355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Чирков » Охота за кварками » Текст книги (страница 18)
Охота за кварками
  • Текст добавлен: 21 октября 2016, 21:18

Текст книги "Охота за кварками"


Автор книги: Юрий Чирков


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 18 (всего у книги 19 страниц)

Космический рентген

Постоянное дело мюоны получат через несколько лет, а вот аккордную работу эти частицы выполняли уже не раз. Об этом стоит рассказать.

Начнем с вопросов. Сколько весит столичная гостиница «Москва»? Или, допустим, Большой театр? Праздные вопросы? Но что, если под этими сооружениями необходимо пробить туннель метрополитена? Ведь тут надо точно знать, с какой силой то или иное здание-махина давит на грунт, то есть его необходимо взвесить и вес разделить на площадь опоры.

Что же делать? Как подступиться к этой необычной проблеме? Не высчитывать же порознь вес отдельных элементов здания и всей его «начинки».

Задача трудная, но разрешимая. И выручили тут людей… космические лучи. А точнее, наши знакомцы мюоны.

Прорываясь через земную атмосферу, первичное космическое излучение по ходу порождает ливень самых разных элементарных частиц, в том числе и мюоны. Они слабо взаимодействуют с веществами и потому способны проникать в глубь Земли на километры. Так и получается своего рода космический «рентген» для просвечивания земных пород, инженерных сооружений, да и того же Большого театра.

Приборы, которые используют для подобных измерений, уже созданы, они получили название «мюонных телескопов». В каждом несколько параллельных рядов счетчиков, фиксирующих мюоны, летящие в строго определенном направлении.

Итак, все готово для измерений. Под изучаемым объектом надо прорыть штольню и установить там мюонный телескоп. И измерить интенсивность дошедшего до счетчиков излучения. Чем больше плотность объекта, тем меньше мюонов дойдет до телескопа.

Так и поступили, когда потребовалось взвесить гостиницу «Москва». Она, как оказалось, весит 45 тысяч тонн и давит на грунт с силой 1,1 килограмма на квадратный сантиметр.

Мюонная диагностика проявила свои лучшие качества и когда под Москвой, недалеко от города Пущина-на-Оке, сооружался крупнейший радиотелескоп АН СССР «РАТАН-600». Дело было трудным: породы под выбранной для телескопа площадкой представляли хаотическую смесь из песка, глины, гальки, крупных и мелких валунов. Кроме того, близко к поверхности подходили подземные воды. Пришлось пробурить в грунте два десятка скважин: в каждую на глубину 10 метров поставить малогабаритные мюонные телескопы. И невидимые частицы «выписали» своего рода геологический разрез площадки.

Космический рентген на мюонах помогает решить и многие другие проблемы. Так, можно обнаружить пустоты в горных массивах (поток регистрируемых частиц, найдя пустоту, сразу возрастает). Такие каверны часто возникают на эксплуатируемых месторождениях полезных ископаемых. И следить за ними надо очень зорко, иначе неизбежны обвалы-аварии.

Мюоны помогают и при разведке полезных ископаемых. Сотрудники Московского геологоразведочного института отладили методику обследования в горах залежей полиметаллических месторождений. Здесь уже работают несколько независимых мюонных телескопов, прощупывающих твердь по разным зенитным и азимутальным направлениям.

Перечень возможностей для использования в земной практике космических лучей довольно велик. Прибавим еще, что археологи пытаются с их помощью обнаружить погребальную камеру в пирамиде Хефрена.

Конечно, не только мюоны, но и другие элементарные частицы могут быть задействованы в космическом рентгене. В геологии большие надежды возлагаются на разведку недр с помощью нейтронов. Хотят воспользоваться тем, что некоторые химические элементы – например, вольфрам – активно поглощают медленные (холодные) нейтроны. Поэтому по ослаблению энергии пучка нейтронов можно обнаружить в породах даже малые примеси таких элементов.

Ученые надеются использовать для «просвечивания» огромных масс земной поверхности и потоки нейтрино.

Так можно определять месторождения полезных ископаемых – нефти и металлов, познавать глубинную структуру нашей планеты.

Он, Она и пи-мезон

У создаваемых на мезонных фабриках пучков нейтронов, мезонов и нейтрино – забот будет по горло. Ученые получат новый инструмент для исследований, прикладники – полигон для испытания новейших технологий, возможность на качественно новом уровне решать народнохозяйственные задачи.

Перечислить все направления работ затруднительно, поэтому будем рассказывать лишь о тех задачах, которые можно решить с помощью мюонов, этих «трутней» мироздания.

Мюонные пучки высокой плотности позволят, видимо, покончить со старой, почти сорокалетнего «возраста», проблемой «мюон – электрон». Физики смогут изучить теперь все детали превращений (слабые силы) мюона в электрон.

Мюонами очень интересуются и химики. Они хотят исследовать свойства мюония, химического двойника атома водорода.

Физик-теоретик академик Л. Ландау одним из первых предположил, что замедлившийся положительно заряженный мю-мезон может оторвать от какого-нибудь атома слабо «привязанный» внешний электрон – так образуется атом мюония. От водорода он отличается тем, что его ядро – не протон, а мезон, и еще тем, что мюоний, как и мезон, живет только миллионные доли секунды.

Если мюоний очень похож на водород, рассуждают химики, то он должен участвовать почти во всех тех же химических реакциях, что и водород. И с его помощью, регистрируя распады мюония, можно определить ход и особенности быстрых стадий во многих реакциях, идущих с водородом.

Так родилось новое направление исследований – химия мезонов, или мезохимия. Оно очень перспективно, так как почти 90 процентов всех реакций в технологических процессах идет с участием атомарного водорода.

Интенсивные пучки мезонов найдут применение в физике металлов, кристаллов, полупроводников. Дело в том, что, попадая в вещество, мгооны взаимодействуют с магнитными полями отдельных атомов. Позже мюоны распадаются, а спин возникающего в результате распада электрона будет направлен так, как если бы он «помнил», в каком окружении распался мюон. Так можно очень точно узнать внутреннее устройство веществ…

Скорее всего где-то к 2000 году мезонные фабрики перестанут быть редкостью. И тогда ими наверняка заинтересуются кинодеятели. Им покажется заманчивым – новинка! – создать художественный фильм с таким, скажем, названием: «Он, Она и пи-мезон».

Автор сценария будет долго выбирать профессию для главных героев. Он? Конечно же, физик. Теоретик или экспериментатор? Будет над чем поломать голову! Ну а Она? Может, сделать ее математиком-программистом, работающим в Вычислительном отделе?! Нет, для создания желанного контраста пусть героиня (молодая красивая блондинка) будет работать совсем в другом месте. И даже в другом городе. А на мезонную фабрику ее приведет профессия врача-онколога. Ведь ее непременно должна заинтересовать новейшая терапия рака – ионными пучками. Там, в экспериментальном пионном зале, наши герои и встретятся в первый раз…

Дальнейшее развитие киносюжета оставим на усмотрение сценариста, его буйной фантазии, а сами слегка затронем действительно замечательные перспективы по использованию пучков отрицательных пионов для лечения рака.

Опухолевые клетки можно разрушать многими видами излучений. Но, к сожалению, при этом в равной мере выводятся из строя и здоровые клетки. Беда в том, что рентгеновские лучи или, допустим, пучки электронов равномерно ионизируют всю ткань, через которую они проникают к опухоли.

Иное действие у тяжелых заряженных частиц – протонов и пи-мезонов. Эти выделяют основную часть своей энергии и производят поражение клеток лишь в конце своего пробега. Варьируя энергию этих частиц, можно быть точно уверенным, где и какие клетки будут уничтожены. Например, протон с энергией 100 МэВ проходит в теле человека около 10 сантиметров пути, и на двух последних сантиметрах протоны отдают на ионизацию половину всей своей энергии.

Однако еще более действенны пионы. Замедляясь в ткани, отдавая ей равномерно свою кинетическую энергию, они в конце пробега захватываются атомами. В результате атом испытывает ядерное превращение и выделяет немалую энергию, равную массе пиона – примерно 140 МэВ.

Если захват пиона произошел в ядре больной клетки, то ядро разрушается и клетка теряет способность к размножению, к дальнейшему делению. Если же при пионном «выстреле» захват произошел в клеточной протоплазме, то и тогда образовавшиеся в большом количестве ионы также разрушат раковую клетку.

По следам Колумба

Мы, несомненно, находимся в начале новой эры тончайшей техники, в которой человек начнет манипулировать тем, что сейчас условно называется элементарными частицами.

Некоторые физики высказывали предположение, что ведущая роль в науке сейчас переходит к биологии. Допустим, так. Но прогресс самой биологии немыслим без наличия сверхчувствительных физических приборов.

Без них биология будет топтаться на месте.

Говорят, Тамерлан, желая оценить число захваченных им в сражении пленных, приказал всем им отрубить головы, а затем эти головы пересчитать. Примерно так же ведут себя часто и биологи. Они буквально жгут, режут, кромсают живую клетку, рвут ее на части, куски, и все это для того, чтобы понять, как это она функционирует.

До зарезу необходимы новые, деликатные методы диагностики процессов в биологических объектах; и физики уже создают их. Так, нейтроны, например, могут многое рассказать о живой материи. В отличие от электронного микроскопа, который показывает строение мертвых, препарированных клеток, нейтронный пучок позволяет заглянуть в живой организм без опасений разрушить его ткани или нарушить его нормальную работу.

С помощью нейтронов уже изучаются иммуноглобулины – внутриклеточные структуры, которые выводят из организма вредные вещества. Задача этих исследований – разобраться в механизме иммунной защиты.

А теперь поговорим о диагностике технической. Тут физики пустили в оборот даже… антивещество!

Речь пойдет о позитроне, этом антиблизнеце электрона. Из-за аннигиляции с электроном позитрон живет недолго – 10 -10секунды. Но жизнь его можно существенно продлить, если позитрону удастся стать позитронием, искусственным атомом, схожим с водородом (в нем протон заменен позитроном).

Время жизни позитрония – 10 -7секунды, значит, можно отличить развал позитрония от простой аннигиляции позитрона. А тут уже недалеко и до особой позитронной диагностики самых различных материалов – можно устанавливать в них присутствие дефектов, полостей, разрывов (попадая в них, позитроний, словно мячик, начинает отскакивать от стенок, и это удается зарегистрировать).

Разработали позитронную диагностику молодые сотрудники Московского инженерно-физического института (МИФИ). Они создали установку «Пика», фиксирующую время жизни позитронов. И были удостоены за это премии Ленинского комсомола.

Элементарные частицы осваивают самые разные профессии, и только нейтрино долго отлынивал от работы: его «нелюдимость», «некоммуникабельность» всем известны! Но теперь и это положение меняется.

Реактор атомной электростанции – мощный источник нейтрино. Это излучение несет информацию о многом.

Во-первых, о том, с какой мощностью работает реактор, во-вторых, но излучению нейтрино можно судить, с какой интенсивностью «выгорает» уран и накапливается в реакторе плутоний.

В таком «нейтринном свете» с помощью приборов, находящихся далеко за толстыми бетонными стенками реактора, можно судить о происходящих в реакторе процессах. Такая специальная нейтринная лаборатория создана недавно на Ровенской АЭС на Украине.

На глубине 13 метров под атомным реактором собран первый нейтринный детектор: бак из прозрачного пластика, наполненный 25 литрами жидкого сцинтиллятора – вещества, светящегося под действием попадающих в него нейтрино…

Этот дебют нейтрино в технике обнадеживает. А в будущем ученые надеются, что нейтрино будут использованы для связи. Тут очень пригодится их способность к всепрониканию. Необходимо лишь создать компактные и очень чувствительные нейтринные передатчики и приемники. А передачи можно будет вести без всяких там кабелей, волноводов, а непосредственно сквозь земной шар!

Дерзкое стремление физиков прорваться в Неразгаданное очень напоминает экспедиции X. Колумба. Клянча дублоны и пиастры у испанского короля, банкиров и андалузских купцов, X. Колумб совершенно не подозревал, что готовит ему судьба. Опираясь на неверные расчеты ученых-географов, он искал кратчайший путь в Индию. Искал Индию – нашел Америку!.. И физики, пытаясь разгадать законы микромира на кварк-лептонном уровне, также могут совершенно неожиданно открыть новую эпоху в Технике и Технологии.

Инженеры торопят физиков, и те охотно идут им навстречу. Еще совсем недавно ускорители были привилегией физиков-экспериментаторов, а теперь ряд промышленных ускорителей (естественно, малогабаритных) справил новоселье на многих крупных машиностроительных предприятиях. К примеру, на Ижорском заводе в Ленинграде линейный ускоритель электронов выступает в роли дефектоскопа, контролирующего качество оборудования для будущих атомных электростанций. Новой, «ядерной» техникой интересуются также судостроители, гидроэнергетики и другие специалисты.

История появления у нас в стране промышленных ускорителей такова. Дело начал академик Г. Будкер (1918–1977). В 1958 году он организовал в Сибирском отделении АН СССР Институт ядерной физики (ИЯФ).

И тут же стал упорно искать немедленных приложений, использования всею того, что знал и умел молодой институт, к сегодняшним насущным проблемам народного хозяйства. Так и возникли установки по виду довольно скромные (электронные ускорители с мощностью от нескольких киловатт до мегаватта и энергией электронов от сотен киловольт до нескольким МэВ), не поражающие воображение ни своими размерами, ни энергией частиц.

Что дают эти устройства?

Различные виды излучений. И спрос на эту необычную продукцию во всех промышленно развитых странах очень велик и растет – на 15 процентов в год! А общая мощность излучения, потребляемого сегодня в мире в технологических целях, уже превышает десятки МВт.

Так подтверждается тезис К. Маркса о том, что «всякое открытие становится основой нового изобретения или нового усовершенствования методов производства».

Стоит сразу же подчеркнуть, что физики (головным в этих вопросах является ИЯФ, его директор академик А. Скринский, ученик и сподвижник Г. Будкера, большой энтузиаст промышленных ускорителей) не разрабатывают те или иные конкретные технологические процессы. Они дают мощные и удобные источники излучений. А как их использовать конкретно – забота прикладников, у которых с физиками давно сложились плодотворные связи. Из Москвы, Минска, Одессы и многих других городов Союза едут в Новосибирск люди, чтобы получить консультацию или наладить полезный контакт.

Профессии промышленных ускорителей разнообразны.

Одно из главных достоинств радиационной технологии в том, что она позволяет придавать традиционным материалам качественно новые свойства. Так, в потоке разогнанных электронов резина претерпевает удивительные метаморфозы: становится гораздо прочней. Ускорители помогают улучшать свойства древесины, всевозможных пластмасс, оболочек электрических кабелей, проводов (в электротехнической промышленности на базе сибирских разработок уже создано 14 технологических линий, а экономический эффект от радиационной обработки кабельных изделий превысил 100 миллионов рублей).

Ускорители позволили разработать новую технологию производства цемента. Поток ускоренных электронов как бы подстегивает физико-химические реакции во всем объеме облучаемого материала. И на образование цементного клинкера теперь уходит всего 10 секунд. Процесс идет в сотни раз быстрее! А главное – отпадает нужда в громадных вращающихся печах, должны исчезнуть и вредные выбросы в атмосферу.

Промышленные ускорители можно с успехом использовать для сварки, резки и плавки. С их помощью можно обеззараживать сточные воды крупных животноводческих комплексов. Обрабатывать клубни картофеля, чтобы замедлить прорастание при его длительном хранении. Радиация может уничтожать амбарных вредителей, зарящихся на запасы пищевого зерна.

Долго пришлось бы перечислять все те области, где радиация уже работает или намеревается поработать.

А на подходе уже новое поколение промышленных ускорителей, поколение, предлагающее еще более эффективное средство – синхротронное излучение электронных накопителей. Тут будет генерироваться на много порядков более мощное ультрафиолетовое и рентгеновское излучение. Вот как характеризует его А. Скринский:

«С помощью синхротронного излучения биологам впервые удалось увидеть, как изменяется структура живой мышцы в процессе сокращения. Химикам оно помогает исследовать механизм каталитических реакций. Физики уже убедились, что смогут теперь детально изучить причины структурных искажений в металле, процессы горения и динамику превращений в полимерах. В электронной промышленности это излучение позволяет перейти к производству интегральных микросхем с субмикронными размерами рабочих элементов. Отсюда – возможность разместить на том же участке кристалла в сотни раз больше элементов, соответственно выиграв в производительности и эффективности электронных устройств…»

X. Колумб искал Индию с ее несметными сокровищами: бриллиантами, алмазами, золотом. Позднее потомки X. Колумба – конкистадоры – искали в Америке Эльдорадо – страну сказочного богатства и чудес. Сооружая все новые ускорители, познавая новые тайны микромира, физики надеются найти свое эльдорадо – энергетическое.

Заем под большие проценты

Глубоко неправы те, кто считает, что исследования элементарных частиц якобы подчиняются «закону убывающего плодородия». В одном из обзоров Л. Окунь обсуждает необходимость всемерных поисков новых стабильных тяжелых частиц. И добавляет: «Открытие «месторождения» отрицательно заряженных тяжелых частиц могло бы иметь не только научный интерес. Оно могло бы совершить переворот в энергетике… Если бы удалось найти хотя бы несколько килограммов Х-частиц, то это могло бы решить нее энергетические проблемы человечества».

Да, энергетическая проблема после борьбы за мир самая для человечества важная. И решить ее могут только физики. И кто знает, может, со временем слова «кварковая энергетика» станут такими же привычными, как сейчас слова «энергетика атомная»!

Детали, подробности того, как может быть по-новому решена энергетическая проблема, пока неясны. Точно так же можно стоять перед закрытым сейфом и, зная, что там спрятаны большие деньги, не знать той комбинации цифр, которая ведет к богатству.

Это будущее. А сейчас перед физикой стоит вполне конкретная задача обуздать термоядерный синтез.

Проблема эта уже давно разрешена природой. Солнечный реактор работает уже около десяти миллиардов лет. На Солнце плазму в узде держат силы тяготения.

Чем их заменить в земных условиях?

В 1950–1951 годах в СССР и одновременно в США была высказана ставшая ныне широко известной мысль – использовать для удержания плазмы магнитное поле. Эта идея была быстро реализована. Казалось, термояд вскоре удастся запрячь в энергетическую упряжь.

Не тут-то было! Академик Л. Арцимович, создатель «Токамаков», проложивших путь бурному прогрессу в этой области, недаром любил повторять такую присказку:

«Термоядерная энергия – это одноколесный велосипед: все знают теоретически, что на нем можно ездить, но на практике все падают».

Вот уже три десятка лет сражаются с термоядом физики всей планеты. Уж сколько раз энтузиазм сменялся унынием. Сейчас работа идет по многим направлениям: к делу привлекаются и лазеры, и электронные, и ионные пучки частиц. Но все эти подходы к термоядерному синтезу можно сравнить с лобовой атакой. А нет ли обходных путей?

Есть! Это катализ реакций ядерного синтеза с помощью мю-мезонов.

Дело вот в чем. Отрицательно заряженные мюоны могут замещать в атомах электрон, образуя мезоатомы.

Мезоны в две сотни раз тяжелее электронов, поэтому мюонные «орбиты» расположены очень близко к ядру.

Особенно интересны свойства мезоатомов водорода и его изотопов дейтерия и трития. Тут заряд ядра полностью «экранируется» зарядом мезона. Получается нечто электрически нейтральное, подобное нейтрону. Как следствие, мезоатом водорода «свободно» проникает через электронные оболочки атомов, может подходить на близкие расстояния к ядрам, может стать катализатором ядерных реакций.

Здесь начинаются тонкости катализа, и в подробности того, как можно было бы осуществить термоядерный синтез с помощью мюонов, мы не будем вдаваться. Укажем лишь на преимущества нового подхода перед «классическим термоядом».

Тут, оказывается, не нужны температуры в десятки миллионов градусов, не нужны и хитроумные магнитные поля. Мезонный реактор представляет собой просто сосуд с газом – смесью дейтерия и трития, в который впрыскиваются мюоны.

Размеры сосуда зависят от давления газа, и при давлении в десятки атмосфер диаметр реактора составит около десяти сантиметров. Карманный реактор?!

Да, и на его основе можно было бы, к примеру, сделать термоядерный автомобильный двигатель!..

В чем состоят трудности такого «холодного термояда»? Только в том, что пока нет дешевого источника мю-мезонов. И он должен быть не только экономичным, но, главное, компактным, не то что используемые сейчас гиганты – ускорители. (Минимальная энергия, необходимая для получения мюонов, – 100 МэВ.)

Так вновь – в который раз! – мы убеждаемся, что исследования физики элементарных частиц хотя и требуют от человека порой немалых жертв, но со временем могут окупиться сторицей. И идущие на них большие средства – это заем под большие проценты.

И близоруко было бы толковать только о непосредственной отдаче, лишь о научно-исследовательских разработках, которые с большим экономическим эффектом могут быть уже сейчас внедрены в народное хозяйство.

Тут надо помнить о том, что микрофизика как главная из фундаментальных наук создает опережающий потенциал, запас новых понятий, идей, представлений, методов, которые впоследствии будут обязательно использованы другими науками, прикладниками, войдут в философское понимание общей картины мира.


    Ваша оценка произведения:

Популярные книги за неделю