долгосрочной американо-советской программы изучения Марса стал видный американский ученый, биолог по образованию, возглавляющий лабораторию изучения планет Корнелльского университета, Карл Саган. Он считает, что эту работу следовало бы начать с совместного конструирования и отправки на Марс роботов, а завершить полетом американо-советского экипажа.

«Из всех планет Солнечной системы Марс больше всего схож с Землей. На нем есть, хотя и в замерзшем состоянии, вода. Если разложить воду на составляющие ее элементы, можно получить кислород для того, чтобы дышать, и водород для изготовления топлива. Словом, в случае с Марсом уже сейчас можно представить себе нахождение человека на другой планете», – пишет Саган.

Путь на Марс не близок. На ракете, работающей на химическом топливе, лететь придется около полутора лет. Долго! Нельзя ли сократить сроки? Недавно кандидат физико-математических наук Урал Нуриевич Закиров предложил проект межзвездного космического корабля с термоядерным двигателем. Ученый верит, что полет к другим планетным системам будет возможен уже в нашем веке.

В самом деле, летя на «термояде» со скоростью сотни километров в секунду, можно покрыть расстояние до Марса за 14 дней! Если же удастся достичь предельных для кораблей такого типа скоростей (лишь на 10 процентов отличающихся от скорости света, равной 300 тысяч километров в секунду), станет возможным конструирование и межзвездных аппаратов. «Для первого полета я выбрал бы звезду Барнарда. Она расположена не так далеко – до нее можно добраться лет за 40–50. А главное, есть предположение, что у нее могут быть планеты…» – пишет Закиров.


Экспедиция длиною в год

Чтобы добраться до ближайших звезд, считает директор Института медико-биологических проблем академик Олег Георгиевич Газенко, хватит и одной человеческой жизни. К сожалению, из подобного путешествия аппарат вряд ли вернется на Землю. Так что посылать придется не автоматы, а корабли, оснащенные всем необходимым для колонизации космических просторов.

Подготовка к длительным полетам, их имитация начаты у нас в стране давно. К примеру, еще в ноябре 1968 года в институте был проведен первый в мире эксперимент годичного пребывания человека в условиях, близких к космическим. Трое испытателей – командир экипажа врач Герман Мановцев обеспечивал «на борту» медицинские тесты и текущий контроль здоровья своих товарищей. Борис Улыбышев отвечал за контроль и профилактику инженерных систем жизнеобеспечения и Андрей Божко проводил биологические эксперименты и вел дневник, который был позднее опубликован, – год провели в «земном звездолете».

5 ноября, в 17.15 под аплодисменты провожающих они вошли в «космический корабль», дверь за ними закрылась, пошли первые минуты «космического плавания».

«Рассказывая о космических полетах, которые продлятся не один год, писатели-фантасты рисовали мрачные картины вражды между членами экипажа, конфликтов, приводящих к краху экспедиции. Их предположения базировались не на пустом месте. Еще в 50-е годы исследователи установили, что отсутствие привычных звуков, освещения, недостаток общения между людьми негативно влияют на человека. Требовалось найти против этого эффектное противоядие…» – говорил позднее куратор этого эксперимента доктор медицинских наук Борис Сергеевич Алякринский.

Руководитель работ, доктор технических наук, профессор Борис Андреевич Адамович писал: «Эксперимент ответил на очень важный вопрос: да, действительно можно дышать одним и тем же воздухом, очищая его; многократно использовать одну и ту же воду, регенерируя ее; употреблять сублимированные продукты, занимающие малый объем и мало весящие. Даже если бы перед испытателями не стояло других задач – они сделали большое дело…»

Через три месяца состоялась «стыковка» жилого отсека с оранжерейным. «Впечатления были незабываемы, – писал в своем дневнике Божко, – ослепительно яркие светильники – имитаторы солнечного света, новые запахи… и металлический заводной соловей, который может издавать трели, а самое главное – свежая сочная зелень, которую мы не видели несколько месяцев… Трудно описать нашу радость при виде растений…»

Из дневника: «Выхожу в оранжерейный отсек… Здесь в течение 14 суток – день, в течение последующих 14 суток – ночь. Смена дня и ночи в лунном цикле. Такой режим определил выбор культур: в оранжерее мы выращивали скороспелые салатные растения, которые быстро накапливают биомассу: капусту китайскую, кресс-салат, огуречную траву, укроп. Посевная площадь составляет всего 7,5 квадратного метра. За счет оранжереи мы имеем в среднем до 200 граммов свежей зелени в сутки на троих…»

Так была сделана одна из первых попыток поставить растения на «космическую вахту».


БИОС-3

Подобных опытов было проведено немало. Одно время большие надежды связывали с хлореллой. Пытались добиться того, чтобы эта знаменитая водоросль заменила испытателю всю биосферу – все поля и луга, все, что растет в океанах и морях, все сосны, березы, травы и кустарники.

В одном из экспериментов испытатель пробыл наедине с хлореллой целый месяц. Главной частью установки был тридцатилитровый цилиндрический сосуд (реактор), где выращивалась хлорелла очень высокой плотности: до 800–900 миллионов клеток в кубическом сантиметре питательного раствора. Темно-изумрудную суспензию пронизывали мощные потоки света, умно распределяемые световодами. Так, чтобы клетки водоросли могли наиболее активно заниматься фотосинтезом.

Хлорелла выдержала испытание с честью. За 30 суток опыта она 15 раз сменила кислород в гермокабине, использовав для фотосинтеза углекислоту, выдыхаемую человеком. Эта искусственная биосфера, к радости экспериментаторов, не выказывала никаких признаков старения: а ведь за месяц в реакторе сменилось множество поколений хлореллы, ее клетки делятся каждые 9 часов.

Обнадеживало и то, что эта биологическая система обладала четко выраженными свойствами саморегуляции и самонастройки. В отличие от систем физико-химической регуляции воздуха в кабинах космонавта, которые на такое не способны.

Дело вот в чем. Человек выделяет при дыхании не только углекислоту, но и окись углерода, метан. Исследователи опасались, что концентрация этих вредных примесей начнет расти и эксперимент придется прекратить. Но этого не произошло. Хлорелла быстро постигла искусство полностью очищать воздух от вредных веществ.

И все же, видимо, не хлорелла, из-за трудности приготовления пищи из этой водоросли от нее пришлось отказаться, будет сопровождать человека в межзвездных полетах, а растения с более высокой организацией.

…Стало традицией: приземлившихся космонавтов встречать хлебом-солью. А с экипажем этого земного звездолета вышло наоборот. Когда бронированная дверь открылась, из нее, радостно улыбаясь, вышел старший исследователь Николай Бугреев, в руках он держал… каравай только что испеченного духовитого, пышного, с неповторимым вкусом хлеба.

Время действия – 1984 год, место действия – красноярский академгородок, точнее, исследовательский наземный комплекс БИОС-3. Организовали этот эксперимент ученые Института биофизики Сибирского отделения АН СССР.

Пять месяцев молодые исследователи Николай Бугреев и Сергей Алексеев находились в замкнутой биологической системе, автономной и независимой от окружающей среды. Они сеяли, растили (на одного человека приходилось примерно 26 квадратных метров «пашни»), убирали пшеницу, снимая в пересчете на гектар 700 центнеров в год, а из зерна мололи муку и пекли хлеб. В зеленом конвейере, кроме пшеницы, выращивали еще и более 10 видов овощей, подобранных по желанию самих исследователей. «Огород» занял площадь 60 квадратных метров, вполне достаточную, чтобы обеспечить кислородом 4–5 человек.

Какова цель очередного добровольного самозаточения? Решить проблему замкнутого кругооборота веществ в условиях космической вахты. Пока на современных космических кораблях и орбитальных станциях воду и воздух очищают специальные фильтры и сложные регенерирующие установки. В будущем, полагают красноярские биофизики, с этим начнут справляться растения. Они же составят и основную часть ежедневного рациона космонавтов…


Растения-космонавты

Испытаниям подвергли уже множество растений. Зеленых космонавтов отбирали столь же тщательно, как и людей. Мотивировка тут была разной. Русский лен отправили в космос потому, что он, по мнению исследователей, особенно чувствителен к изменению гравитационного поля.

Прошла и кандидатура арабидопсиса, травы, прозванной в народе скирдой. Это неприхотливое растение очень удобно для генетических экспериментов: время его развития от семени до семени занимает всего 30 суток. На арабидопсисе, которую недаром называют еще и «ботанической дрозофилой», ученые пытаются проследить, как космические условия влияют на процессы деления клеток: замедляют или удлиняют?

Запланированным стал и полет в космос гороха. Он вырастает очень густым, что очень радует космонавтов. Гречко, пробывший в космосе целую зиму, 96 суток, вспоминал позднее: «Я часто подлетал к нему лишь затем, чтобы на него взглянуть, полюбоваться. Четыре стебля были для нас рощей, лесом…»


    Ваша оценка произведения:

Популярные книги за неделю