355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2001 № 12 » Текст книги (страница 2)
Юный техник, 2001 № 12
  • Текст добавлен: 1 августа 2017, 21:00

Текст книги "Юный техник, 2001 № 12"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 2 (всего у книги 6 страниц)

СЕНСАЦИИ
Есть контакт?!

В октябре 2001 года с Земли было отправлено первое радиопослание детей Земли инопланетным цивилизациям.


Художник Ю.Сарафанов

ШКОЛЬНИКИ – ИНОПЛАНЕТЯНАМ

Этот проект, разработанный в Российской академии космонавтики, поддержали национальные космические агентства России и Украины. Для составления текста был создан специальный словарь, содержащий слова, смысл которых, как считают его авторы, инопланетяне смогут расшифровать без особых проблем.

Для отправки радиопослания в межзвездное пространство в бывший Центр дальней космической связи, расположенный под Евпаторией, приехали ребята из ряда российских и украинских школ. В своем послании, составленном на русском и английском языках, они рассказали о планете Земля, о нынешних проблемах человечества, пожелали инопланетянам мира и добра, предложили им свое сотрудничество.

Текст дополнен фрагментами из музыкальных произведений Баха, Бетховена и Вивальди.

Послание было отправлено в космос мощным передатчиком Центра дальней космической связи. По расчетам, оно ежесуточно преодолевает расстояние в 25 млрд. км.

А ребята вместе с учеными продолжают тем временем разрабатывать программу дальнейшего общения с внеземными цивилизациями.

Впрочем, это не первая международная космическая про– грамма, в котором принимают участие российские школьники. Еще 29 марта 2000 года Британский совет – общественная организация, представительства которой имеются в 111 странах мира, – объявил о начале реализации в России проекта «Международная школьная обсерватория».

В ее рамках учащиеся двух российских школ получили возможность использовать данные уникальных зарубежных телескопов и обмениваться знаниями по астрономии со своими сверстниками из 12 стран.

Научную сторону проекта поддерживают Университет им. Джона Мура в Ливерпуле (Liverpool John Moores University) и Японская ассоциация астероидной защиты (Japan Spaceguard Association).

– Начиная проект, организаторы исходили из того, что многие удивительные открытия, особенно в астрономии и точных науках, совершаются молодежью. Ведь в изучении неба главную роль играет не ученая степень исследователя, а его стремление познать тайны Вселенной.

Для участия в пилотном проекте Британский совет совместно с Институтом космических исследований РАН отобрал две российские школы – Нижегородский лицей № 40 и Центр образования г. Зеленогорска Красноярского края, – имеющие опыт самостоятельных исследований в области астрономии. Им и было направлено программное обеспечение и оборудование, которое позволит школьникам связываться с телескопами и обсерваториями в других странах и обмениваться результатами своих исследований с коллегами.

– Серьезные научные исследования, как правило, не ведутся в одиночку. Необходимо не только учитывать опыт других ученых, но и делиться с ними своими достижениями. Обмен знаниями между молодыми учеными из разных стран позволит сделать немало открытий в сфере астрономии, – сказал Сергей Гурьянов, преподаватель астрономии Центра образования г. Зеленогорска. – Участие в проекте позволит преподавателям найти связующее звено между столь разными на первый взгляд дисциплинами, как астрономия, физика, математика, география, история и иностранный язык…

Сейчас в рамках «Международной школьной обсерватории» ведутся исследования по двум основным направлениям: «Введение в астрономию» и «Поиск астероидов». Британские и японские школьники уже работают над этими проблемами, а с подключением к проекту других стран исследования выйдут на международный уровень.

Развитие международного сотрудничества школьников планируется по принципу двустороннего партнерства. Каждая школа страны-участницы будет прикреплена к британской или японской школе. В пилотном проекте задействованы по два образовательных учреждения от каждой страны. В дальнейшем число школ, ведущих исследования в рамках «Международной школьной обсерватории», будет расти.

Более подробно обо всем вы сможете узнать у Натальи Чернюк, специалиста по вопросам науки Британского совета. Тел.: (095) 234-02-01. E-mail:[email protected].

PS. Пока публикация готовилась к печати, в Интернете появилось сообщение об организации еще одной «Виртуальной обсерватории», в которой принимают участие и специалисты НАСА. Они будут поставлять в Интернет последние данные, полученные как с крупнейшего в мире наземного телескопа на Гавайях, так и с космических телескопов.



Подробности для любознательных

ПРОЕКТ «МЕЖДУНАРОДНАЯ ШКОЛЬНАЯ ОБСЕРВАТОРИЯ»

В мае 2000 года в городе Куала-Лумпур, в Малайзии, состоялась конференция, на которой представители Британского совета, Университета им. Джона Мура в Ливерпуле и Японской ассоциации астероидной защиты приняли решение о создании «Международной школьной обсерватории». Первоначально идею проекта поддержали девять стран. В конце октября 2000 года в Ливерпуле проходил конгресс, на котором проекту присоединились еще четыре европейских государства: Россия, Польша, Венгрия и Испания.

ОСНОВНЫЕ ЦЕЛИ ПРОЕКТА:

• предоставить школьникам всего мира доступ к международным обсерваториям и профессиональным автоматическим телескопам;

• обеспечить эффективное сотрудничество и обмен опытом между школьниками из разных стран в области астрономии и смежных с нею наук;

• открыть для школьников и преподавателей доступ к существующим источникам научной и технической информации в области астрономии, физики и других наук;

• реализовать идею образовательного наполнения Интернет-пространства;

• используя интердисциплинарный подход, подготовить учебные материалы по астрономии, физике, математике, дизайну и технологии, английскому языку, гуманитарным наукам и предметам в области экономики и финансов.

В ближайшее время возможность пользоваться автоматическими телескопами и обсерваториями, а также обмениваться опытом по сети Интернет получат школьники 13 стран.

Всего в проекте планируется участие примерно 40 школ. Сотрудничество школьников будет осуществляться по принципу двустороннего партнерства, причем британским и японским школам отводится роль определяющих дальнейшее развитие совместной работы.

Школы, выразившие желание присоединиться к проекту, но не вошедшие в число активных участников, смогут следить за результатами исследований посредством участия в Интернет-конференциях на официальном сайте проекта www.bciso.net.

С конца апреля 2001 года информацию о проекте на русском языке можно увидеть на сайте www.iso.nm.ru.


АВТОМАТИЧЕСКИЙ ТЕЛЕСКОП

Автоматический телескоп представляет собой автономное устройство, управление которым осуществляется из обсерватории, находящейся, как правило, на значительном расстоянии от самого прибора. Автоматические телескопы устанавливаются в высокогорной местности, где климатические условия характеризуются крайне низким процентом облачности в темное время суток.

Исследование объектов Вселенной посредством автоматического телескопа осуществляется следующим образом. Ученые-астрономы посылают свои заявки на наблюдения в обсерваторию, осуществляющую контроль за работой прибора. Поступившие заявки формируют график наблюдений, который ежедневно по сети Интернет передается на телескоп. С наступлением темноты компьютеры и сенсорные системы автоматически приводят телескоп в действие, и, согласно установленному графику, начинается изучение звездного неба. На следующий день вся информация в графическом изображении передается по Интернету в обсерваторию.

Проект «Международная школьная обсерватория» предусматривает работу школьников с тремя автоматическими телескопами. Ливерпульский телескоп, работа над установкой которого закончится в 2001 году, будет находиться на острове Ла-Пальма на Канарах. Контроль за работой прибора будет осуществляться из Университета им. Джона Мура в Ливерпуле. Два других телескопа, задействованных в проекте, находятся в японском Центре астероидной защиты Бисей (г. Окаяма). Они позволяют идентифицировать астероиды и другие космические объекты, пролетающие на близких расстояниях от земной орбиты и представляющие серьезную опасность для нашей планеты.

Школьники, представившие наиболее интересные и подробно обоснованные заявки на наблюдения, получат возможность работать с одним из телескопов, а сами заявки будут размещены на сайте http://www.schoolobservatory.org.uk/

Более подробную информацию о телескопах можно найти на сайтах

http://teleskope.livjm.ac.uk/ http://www.spaceguard.or.jp/bsgc/pamphlet/index.htm


ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ LTIMAGE

Информация, полученная автоматическим телескопом, передается ученым по сети Интернет в виде файлов в формате FITS (Flexible Image Transport System). Эти компьютерные файлы содержат данные о телескопе, погодных условиях, дате, времени наблюдения и т. д., позволяющие проводить точные научные исследования. Работа с FITS-файлами требует профессионального программного обеспечения (ПО), которое школьникам достаточно трудно использовать. Поэтому учеными Университета им. Джона Мура в Ливерпуле было разработано специальное ПО (LTImage), позволяющее проводить астрономический анализ графических данных, используя компьютеры, установленные в обычных школах.

LTImage дает возможность пользователям: работать с графическими данными с разрешением 2048x2048 пикселей; изменять цвет и размер изображения; работать одновременно с четырьмя графическими файлами; сохранять изображение в формате BMP с последующей его вставкой в текстовый документ или размещением на web-сайте.

Планируется, что в будущем характеристики LTImage будут включать: точное измерение координат объектов и расстояния между ними; фотометрию (измерение яркости); большее количество опций, связанных с загрузкой и сохранением файлов.

LTImage ориентировано на школьников, имеющих разные уровни знания и принадлежащих к нескольким возрастным категориям. Существует четыре вида ПО LTImage: для начинающих (Beginner), учеников (Apprentice), исследователей (Researcher), экспертов (Expert). Все виды LTImage имеют стандартный набор функциональных характеристик и отличаются лишь деталями интерфейса. Более подробную информацию о ПО LTImage можно получить на сайте http://www.sehoolsobservatory.org.uk/staff/sres/ltimgl.htm

Планируется, что школы, являющиеся участниками проекта, в ближайшем времени бесплатно получат ПО LTImage.

ТЕХНИЧЕСКИЕ ВОЗМОЖНОСТИ РОССИЙСКИХ ШКОЛ

На базе Муниципального центра образования г. Зеленогорска Красноярского края действует астрономическая лаборатория, оснащенная компьютерами на базе процессора Celeron-333 с ОЗУ 32 МБ и жестким диском емкостью 4 ГБ и 32-скоростным CD-ROM. Используемая операционная система – Windows-98 и 1Е-5. Подключение к локальной сети Интернет осуществляется через Firewall и Proxy серверы. Для наблюдения за небесными телами используются телескопы Meade LX-200 SCT, CCD SBIG-ST6, а также самодельные телескопы с диаметром зеркал до 0,15 м.

Более подробную информацию о деятельности лаборатории можно получить на сайте http://www.zgr.kts.ru/astron/index.htm.

Контакт: Сергей Гурьянов. Муниципальный центр образования: Красноярский край, г. Зеленогорск, ул. Бортникова, д.13. Тел.: (39169) 35-223. E-mail: [email protected]

Учащиеся лицея № 40 г. Нижний Новгород имеют возможность пользоваться десятью компьютерами на базе процессоров Pentium 75 и Pentium 100. Лицей также оснащен десятью рабочими станциями на базе процессора Celeron 500 с ОЗУ 64 и 100 МБ и с жестким диском емкостью 10 и 20 ГБ. Используемая операционная система – Windows-98/2000. Подключение к локальной сети Интернет осуществляется через Firewall сервер. Для наблюдения за небесными телами используются телескопы обсерватории на базе факультета астрономии Нижегородского педагогического университета. В распоряжении студентов и школьников два телескопа – АВР-3 и Zeiss Cassegren 150.

Контакт: Алексей Митюгов. Лицей № 40: г. Нижний Новгород, ул. Варварская, д. Тел.: (8312) 331–949. E-mail: [email protected]

ИНФОРМАЦИЯ К РАЗМЫШЛЕНИЮ

Три колеса. Продолжение давнего спора

Жизнь без автомобиля сегодня немыслима. Но очень многие согласятся, что именно автомобиль делает жизнь на земле все более затруднительной. Именно автомобили сжигают едва ли не треть всей добываемой в мире нефти, да при этом еще загрязняют окружающую среду. А нефти на земле осталось не так уж много, лет на тридцать. Что потом?

Но потребляет автомобиль не только топливо из бензобака. Его производство тоже забирает у человечества энергию – то же самое топливо.


Еще в 70-е годы американцы подсчитали, что на производство легкового автомобиля расходуется столько же энергии, сколько содержится в бензине, который он сжигает за все время своего существования. Речь тогда шла об автомобиле с массой 1360 кг и расходом топлива 13–16 л на 100 км и пробегом до сдачи в металлолом 160 тысяч км.

С тех пор экономичность двигателя значительно возросла, а вот расход энергии на производство одного килограмма металла уменьшился незначительно. Так что и сегодня производство автомобилей ложится на энергетику планеты большим бременем.

Немалых затрат труда и энергии стоит и строительство автомобильных дорог. Но, как видят сегодня жители больших городов, они переполнены. Езда по ним подчас превращается в тяжкий труд.

Одно из решений проблемы – это делать маленькие, предельно легкие автомобили. Тем более что уже известно: средняя загрузка легкового автомобиля составляет 1,1 человека. Так что миниатюрная двухместная, занимающая очень мало места машина по всем статьям лучше большой. А нужны ли маленькой машине четыре колеса? Не хватит ли трех?

Вопрос не надуманный. Именно с трехколесных машин началось автостроение. Еще при Людовике XV инженер Никола Жозеф Кюньо построил трехколесный артиллерийский тягач с паровым котлом и передним управляемым колесом. Первый автомобиль Карла Бенца (1886 г.) тоже был трехколесным (рис. 1).


Рис. 1. Автомобиль-трицикл Карла Бенца, 1885 год.

Колеса без упругой подвески, открытые всем ветрам сиденья. Одноцилиндровый двигатель объемом около литра развивал мощность меньше одной лошадиной силы и «разгонял» экипаж до немалой по тем временам скорости 15 км/ч.

Дальше развитие автомобиля пошло по «четырехколесному» пути, но трехколесные конструкции не исчезли. После Великой Отечественной войны в нашей стране было очень много инвалидов. Для них были созданы трехколесные мотоколяски на базе легких мотоциклов М1-М и К1-Б Минского и Киевского заводов. Это было открытое кресло-сиденье, установленное между задними колесами, а перед ним размещался мотоциклетный двигатель и рычаг управления, связанный с передним мотоциклетным колесом.

Позже на заводе в Серпухове закрыли мотоколяску кузовом, установили автомобильный руль и поставили двигатель от мотоцикла ИЖ.

В середине 50-х годов в Германии фирма Messerschmitt, известная своими самолетами, стала выпускать трехколесный автомобиль «Messerschmitt Tiger», удивительно напоминающий истребитель (рис. 2).


Рис. 2. Автомобиль-трицикл «Мессершмитт Тигр», фирма Messerschmitt, 1953 год.

Кресла водителя и единственного пассажира располагались друг за другом, а для посадки и высадки весь прозрачный колпак откидывался, как у кабины самолета! Даже управление производилось по-самолетному, при помощи рычага. В этом трицикле появились передовые технические решения многих узлов, в частности, независимая подвеска. Спереди у него было два управляемых колеса, а сзади – одно ведущее. Длина «Тигра» была меньше трех метров, вес – 240 кг, скорость до 100 км/ч с двигателем мощностью 10 л.с. Машину долго выпускали. Ее последняя модель имела двухцилиндровый двигатель мощностью 20 л.с. и максимальную скорость 130 км/ч.

Конструкция фирмы Messerschmitt оказалась очень удачной, многократно использовалась в других моделях. Даже сегодня английская фирма Tri Tech Autocraft выпускает ее точную копию под названием «Tri Tech Schmitt» (рис. 3).


Рис. 3. Автомобиль-трицикл «Шмитт», фирма Tri Tech Autocraft, Англия.

Выпускают трициклы и сейчас. Их преимущества в простоте.

У четырехколесного автомобиля передние управляемые колеса при повороте движутся по окружностям различного радиуса и их нужно поворачивать на разные углы, а задние ведущие колеса при повороте также проходят разный путь, поэтому необходим дифференциал, позволяющий им вращаться с различной скоростью. Не следует забывать, что по чисто геометрическим соображениям одно колесо четырехколесного экипажа всегда повисает в воздухе. Только подвеска заставляет его касаться земли.

У трехколесного экипажа контакт с землей постоянен, поскольку, как вы знаете, три точки определяют плоскость. Колеса можно расположить по-разному. Например, одно колесо может быть как спереди, так и сзади. Переднее управляемое колесо упрощает рулевую систему, ведущее заднее колесо делает ненужным дифференциал.

Полагают, что трехколесные экипажи обладают меньшей устойчивостью по сравнению с четырехколесными, особенно при повороте. Но практика этого не подтверждает.

Трехколесные экипажи прокладывают на грунте не две, а три колеи, что увеличивает сопротивление движению и снижает проходимость. Но городской автомобиль используется в основном на дорогах, где проходимость не нужна. Простота, экономичность и неприхотливость обеспечила трициклам широчайшее распространение там, где нет развитого автосервиса – в странах Юго-Восточной Азии, Индии, Африки.

Здесь высока плотность населения, нет очень дальних поездок, жизнь течет интенсивно, но неторопливо.

Двигатели трехколесных микрогрузовиков мощностью всего в несколько лошадиных сил исправно таскают груз в 500–600 кг со скоростью более 50 км/ч.

Прогресс в развитии трициклов своеобразен. Часто он бывает направлен на достижение предельной простоты. Нигерийская фирма Addis выпускает трехколесные пятиместные(!) машины. Угловатый кузов выполнен из пластика с наполнителем из пальмового волокна и имеет четыре двери.

Двигатель от мотоцикла «Yamaha» расходует 4,5 л топлива на 100 км. Модель «Addis РЗ» (рис. 4) очень дешева и практична, а потому находит широчайшее применение. Вероятно, ее внешний вид устраивает потребителя…


Рис. 4. Автомобиль-трицикл «ADDIS РЗ», Нигерия.

Взяв за основу грузовой мотороллер, итальянцам удалось получить изящный микрогрузовичок «ASS0 20–14» (рис. 5).


Рис. 5. Автомобиль-трицикл «ASSO 20–14», Италия.

Двухместная пластиковая кабина с автомобильными дверьми не только отделана тканью, но и вдобавок снабжена обогревателем. Независимая подвеска, экономичный дизель, исключительная маневренность – им заинтересовались даже в Европе.

Микрогрузовик может перевозить от 500 до 850 кг груза, а для полного разворота ему нужно всего 7,2 м ширины улицы.

Повсеместное увлечение электромобилями не обошло и трициклы. Несмотря на то что в Дании нет своей автопромышленности, фирма EL-Trans выпускает одноместный трехколесный городской электрический экипаж «Mini City-EL» длиной 2,8 м и весом 290 кг. Привод осуществляется посредством электродвигателей, встроенных в колеса. Его общая мощность 2,5 кВт (с возможностью кратковременного форсирования до 3,6 кВт). Максимальная скорость «Mini» – 50 км/ч, запас хода на одной зарядке аккумулятора – до 50 км. Кузов электротрицикла выполнен из стеклопластика, он имеет откидной обтекатель для входа-выхода, причем откидывается и рулевая колонка. Мини-электромобиль получился настолько удачным, что в Англии его уже начали выпускать под маркой «Combi Drive Mouse», хотя на мышь этот элегантный трицикл никак не похож.

Развивается производство миниатюрных электротрициклов для поездок за покупками, доставки мелких партий товаров, почты, да просто для пожилых людей, которым уже сложно управлять двухколесным экипажем.

Схема трицикла позволяет создавать интересные гоночные модели. Этому способствует уменьшение лобового сопротивления за счет меньшей ширины, максимальное сближение двух задних или передних колес.

Канадская фирма Campagna Motors выпускает малыми партиями полугоночные трициклы «Т-REX» (рис. 6), разработал которые механик Даниель Кампанья.


Рис. 6. Автомобиль-трицикл «Т-REX» фирмы Campagna Motors, Канада.

Его «дорожная ракета» весит 373 кг и разгоняется до скорости 100 км/ч за 4,2 с, а максимальная скорость ограничена величиной 210 км/ч только из соображений безопасности. На трицикле установлен силовой агрегат от мотоцикла «Suzuki GSX– R1100» мощностью 155 л.с. Такой двигатель мог бы поднять в воздух вертолет со взлетным весом 620 кг! Машина имеет чисто спортивное назначение, кроме того, на ней отрабатываются технические новшества.

А транспортное средство из Голландии трициклом даже неловко называть: хотя конструкция под названием «Carver» имеет три колеса, по комфортабельности и оборудованию она не уступит солидному современному автомобилю. Дебют модели голландского бизнесмена Криса ван ден Бринка состоялся на франкфуртском Мотор-шоу 1999 года. Алюминий и пластик, тандемное расположение двух сидений, четырехцилиндровый турбодизель. Автоматическая система обеспечения устойчивости создает наклон кузова на виражах до 45 градусов в обе стороны и позволяет развивать скорость 190 км/ч.

Двигатель разгоняет «Carver» до 100 км/ч за 8,2 с. Хотя машина серийно не производится, ее пример доказывает, что трициклы могут стать серьезными конкурентами четырехколесных машин.

Марк МИХАЙЛОВ


    Ваша оценка произведения:

Популярные книги за неделю