Текст книги "Юный техник, 2008 № 06"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 2 (всего у книги 5 страниц)
РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…
«Ноев ковчег» на Шпицбергене
По радио передавали, что на Шпицбергене построен некий Ноев ковчег. Для чего он нужен? Ожидается новый вселенский потоп?
Андрей Безымянный,
г. Волгоград
Речь не о гигантском судне, на котором от вселенского потопа спасут зверей. В Заполярье соорудили хранилище для семян различных культур, которые в условиях вечной мерзлоты могут сохраняться десятки и сотни лет. Это глобальное хранилище семян окрестили «Ноевым ковчегом», поскольку оно должно спасти сельское хозяйство планеты на случай глобальной катастрофы, будь то эпидемия, ядерная война, стихийное бедствие, непредсказуемое изменение климата или даже падение гигантского метеорита. В специальном укрытии, расположенном глубоко в горной толще, банк семян растений со всего мира наверняка уцелеет.
Строительство обошлось не так уж и дорого для проекта такого масштаба – всего 50 млн. крон (около 10 млн. долларов). А Шпицберген, расположенный в 500 км от континентальной Норвегии, был выбран местом строительства хранилища не только из-за климата, но еще и потому, что он расположен в месте, наименее подверженном землетрясениям.
Поначалу в хранилище поместили более 250 000 видов различных культур. А в будущем банк хранения расширят до 4 млн. видов.
Историческая миссия по заложению первой капсулы в «хранилище Апокалипсиса» была возложена на премьер-министра Норвегии Енса Столтенберга и лауреата Нобелевской премии мира Вангари Маатаи.
Глава норвежского правительства подчеркнул, что событие это имеет огромное значение для всего человечества. «Все страны мира будут поставлять сюда семена, а мы, норвежцы, со своей стороны, берем на себя ответственность за их сохранность, – разъяснил Енс Столтенберг. – Если какой-нибудь из видов семян на планете исчезнет, его образцы можно будет взять из хранилища и возродить».
Норвежцы по праву стали главными хранителями на Земле нужных для человечества культур, так как и сама идея создания хранилища была предложена властями Норвегии в 2005 году. Идею сразу же начали претворять в жизнь. Закладка первого камня состоялась в июне 2006 года, а уже к осени 2007 года строительство хранилища было завершено, и на архипелаг стали свозить семена со всего света.
Как отметила сотрудница хранилища Ула Вестенген, создать всемирную коллекцию оказалось на удивление легко – ни одна из стран и организаций, у которых были запрошены образцы семян, не отказалась их предоставить.
Схема хранилища семян на Шпицбергене:
1– охраняемый комплекс; 2– мост; 3– бронированные двери; 4– отводной рукав; 5– офисы и зона управления; 6– воздухонепроницаемые двери; 7, 8– хранилища семян.
На Шпицберген было доставлено, в частности, более 70 тысяч разновидностей риса из 120 стран мира, несколько тысяч образцов картофеля, 30 тысяч разновидностей семян фасоли, 47 тысяч разных видов пшеницы, 10 тысяч разновидностей кукурузы. Не осталась в стороне и Россия, предоставившая для хранилища образцы фасоли, чечевицы, гороха и некоторых других культур.
Кстати, норвежцы не скрывают, что саму идею создания такого хранилища им подсказала знаменитая коллекция ВИРа – Всероссийского института растений, начало которой положил великий русский селекционер Н.И. Вавилов. Коллекция усилиями сотрудников ВИРа была сохранена даже в блокаду, хотя многие ее хранители не выдержали голода и холодов.
На острове семена хранятся в трех больших пещерах, прорубленных в скалах близ административного центра Шпицбергена города Лонгьир, расположенного в 1000 км от Северного полюса. Пещеры находятся на высоте 130 м над уровнем моря, так что если даже вдруг растают все арктические льды, вода не достигнет входа в «Ноев ковчег». В хранилище поддерживается постоянная температура на уровне -18 °C. Даже в случае, если оборудование выйдет из строя, из-за вечной мерзлоты температура в пещерах не поднимется выше минус 3–4 градусов по Цельсию.
Благодаря полной автоматизации, хранилище не требует постоянного присутствия сотрудников. Предполагается, что, когда банк семян будет полностью сформирован, специалистам нужно будет входить в хранилище только раз в год, чтобы проверить оборудование или провести профилактические работы.
В. ЧЕРНОВ
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Резиновое шоссе
Куда девать использованные автомобильные шины? Английские изобретатели предлагают делать из них автомобильные шоссе. В этом не было бы ничего примечательного. Но прокладывать их будут на месте бывших железных дорог.
Эксперты подсчитали: в одной только Великобритании 14 500 км железных дорог выведены из эксплуатации. И в основном там ничего еще не успели построить, даже рельсы остались на месте. Напрашивается мысль, что, убрав их, можно проложить по тем же насыпям новые автострады, которые помогут разгрузить имеющиеся шоссе.
Однако британская компания HoldFast Level Crossings, специализирующаяся, среди прочего, на оборудовании железнодорожных переездов толстыми резиновыми «ковриками», придумала идею получше.
Из крупных и весьма толстых резиновых плит, изготовленных из старых автопокрышек, вполне можно сложить не только удобный железнодорожный переезд. Если их уложить вдоль железного полотна, выйдет хорошая, тихая и упругая автомобильная дорога. Подобным образом, кстати, можно переоборудовать и трамвайные линии в больших городах, что тоже существенно расширит возможности автомобилистов.
Эту идею компания довела до практического проекта «Резиновый хайвэй» ( HoldFast). Группы крупных резиновых блоков, уложенных вдоль рельсов, превращают бывшую «железку» в автотрассу. Чтобы плиты не разъезжались под колесами автомобилей, а также для большей прочности дороги конструкторы предусмотрели снизу алюминиевые опоры-усилители и специальную систему надежного соединения резиновых плит между собой.
Испытания резиновой дороги.
Первый опыт эксплуатации резинового шоссе показал, что оно по многим показателям не уступает и даже превосходит обычное асфальтовое покрытие. А по стоимости – 0,8 млн. фунтов стерлингов за километр – такая чудо-дорога в несколько раз дешевле обычной. Ведь делают ее буквально из бросового сырья – в том же Соединенном Королевстве ежегодно автомобилисты пытаются избавиться от десятков миллионов старых шин. А тут они пошли в дело, в количестве 220 тысяч штук на каждый километр дороги. Причем скорость укладки такого покрытия феноменальна: всего четыре человека с минимумом механизмов укладывают 300 метров такой трассы за 5 дней.
В дальнейшем компания намерена разработать более крупные цельные резиновые блоки, так что монтаж пойдет еще быстрее.
ЗА СТРАНИЦАМИ УЧЕБНИКА
Мир микромашин
Вы помните, наверное, сказку Лескова о тульском Левше и его товарищах, без «мелкоскопа» подковавших «англицкую блоху». Изготовление микроэлектромеханических систем требует сегодня особых приемов и технологий, которые и присниться не могли легендарному мастеру.
Наиболее мелкие детали до недавнего времени мы видели внутри наручных часов. Но даже самое малюсенькое колесико таких часов кажется огромным в сравнении с деталями современных микромашинок, изготавливаемых на заводах, где производят микросхемы. Плоские моторчики диаметром 100 мкм и шестеренки толщиной 1 микрон сегодня уже не удивляют.
Но любая микромеханика без встроенных микросенсоров будет слепа и сможет работать только по твердо заданной программе. И потому сегодня разработаны микропроцессоры, содержащие до 60 различных датчиков на одном базовом кремниевом кристалле. Причем изготовляется эта умная и чувствительная схема в едином технологическом процессе. Она является поистине интегральной, поскольку объединяет в себе не только тысячи резисторов и транзисторов, но и целую систему измерителей и исполнителей. Такая система способна не только «чувствовать», но и перемещать небольшие массы на вполне заметное расстояние.
Одним из наиболее массовых изделий такого рода являются, например, датчики столкновения в современных автомобилях. Микропроцессор постоянно анализирует сигнал, поступающий от микроакселерометра, и, если ускорение автомобиля превышает опасный предел, мгновенно принимает решение об активации системы безопасности (скажем, надувает подушки, смягчающие удар).
Полупроводниковые интегральные датчики давления используются также в медицинских тонометрах и весах, позволяющих с высокой точностью взвешивать вещества, например, при изготовлении лекарств.
Кремниевая микроцепь, состоящая из 50 звеньев толщиной всего в 50 микрон, подобно обычной велосипедной цепи, позволяет передать вращение с шестеренки на шестеренку.
Главные орудия производства микромеханических устройств – это световые лучи и химические реакции. Проецируемые на кремниевую пластину (вейфер), как на экран, различные изображения с фотографической точностью формируют нужные структуры. Причем и проявка, и нанесение фоточувствительного слоя могут быть многократными, так же как и растворение лишнего материала, и наращивание новых слоев кремния и его соединений, а также металлических проводников. В итоге технологический процесс изготовления микромеханизма состоит из десятков стадий и занимает многие часы. Лишь когда «выращены» все шестеренки и закреплены все оси, система «размораживается» с помощью кислоты и приходит в движение.
Однако благодаря тому, что обработку одновременно проходят сотни кремниевых пластин с тысячами шестеренок на каждой, возможен массовый выпуск сложных микромеханизмов по вполне приемлемой цене.
Причем кремний уже не единственный претендент на звание основного материала микромеханики: полимеры, отверждаемые светом, оказывается, можно использовать не только для зубных пломб, но и при изготовлении объемных микроконструкций. В этом случае формирование твердой основы механизма производят сфокусированными лазерными лучами.
Лазерная технология позволяет создавать микроизделия самой причудливой формы и допускает полную автоматизацию процесса. Еще шире круг обрабатываемых материалов и меньше размер готовых изделий при использовании мощных ионных пучков.
Используя поток протонов, можно делать механизмы нанометровых размеров. Только вот законы квантовой механики уже отличаются от законов классической, и поведение машин с шестеренками всего из нескольких миллионов атомов не похоже на работу привычных часов.
Даже привычные схемы и приемы смазки на наноуровне уже не годятся. Действовать, согласно пословице, что, дескать, кашу маслом не испортишь, здесь нельзя: излишек смазки может нанести вред сверхтонкому механизму.
В общем, хотя в распоряжении у инженеров есть несколько моделей, которые позволяют описать, каким образом свойства поверхностей влияют на трение, на атомном уровне механизмы процесса до сих пор во многом остаются загадкой.
И если раньше с этим еще было можно как-то мириться, то сейчас, когда в обиход все чаще входят не только микромашины, но и наноустройства, на эту проблему пришлось обратить особое внимание. Ведь чем меньше масштабы устройства, тем сильнее проявляют себя силы трения, а инженерного опыта здесь пока нет.
Говорят, скоро в кровеносной системе будут плавать микролодки.
Этот миниатюрный акселерометр используется в автомобильной системе контроля блокировки колес. Комфортная езда без заносов требует не только умных процессоров, но и чувствительных датчиков.
У оранжевой микрошестерни этого механизма диаметр в 100 раз меньше, чем толщина человеческого волоса. Тем не менее, она четко передает движение от не показанного на рисунке микромотора, поворачивая зеленую шестерню со скоростью один оборот в секунду.
Любопытные исследования, проливающие свет на механизмы трения на атомном уровне, провела недавно команда ученых из Хьюстонского и Висконсин-Мэдисонского университетов. В ходе их выяснилось, как масса атомов на поверхности влияет на трение. Для этого исследователи покрывали поверхность кристаллов алмаза и кремния монослоем атомов водорода или его тяжелого изотопа – дейтерия. По идеально гладкому слою скользили иголкой атомно-силового микроскопа и измеряли силу трения иглы о поверхность. Трение о поверхность с дейтерием оказалось заметно меньше.
У дейтерия и водорода химические свойства одинаковы, и они одинаково взаимодействуют с материалом иголки. Только масса у атомов дейтерия вдвое больше, и его тяжелые атомы колеблются с меньшей частотой. Поэтому атомы дейтерия реже сталкиваются с атомами движущейся иголки, а, стало быть, меньше забирают у них кинетическую энергию.
В общем, это как раз тот случай, когда значение имеет уже диаметр атома. Теперь ученые стали лучше понимать механизм трения на атомных масштабах. А у инженеров теперь есть рецепт снижения, а если необходимо, и увеличения трения в новых микромашинах.
По материалам журнала SPLEast News
КОЛЛЕКЦИЯ ЭРУДИТА
Послание потомкам
Построив в горной толще или под землей хранилище радиоактивных материалов, период полураспада которых составляет десятки или даже сотни тысяч лет, его заполняют и запечатывают практически навеки. Однако, по идее, нужно бы дать весточку нашим отдаленным потомкам, чтобы не вскрыли случайно раньше срока опасные отходы. Но как это сделать?
Здесь, оказывается, есть над чем поломать голову.
Во-первых, носители информации должны быть достаточно долговечными, чтобы и через сотни тысяч лет безжалостное время не могло их разрушить. Во-вторых, достаточно понятными, чтобы наши отдаленные потомки не ломали себе голову, как исследователи нашего времени над древнеегипетскими иероглифами и шумерской клинописью.
Члены международной экспертной комиссии, которым поручили эту миссию, перебрав все возможные варианты, пришли к мысли, что надежнее всего использовать опыт предков – например, жителей Древнего Египта.
На месте захоронения предлагается построить приметное сооружение, напоминающее ту же каменную пирамиду, а в ней – камеру, надежно защищенную от внешних воздействий. А уже на стенах той камеры, напоминающей погребальные камеры древнеегипетских фараонов, высечь на каменных плитах соответствующие надписи на наиболее употребительных ныне языках нашей планеты – английском, испанском, китайском, арабском…
У СОРОКИ НА ХВОСТЕ
ПИТЬЕВАЯ ВОДА ИЗ МОРСКОЙ. Сотрудники датской компании «Аквапорин» решили воспользоваться очередной подсказкой природы и начали разработку нового, исключительного по своим возможностям водного фильтра. Его действие основано на том же принципе, каким фильтруют воду живые клетки.
Иными словами, мембрана фильтра будет действовать тем же способом, благодаря которому аквапорины (белки водных каналов клеточных стенок) позволяют только чистейшей воде проникать внутрь клетки. С помощью такого фильтра можно будет получать чистую воду из соленой, очень загрязненной и технической воды. Причем новый метод требует в 5 раз меньших затрат энергии, чем иные системы очистки.
БУМАЖНЫЕ «ГОЛУБИ» В КОСМОСЕ. Маленькие бумажные самолеты, которые предполагается использовать в космосе, разрабатывают японцы. Испытания опытной модели прошли успешно – 30 секунд летательный аппарат, изготовленный из специальной бумаги, подвергался в аэродинамической трубе воздействию температуры в 250 °C. Скорость «ветра» при этом превышала 2300 м/сек.
Разработчики уникальной новинки уже обратились к японским космонавтам с просьбой запустить 20-сантиметровые самолеты с МКС во время очередного рейса шаттла. «Голуби» должны спуститься на Землю через несколько месяцев после запуска. Определить место приземления невозможно, поэтому японцы обращаются ко всем жителям Земли с просьбой сообщить, где и когда найден такой самолетик. То же самое на многих языках будет написано и на самих самолетиках.
ОБОЙДЕМСЯ БЕЗ СТИРКИ?Одежда, не требующая стирки и способная самоочищаться под солнечными лучами, создана учеными Австралии и Китая. Секрет ее заключается в том, что на поверхность традиционного материала наносится с помощью нанотехнологии слой толщиной в пять атомов особой двуокиси титана. Этот состав используется в космической промышленности и известен способностью разлагать под солнечными лучами оказавшиеся на его поверхности загрязняющие химические вещества.
В ходе испытаний специально испачканный костюм полностью восстановил свою первоначальную чистоту после того, как в течение 20 часов находился под солнечными лучами. Авторы разработки утверждают, что уже в ближайшее время из самоочищающегося материала начнут шить повседневные вещи.
СВЕТЯЩИЙСЯ ШЕЛК. Натуральный шелк, который светится в ультрафиолетовых лучах, получили японские ученые. Для этого специалисты Киотского технологического университета вывели шелковичных червей, которые прядут коконы из нитей, сочетающих желтый, фиолетовый, голубой и белый цвета. Под солнечными лучами они имеют светло-желтый окрас, но в сумерках под воздействием ультрафиолетового излучения окутываются приглушенным свечением.
КСТАТИ…
Тепловой вычислитель
Тепло… Холодно… Горячо… Эти слова известной игры можно использовать для описания работы вычислительного устройства, разработанного сотрудниками Национального Сингапурского университета.
Мы рассказывали о приборах и машинах для вычислений, состоящих из хитроумных комбинаций валов, шестеренок и храповиков. Существуют комбинации катящихся по желобкам и сталкивающихся шариков, текущих по трубочкам вместе с жидкостью пузырьков.
Очередь дошла и до использования фононов – то есть частиц тепловой энергии. Вместо источника электрической энергии в таком тепловом компьютере должны быть нагреватель и холодильник. А между ними – элементы, подобные диодам и транзисторам электронных схем. Первый такой нелинейный тепловой прибор – температурный диод, теплопроводность которого различна в двух противоположных направлениях, был предсказан теоретиками еще в конце прошлого века. А в 2006 году его успешно реализовала на практике международная команда исследователей, работавших в Беркли. Этот диод представляет собой нанотрубку из углерода или нитрида бора с большим количеством примесей, неравномерно распределенных по ее длине. Сложный, нелинейный характер колебаний атомов в подобной трубке, способной выдержать температуры в тысячи градусов, придает элементу одностороннюю проводимость тепла.
Сингапурские же исследователи показали, что, соединив определенным образом три подобные нанотрубки, можно создать аналог транзистора, в котором поток тепла от одной трубки к другой – от истока к стоку – будет зависеть от температуры третьей трубки – регулятора. Первый «тепловой» транзистор был изготовлен учеными летом 2007 года, но пока, правда, в нем потоком тепла управляет не температура, а напряжение на затворе.
Так выглядит тепловой транзистор.
Тем не менее, энтузиасты нового направления уверены, что вскоре им удастся создать и настоящий тепловой триод. Имея же в наличии диоды и триоды, уже нетрудно создать логические вентили.
В быстродействии такие логические устройства не смогут конкурировать с электронными. Хотя бы уже потому, что тепло не может распространяться так же быстро, как электронные или оптические сигналы. Зато подобные логические устройства способны функционировать, например, при температурах в сотни, а то и тысячи градусов, что не под силу никакой другой электронной технике.
РАССКАЗЫ О ПРОСТЫХ ВЕЩАХ
История скрепки
Нам кажется, что скрепки были всегда. Однако наш корреспондент Илья ЗВЕРЕВ сумел проследить неожиданные повороты истории этой универсальной офисной принадлежности.
Оказывается, скрепки были изобретены далеко не сразу. В XIII веке появились своеобразные «скоросшиватели» для бумажных листов. Выглядело это так: в левом верхнем углу каждого листа делали прорезы, сквозь которые продевали матерчатую ленту.
Затем в 1835 году американский врач Джон Хауи первым изобрел швейные булавки, а нью-йоркские секретарши быстро сообразили, что ими можно скреплять до десятка листов. Правда, булавки кололись и оставляли на бумаге некрасивые отверстия. А потому в 90-х годах XIX века в офисах стали использовать проволочные пружинки, предложенные в 1867 году Сэмюэлем Фэем поначалу для совершенно другой цели – крепления одежных ярлыков и ценников в магазинах.
И лишь в 1899 году норвежский математик Йохан Ваалер, который был с юности известен своим новаторством, экспериментируя с кусочками пружинной проволоки, придумал несколько удачных конструкций скрепок и сделал эскизы своего главного изобретения – «палеоскрепки». Поскольку в Норвегии в то время не было закона о патентах, Ваалер в 1901 году запатентовал свое новшество в Германии и США.
Однако там к тому моменту уже было зарегистрировано несколько похожих изобретений. Так, Уиллиам Мидлбрук из Уотербери (штат Коннектикут) запатентовал дизайн скрепки в 1899 году, а Корнелиус Броснан из Спрингфилда (штат Массачусетс) запатентовал в 1900 году скрепку, получившую имя Konaclip.
Однако конструкция скрепки Ваалера в виде классического двойного овала оказалась самой удачной. Она была очень похожа на современную, отличаясь от нее лишь числом коленцев. Тем не менее, у нее было два недостатка. Во-первых, она мяла бумагу, потому что давила на нее на слишком маленьком участке, во-вторых, быстро ломалась. Первый недостаток вскоре устранили, придумав делать проволоку в виде ажурных узоров и распределив таким образом нагрузку по большей площади. А чтобы скрепка не ломалась, к ее концам приварили специальные дужки.
Но, как говорится, нет предела совершенству. И секретарша из Германии Э. Либинг в 1902 году предложила около десяти вариантов скрепки. Один из них – скрепка с множеством красивых завитушек – пришелся по вкусу фирме Stral, которая начала ее массовое производство.
Со временем усовершенствования только набирали обороты. Появились хромированные, гофрированные, гладкие, цветные с виниловым покрытием, пластмассовые, треугольные, круглые, квадратные скрепки.
В 1999 году скрепка справила свой столетний юбилей, а теперь готовится отметить свое 110-летие. С момента создания предлагались самые разнообразные модели, однако до наших дней дожили четыре основные.
Во-первых, Gem(«Джем») – это самая привычная форма скрепки. Именно ее можно обнаружить среди канцелярских принадлежностей в большинстве офисов.
Вторая форма скрепки – Ideal(«Идеал») – была специально разработана для скрепления большого числа бумаг. Скрепка «Сова» получила свое название за очертания, напоминающие два круглых глаза. У скрепки Non-Skid(«Нескользящая») сделаны специальные надрезы по бокам.
В России дело с производством скрепок на протяжении многих лет обстояло неважно. До революции все необходимое для бумажной работы ввозилось из-за границы. Только в 1925 году было организовано государственное унитарное предприятие «Союз» – первое в России по выпуску школьно-письменных принадлежностей и канцелярских изделий. Оборудование и материалы для производства закупались в Германии. Тогда же начался выпуск канцелярских скрепок и кнопок.
До 90-х годов XX века «Союз» был у нас монополистом. Сейчас ситуация заметно изменилась. Среди крупных российских производителей канцелярских скрепок сегодня значатся предприятие «Велент», компания «НЕО», ФК «Форум» и калининградская компания «Скрепка».
Совершенствуются и конструкции скрепок, и автоматы для их изготовления. Так А.Пчелин из НИИ энергетического машиностроения МГТУ им. Н.Баумана изобрел лапчатую скрепку (заявка 93035539). Нажимая на лапку, делопроизводитель утапливает ее в отверстие пластины. Между ними помещает листы бумаги, затем отпускает лапку, и она прочно, без деформации скрепляет листы. На пластине скрепки можно устанавливать съемные прозрачные пленки с маркировочным знаком (например, товарным).
А изобретатель О. Фищенко придумал автомат для изготовления М-образных скрепок (пат. 2050216). Он позволяет без всякого вмешательства человека изготавливать десятки скрепок в минуту.
Сегодня в мире ежегодно производится около 100 млрд. скрепок, однако, как показывают исследования, лишь около 5 % из них используются по прямому назначению. Скрепки также применяют как фишки для покера, зубочистки или даже отмычки…
Впрочем, недавно появились скрепки нового поколения, с которыми, будем надеяться, канцеляристы станут обращаться более бережно. Эти скрепки в дополнение к стальному телу имеют еще и кибернетическую головку – микрочип, который позволяет очень быстро найти среди многочисленных кип нужную бумагу. Для этого нужно лишь набрать на компьютере код документа, и скрепка на нем отзовется мелодичным сигналом.
С 2003 года в нашей стране регулярно вручается «Золотая скрепка» – престижная награда для избранных, которой награждаются лучшие деятели рынка канцелярских и офисных товаров.
Но, пожалуй, самый значительный памятник скрепке и ее изобретателю Йохану Ваалеру поставлен в Осло. В феврале 1990 года в столице Норвегии была установлена на постаменте 5-метровая скрепка из нержавеющей стали. Автор памятника Яр Эрис Паульсон решил таким образом отметить столетие массового употребления двойного плоского витка проволоки.
Кстати, для жителей Норвегии этот кусок проволоки имеет еще и символическое значение. В 1940 году, захватив страну, нацисты поставили у власти оккупационное правительство и запретили носить пуговицы и значки с инициалами изгнанного норвежского короля Хаакона VII. Тогда норвежцы вспомнили о самом известном национальном изобретении и стали носить на одежде скрепки, ставшие символом единства и независимости нации.