355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2008 № 09 » Текст книги (страница 4)
Юный техник, 2008 № 09
  • Текст добавлен: 21 сентября 2016, 17:27

Текст книги "Юный техник, 2008 № 09"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 4 (всего у книги 5 страниц)

ПАТЕНТНОЕ БЮРО



В этом выпуске ПБ мы расскажем: о проекте дома, устойчивого к землетрясениям, Сергея Юрасоваиз Саратова, о способе связи с подводными лодками, предложенном Сергеем Реутовымиз Вологды, и о портативном махолете Антона Степановаиз Караганды.


АВТОРСКОЕ СВИДЕТЕЛЬСТВО № 1107

ОСТРОУМНУЮ СИСТЕМУ…

… для защиты здания от подземных толчков предложил Сергей Юрасов из Саратова. В сейсмоопасных зонах проживает около 5 % населения России, а это ни много ни мало около 7 миллионов человек.

На открытой местности землетрясения не опасны (случаи, когда разверзается земля и человек проваливается в трещину, крайне редки).

В городах же люди гибнут под обломками обрушившихся домов, и потому в районах, где бывают землетрясения, стараются строить дома повышенной устойчивости.

Казалось бы, решение очевидно: нужно увеличить толщину стен, сделать прочнее каркас, более глубокий фундамент, применить высококачественные материалы. Но все это недопустимо увеличивает стоимость строительства. Потому строители поступают несколько иначе.

Разрушительное действие землетрясения происходит в основном за счет распространяющихся по поверхности земли волн. Их называют волнами Релея. Они создают слабые и редкие толчки в вертикальном направлении и очень опасные в горизонтальной плоскости.

Каркас здания от них перекашивается, и, если узлы его скреплены жестко, например, при помощи цемента, то при изгибе в них возникает концентрация сил. Одни силы действуют на сжатие, и бетон их выдерживает. Другие – действуют на растяжение, для бетона они губительны.

Это позволяет взглянуть на конструкцию сейсмостойкого здания по-новому. В узлах каркаса можно поставить относительно подвижные шарниры. Под действием толчка шарнир лишь слегка повернется, но здание остается невредимым. Таким образом, классический путь создания сейсмостойкого здания сводится либо к созданию дома сверхпрочной конструкции, либо конструкции, для которой землетрясение безразлично.


Сергей Юрасов предлагает свой путь – дома строить обычные, но снабжать их устройствами, которые толчки грунта к зданию не пропускают. Для этого фундамент здания Сергей предлагает делать с трехуровневой прослойкой. Промежуток между верхним и вторым уровнем снабжен множеством мощных пружин, которые смягчают вертикальные толчки. Промежуток между вторым и третьим уровнем предназначен для смягчения колебаний в горизонтальной плоскости. Он устроен по принципу шарикоподшипника. Между плитами цоколя здания, в отдельных ячейках, размещены шары. При горизонтальных толчках перемещается фундамент, а дом остается на месте.

Нет сомнения, что такое устройство работоспособно, но легко ли его сделать?

Площадь контакта между шаром и основанием очень мала. Здесь могут возникнуть столь высокие давления, что их не выдержит самый прочный бетон. Да и обрабатывать поверхность шариков и прокладок придется по высшему классу точности, как это делается в шарикоподшипниках. Это откладывает реализацию идеи на неопределенный срок, но проработка проекта Сергеем и важность темы заслуживают того, чтобы наградить Сергея Юрасова Авторским свидетельством Патентного бюро.


ПОЧЕТНЫЙ ДИПЛОМ

УЛЬТРАЗВУКОВАЯ ПОДВОДНАЯ СВЯЗЬ

«При аварии подводная лодка ложится на дно и не может подать сигнал бедствия с указанием своих координат, так как радиоволны в воде не распространяются», – пишет Сергей Реутов из Вологды и предлагает установить на подводной лодке передатчик, в котором ультразвуковой сигнал модулируется звуковым сигналом, например речью человека, и передается поисковым судам.

На днища этих кораблей Сергей советует установить приемник ультразвуковых сигналов, который преобразует их в речь.

Сергей основательно познакомился со свойствами ультразвука по специальной литературе. В своей работе он даже приводит таблицу зависимости дальности распространения звука в воде от частоты. Столь основательный и серьезный подход к делу заслуживает уважения и дает основание ответить автору с максимальной полнотой.

Начнем с того, что радиоволны для связи с подводными лодками уже используют. Это волны очень большой длины – в сотни и тысячи км. Они способны пройти сквозь толщу воды на глубину до 50 м. Но передавать речь на них невозможно. Удается лишь передавать телеграммы, да и то очень медленно. Передающие и приемные антенны наземных радиостанций для связи с подводными лодками имеют громадные размеры, используют целые острова длиною в десятки километров. Мощность передатчиков этих радиостанций достигает 6 тыс. кВт.

Обратная посылка сигнала с лодки на берег производится очень медленно, с применением многократного повторения. Для приема используется такой же приемник, как в радиотелескопе. По существу, радиосвязь с подводными лодками происходит примерно так, как происходила бы связь с другой Галактикой…

Но кроме радиоволн, давно, еще со времен войны, для связи с подводными лодками используют ультразвук. К сожалению, и этот способ связи не идеален. Как отметил в своей таблице Сергей, чем ниже частота, тем дальше распространяется ультразвук. Так, при частоте 30 кГц ультразвук распространяется на 44 км, при частоте 10 кГц – это уже не ультразвук, а вполне слышимый звук – на 400 км. Однако скорость распространения звука в воде 1440 м/с. Посчитайте, 44 км звук пройдет за полминуты, а 400 км за 4,6 мин. С таким запаздыванием еще можно кое-как вести переговоры, но управлять подвижными объектами, например торпедами, невозможно.


Антенна для связи с подводными лодками.

Специальный ультразвуковой приемник устанавливать на днище корабля не нужно. На надводных судах, как и на подводных лодках, есть ультразвуковые гидролокаторы. Их и используют для связи.

Правда, крупные страны в районах наиболее частого пребывания своих лодок расположили на дне грандиозную сеть акустических станций-ретрансляторов. Их два типа: есть станции, которые принимают акустический сигнал, усиливают его и передают дальше. Так информация может быть передана на тысячи километров, но практически со скоростью звука, а потому такая передача займет очень много времени.

Между тем по дну океанов проходят телефонные кабели, соединяющие континенты (первый из них был проложен еще в 1866 г.). А где-то на краю сети станций-ретрансляторов есть приемные станции, при помощи кабеля соединенные с берегом. Через такую цепочку информация, первоначально отправленная с борта подводной лодки при помощи ультразвука, может достичь абонента в глубине континента.

И все же связь с подводными лодками оставляет желать лучшего.

А теперь вернемся к предложению юного изобретателя. Оно хоть и говорит о вещах давно известных, но все необходимые выводы автор сделал самостоятельно и проработал их с большой тщательностью, что само по себе весьма похвально. Эту работу Экспертный совет ПБ удостаивает Почетного диплома.


Разберемся не торопясь

БУДЕМ ЛЕТАТЬ КАК ПТИЦЫ?

«Хотелось бы взмахнуть крыльями и полететь! Но, увы, человеку этого не дано. Слишком слабы наши силы», – пишет Антон Степанов из Караганды и предлагает за спиной человека, в особом ранце, установить небольшие крылья, работающие от электромотора. По своему устройству они будут напоминать оконные жалюзи; при взмахе вверх планки станут на ребро, и воздух спокойно пройдет через щели, не оказывая сопротивления. При взмахе вниз планки сомкнутся, щели закроются, и крыло с силой оттолкнется от воздуха.

Для того чтобы полет происходил без резких толчков, следует добавить еще пару крыльев, которые должны колебаться в противофазе, как у стрекозы, – так поясняет Антон устройство своего аппарата.

Проекты подобных аппаратов с похожими машущими крыльями появились еще в начале прошлого века.


В патентной литературе они встречаются и сегодня. Предложены аппараты с крыльями в виде зонтика со множеством заслонок. Известен проект «летающей тарелки», подъемная сила которой создается при помощи вибрирующей решетки с клапанами. Но ни один из подобных аппаратов пока еще не летает. В чем же дело?

В 1905–1908 гг. изобретатель Берт Валин из Гетенбурга испытал несколько аппаратов такого типа, а краткое описание его опытов попало в литературу. На рисунке вы видите первый аппарат Б. Валина, который с двигателем 4 л.с. мог поднимать в воздух груз до 60 кг. Частота ударов крыльев составляла 150 в минуту. Вначале автор, как и Антон, полагал, что будет лучше, если пары крыльев движутся в противофазе. Но эксперимент показал, что подъемная сила возрастает, если крылья движутся одновременно и параллельно.

В опытах было замечено, что, когда крыло движется вверх, а жалюзи открыты, сопротивление его составляет 1/3 – 1/4 от сопротивления при движении вниз с закрытыми жалюзи. Берт Валин справился с этим недостатком, создав механизм, при котором крыло движется вверх вдвое медленнее, чем вниз.


* * *

ВНИМАНИЕ, КОНКУРС!

Дорогие друзья!

Сегодня «Патентное бюро» журнала «Юный техник» при поддержке Центрального Совета Всероссийского общества изобретателей и рационализаторов (ЦС ВОИР) объявляет конкурс под названием «Планета – XXII».

Предыдущий, XX век принес столько открытий, сколько, пожалуй, не было сделано за всю историю человечества: человек укротил ядерную энергию, изобрел лазеры, научился летать и опускаться глубоко под воду, расшифровал ДНК, создал новые лекарства и вышел в космос. А каким будет следующий, XXII век?

Мир вокруг нас меняется так быстро, что предугадать будущее очень непросто. Но ведь хотелось бы! Каким же, по-вашему, станет наш мир? На чем человек будет ездить? На чем летать? В каких домах он будет жить? Чем будет питаться? Где будет брать энергию? Каким образом он достигнет звезд?

Присылайте в редакцию ваши соображения. Лучшие работы будут награждены Почетными дипломами журнала «Юный техник» и грамотами Центрального Совета ВОИР.

На конвертах указывайте: «Планета – XXII»

ПАТЕНТЫ ОТОВСЮДУ
Чудаки украшают мир

Говорят, сейчас можно запатентовать все, что угодно, только плати. Вряд ли такое утверждение справедливо на все 100 %, однако некоторые изобретения определенно вызывают удивление и даже улыбку.

Судите сами…


МАТРАС – ВОЗДУШНЫЙ ШАРпредложил американский изобретатель С. Браун. Он придумал заполнять надувной матрас не сжатым воздухом, а легким газом, например, гелием. Проснулся утром, встал с постели, а она всплывает под потолок. И убирать не надо. А вечером ее можно притянуть обратно за специально предусмотренный для этого шнурок.

СВЕТЯЩЕЕСЯ ОДЕЯЛОдемонстрируется в Лондонском музее науки. Это электрическое покрывало мерцает в темноте мягкими разноцветными огоньками, причем светящийся узор меняется всякий раз, когда человек под одеялом начинает шевелиться. По мнению изобретателя Дж. Макадама, такое одеяло поможет засыпать детям, которые боятся темноты.


ПЕРЧАТКА-ПЕРЕВОДЧИК– изобретение 18-летнего американца Райана Паттерсона. По идее, такую перчатку должен надевать на руку глухонемой человек, общающийся с себе подобными с помощью языка жестов. А чтобы его понимали и все остальные, к перчатке с датчиками-сенсорами прилагается еще специальная компьютерная программа, переводящая жесты в печатный текст.

Пока, правда, распознавание возможно только на уровне отдельных жестов английского алфавита глухонемых, что позволяет передавать информацию лишь по буквам.

НОГТИ-ХАМЕЛЕОН, изготовленные из особого пластика, придумал испанский изобретатель Карлос Гонсалес. Пластик состоит из нескольких полимерных слоев, оптические характеристики которых изменяются под действием электрических импульсов. При помощи электронного устройства такому маникюру можно будет придать любой нужный цвет.

БЕЙСБОЛКА ДЛЯ ФАНАТОВбыла запатентована в 1996 году. Некий итальянский тиффози-болельщик придумал на задней части кепки прорезать отверстия в форме букв, составляющих название любимой команды. Если, надев бейсболку задом наперед, посидеть часок-другой под жарким солнцем на трибунах, то на лбу болельщика отпечатается слово «Спартак» или, скажем, «Рома». И никто уж не будет сомневаться, что перед ним – настоящий фанат.

НАШ ДОМ
Всегда на страже



«Замок – это устройство, с помощью которого один честный человек дает понять другому, что его нет дома». В этой шутке немало правды: современная техника позволяет злоумышленнику за несколько минут открыть любой замок – будь он механический или электронный. И все же замки ставить нужно.



На входные двери чаще всего ставят сувальдныеи цилиндровыемеханические замки.

Основа конструкции первого – набор пластин, которые, выстраиваясь под действием зубцов ключа в строго определенных положениях, позволяют открыть дверь. При несовпадении хотя бы одной сувальды попасть в квартиру не удастся: замок не откроется.

Надежность «молчаливого охранника» усиливают с помощью специальной пластины из сверхпрочных сплавов, которая защищает замок от высверливания или выламывания. Заодно пластина упрощает установку замка – под ней скрываются неровности долбления пазов в двери.

Последнее время такие накладки стали снабжать еще и подвижной мембраной, препятствующей попаданию отмычки или посторонних предметов внутрь механизма.

Хорошие сувальдные замки имеют достаточно высокий уровень секретности и закрываются не менее чем на 3–4 оборота. Так что к ним трудно подобрать ключ, да и отмычка такой замок берет не всегда.

Подобные изделия устойчивы также к прямому взлому, поэтому предпочтительны для дверей, установленных в неохраняемых и малолюдных местах – сараях, гаражах… То есть там, где злоумышленник может шуметь и не ограничен во времени. Однако есть у этих замков и свои недостатки. Например, ключи к ним никак нельзя назвать миниатюрными.


Современный сувальдный замок.

Цилиндровые замки компактнее. В них функцию секретного механизма выполняет набор подвижных штифтов, заключенных в скрытой части. Незафиксированные детали выстраиваются ключом в строго определенном порядке по высоте.

Уровень надежности такого замка зависит от количества штифтов, их расположения внутри цилиндра, количества допустимых сочетаний и точности изготовления отдельных элементов. Модели с евроцилиндрами, имеющие несколько миллионов комбинаций, предпочтительны в местах, где более вероятен «интеллигентный» взлом с использованием отмычки или иного специнструмента.

Однако цилиндровые замки менее устойчивы к грубому взлому. Поэтому профессионалы рекомендуют снабжать такие замки защитными накладками из специальной стали. Это устройство защитит цилиндровый замок как от выдирания «с корнем», так и от вскрытия по технологии «бампинг» (когда по замку постукивают особым образом, одновременно проворачивая специальный бамп-ключ).

Отметим также, что цилиндровые замки более капризны, требуют регулярной смазки, плохо работают при низких температурах.


Последние годы в продаже появились замки, совмещающие два разных типа запорных устройств в одном корпусе. Такой замок объединяет в себе преимущества сувальдной и цилиндровой технологии, что весьма затрудняет его вскрытие. Причем существуют модели, где один механизм блокирует другой. Например, для нижнего устройства разработана специальная защита в виде двухсторонней шторки, перекрывающей отверстие под специальный ключ и управляемой верхним цилиндровым замком.

Теперь несколько слов о совершенно новой конструкции, появившейся недавно. Так называемые перекодируемые замки позволяют легко решать проблему потерянных ключей. При покупке такого замка вы получаете в наборе один рабочий (действующий) набор ключей, дополнительный комплект (обычно пять ключей в запечатанном конверте, код которых отличен от кода рабочего), а также инструмент для перекодировки (Г-образный ключ).

Сначала замком пользуются, как обычно. При потере одного из рабочих ключей дверь открывает своим ключом кто-то из родственников. При уже открытой двери Г-образный ключ вставляется в специальное отверстие и поворачивается. Таким образом обнуляется старая комбинация. После этого вставляйте в рабочую скважину ключ из нового комплекта и закрывайте дверь. Все!


Перекодируемый замок.

С этого момента ваш замок можно открыть только новым комплектом ключей, а старые можно спокойно выбрасывать.

Предвидя, что подобная ситуация может повториться в будущем, стоит купить еще один, новый комплект запасных ключей. И при очередной потере всю операцию можно будет повторить.

Еще одно полезное изобретение наших дней – так называемый замок-невидимка, который вообще не имеет личинки для ключа. А открывается он, когда вы подносите к строго определенному месту двери специальный магнитный брелок, выдающий электромагнитный код.

И в заключение несколько полезных советов.

Наличие в двери 2–3 замков полезно. Если какой-то из замков забарахлил, вытаскивайте его из гнезда и идите в магазин. Там с помощью продавца подберите аналогичный замок и ставьте его взамен вышедшего из строя. Подгонка в таком случае будет минимальной.

Однако не стоит обвешивать всю дверь замками. И самим неудобно открывать и закрывать сразу множество запоров, и воры смекают: значит, хозяевам этой квартиры есть что хранить за семью замками…

Будьте внимательны, не оставляйте своих ключей без присмотра. Их могут украсть или, что того хуже, с них незаметно снимут слепки, по которым сделают дубликаты. Результат такой операции: замки все на месте, а воры в квартире основательно поработали…

Будучи дома, не открывайте дверь кому попало.

Врежьте в дверь глазок, смотрите, кто пришел. У сантехников, газовщиков, электриков сразу через дверь спрашивайте служебное удостоверение. Пусть поднесут его к глазку. В особо подозрительных случаях звоните в милицию.

Уезжая из дома на дачу или в отпуск, договоритесь с соседями – пусть присматривают за вашим домом или квартирой. А еще надежнее – поставить свою недвижимость на охрану. В случае несанкционированного вскрытия дверей бойцы вневедомственной охраны получат тревожный сигнал и через 4–5 минут будут уже на месте происшествия. Ворам некогда будет разгуляться.

В. ЧЕТВЕРГОВ

КОЛЛЕКЦИЯ «ЮТ»


Як-141 —единственный в мире самолет такого класса, производившийся серийно. В США сейчас только еще идет разработка самолета F– 35, который мог бы составить Як-141 конкуренцию. Разработка Як-141 (его прототип назывался Як-41) была начата в 1975 году, а впервые самолет продемонстрировали на авиакосмическом салоне в Ле Бурже в июне 1991 года. Во время испытаний самолет установил 12 мировых рекордов, в том числе по скороподъемности и высоте полета с грузом.

Самолет построен по так называемой нормальной аэродинамической схеме с высокорасположенным крылом и двухкилевым вертикальным оперением. Один подъемно-маршевый двигатель расположен в хвостовой части фюзеляжа, два подъемных – сразу за кабиной летчика. Проект был заморожен из-за отсутствия финансирования, хотя многие страны были готовы приобрести этот самолет для своих ВВС.


Тактико-технические характеристики:

Длина самолета… 18,30 м

Размах крыла в развернутом/свернутом положении… 10,10/5,90 м

Нормальная взлетная масса… 3500 кг

Максимальная взлетная масса… 19 500 кг

Масса топлива:

во внутренних баках… 4400 кг

в подвесных… 1750 кг

Максимальная скорость:

у земли… 1250 км/ч

на высоте 11 000 м… 1800 км/ч

Боевой радиус действия… 690 км

Практический потолок… 15 000 м

Экипаж… 1 чел.


Свой первый автомобиль – Model A– компания Cadillacпродемонстрировала на Автомобильном шоу 1903 года в Нью-Йорке. Это был хороший старт, а следующий автомобиль – Model D– вывел фирму в положение лидера автомобильной промышленности. Оснащенный четырехцилиндровым двигателем, пятиместный туристический автомобиль имел деревянный кузов.

Модель Escalade, представленная в 2001 году, имела постоянный привод на все 4 колеса, адаптивную подвеску с изменяемыми характеристиками, систему динамической стабилизации и мощную коммуникационную систему в качестве базового оборудования.

В 2007 году Escaladeпобедил в интернет-конкурсе «Лучший внедорожник класса люкс 2007 модельного года», обойдя таких серьезных конкурентов, как MercedessBenz GL450, Land Roverи Range Rover.


Технические характеристики:

Количество мест… 8

Длина автомобиля… 5,052 м

Ширина… 2,004 м

Высота… 1,885 м

Дорожный просвет… 271 мм

Снаряженная масса… 2519 кг

Объем двигателя… 5328 см 3

Мощность двигателя… 288 л.с.

Максимальная скорость… 174 км/ч

Расход топлива в смешанном цикле… 15 л/100 км

Время разгона до 100 км/ч… 9,5 с

Объем бака… 60 л

ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ
Внимательно смотрим на… звук

Можно ли без хитроумных электронных приборов, простым глазом увидеть звук? Не торопитесь с ответом.

В одном из театральных спектаклей, когда актеры танцевали в тумане, – такой эффект используют иногда, получая «туман» с помощью так называемого сухого льда или с помощью углекислотного огнетушителя, – зрители, сидевшие на балконе, увидели не только танец, но и то, как поверхность туманного слоя словно бы пошла волнами – зоны разрежения и сгущения тумана возникали и пропадали вместе со звуками виолончели. Более того, их ширина явно зависела от высоты звука.

Вот как можно объяснить эту картину. На звуковые волны инструментов накладывались волны, отразившиеся от стены. В результате возникали стоячие звуковые волны. Они выглядят, как чередование участков спокойного плотного тумана – «узлов» и как бы кипящее го воздуха, плотность которого меняется со звуковой частотой, – пучностей.

То, что произошло в театре, можно смоделировать с помощью… стиральной машины старого образца – «ЗВИ», «Сибирячки» или подобной, с отдельными баками для стирки и отжима. Налейте в бак для стирки воду и включите центрифугу для белья, предварительно положив в нее хотя бы мокрое полотенце. Создаваемой центрифугой вибрации будет достаточно, чтобы увидеть на поверхности воды яркую картину стоячих волн.

Эта картина очень похожа на так называемые хладниевы фигуры из старинного опыта. Квадратную пластину или диск из бронзы закрепляли на столбике-подставке в центре симметрии. Затем пластину посыпали мелким песком и проводили по ее краю скрипичным смычком. Пластина начинала «петь». На ее поверхности появлялись стоячие волны.

В пучностях пластины сильно вибрируют, и песок сползает в спокойные места – узлы стоячих волн. Так получились замысловатые фигуры, которые вы видите на рисунке.

(Скажем в скобках, что хладниевы фигуры напоминают картину распределения плотности вещества в электронных оболочках атомов и молекул. Это сходство не случайно. Конфигурация электронных оболочек вызвана образованием в них стоячих волн плотности электронов, так называемых волн де Бройля.)

Мы рассказали о старинном варианте опыта французского физика Хладни, по имени которого были названы фигуры. Получить их можно и без бронзовой пластины и смычка. Для этого достаточно положить стекло на динамик и подключить к нему звуковой генератор (его можно, наверное, найти в кабинете физики). Если насыпать на стекло мелкий песок, то, меняя частоту генератора, вы можете увидеть самые разные картины.


Эрнст Хладни(1756–1827).


Фигуры Хладнивверху и их получение.


В начале XX века состоятельные американские дамы, кстати, соревновались в получении красивых фигур. Для этого открытую часть металлического кофейника с длинным носиком затягивали упругой пленкой бычьего пузыря и посыпали песком. Когда в носик произносили какую-нибудь фразу, на песке возникало множество сменяющих друг друга фигур. Наиболее примечательные из них фотографировали.

В заключение расскажем о простом приборе, который позволит увидеть стоячие звуковые волны в класс се. Для этого в крышку стола врезается неглубокая (10–15 мм) ванна с прозрачным дном, а под ней крепят точечный источник света, например, шестивольтовую лампу.

Затем в классе включают динамик, соединенный со звуковым генератором, подбирают частоту 5 – 10 кГц и получают четкую систему стоячих волн; на потолке класса появится картина, состоящая из отдельных полос. Это и есть отображение звуковых волн.


А. ИЛЬИН

Рисунки автора


    Ваша оценка произведения:

Популярные книги за неделю