Текст книги "Юный техник, 2002 № 03"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 2 (всего у книги 5 страниц)
ПАНОРАМА
О новинках науки и техники, изобретениях, сделанных в разных странах. Сегодня наш рассказ о США.
Художник Ю. САРАФАНОВ
ОТКУДА ВЗЯЛАСЬ ЛУНА?
Согласно новейшей теории, естественный спутник Земли образовался в результате космической катастрофы, такую точку зрения высказали астрофизики из Центра космических исследований в американском штате Колорадо. Компьютерное моделирование показало, что 4,5 млрд. лет тому назад, в момент завершения формирования Земли, в нее врезался гигантский астероид или даже некая планета. Выброшенные в момент взрыва осколки со временем и слепили Луну. А сам пришелец, отскочив после удара, словно бильярдный шар, со временем занял свое место в Солнечной системе.
Таким пришельцем, по мнению астрофизиков, вполне могла быть современная Венера. На то указывает несколько фактов. Во-первых, эта планета вращается «не в ту сторону», что все остальные, и имеет нетрадиционную ось вращения. А кроме того, на ее поверхности обнаружены и по сей день сохранившиеся следы возможного столкновения.
ОТПРАВЯТСЯ ЛИ ШКОЛЬНИКИ В ПУТЕШЕСТВИЕ ПО МАРСУ
Очередная межпланетная экспедиция предоставит школьникам уникальную возможность поуправлять самоходным аппаратом, который высадится на марсианскую поверхность. Оригинальный проект привлечения школьников принадлежит старейшему американскому астронавту Джону Гленну.
Предполагается, что ребята будут жить в специально возведенной модели обитаемой марсианской базы и смогут помогать специалистам в работах и управлении марсоходом. Впервые в истории, подчеркнул астронавт, ученики станут участниками путешествия по просторам другого мира.
Участниками могут стать ребята в возрасте от 11 до 17 лет из любой страны, победившие в конкурсе, о начале которого собирались объявить в октябре 2001 года. Однако из этой затеи пока ничего не вышло. Станция «Марс сервейор 2001» должна была стартовать с Земли в 2001 году и доставить на поверхность Марса самоходный аппарат «Мария Кюри» примерно того же типа, что и марсоход «Соджурнер». Тот самый, который завоевал всемирную известность, «высадившись» на Марсе в 1997 году. Однако по техническим причинам новая экспедиция не состоялась. Так что космическое путешествие школьников отложено на неопределенный срок.
СВЕРХПРОВОДИМОСТЬ ПРИБЛИЖЕНА ЕЩЕ НА НЕСКОЛЬКО ГРАДУСОВ
Американские физики получили органический материал, который становится сверхпроводником при температуре, намного превышающей температуру жидкого азота. Бертон Бетлак и его коллеги изучали свойства кристаллов, созданных из 60-атомных молекул углерода – так называемых фулеренов. Специалисты полагают, что открывается возможность создать фулереновый сверхпроводник, который будет иметь сверхпроводимые свойства уже при 150 К (– 120 °C), пишет журнал «Сайнс».
МЕХАНИЗМ, А КАК ЖИВОЙ
Живые организмы, как известно, способны сами залечивать раны и даже переломы костей. Исследователи Иллинойского университета решили наделить такой же способностью и механизмы. Они создали синтетический материал, который обладает способностью самостоятельно ликвидировать некоторые повреждения. Он представляет собой пластмассу, включающую в себя два ингредиента: равномерно распределенные по объему молекулы катализатора и микрокапсулы с залечивающим реагентом.
«Когда материал трескается, микрокапсулы лопаются и растекаются по месту повреждения и в присутствии катализатора полимеризуются, устраняя повреждения», – объясняет Скотт Уайт, профессор аэрокосмического проектирования, руководивший этой разработкой.
Испытания показали, что выполненные из нового материала детали действительно способны самостоятельно восстановить до 75 процентов своей первоначальной прочности. Из него предполагается изготовлять авиационные узлы, электронные платы и другие конструктивные элементы.
САМ СЕБЕ ДОНОР
Медики Бостонского ортопедического госпиталя разработали биотехнологический метод лечения травм коленного сустава. Из здорового колена пациента извлекают маленький кусочек хряща, размножают его клетки на сыворотке из крови пациента и подсаживают культуру в поврежденный участок сустава. Пересадка стимулирует рост молодой хрящевой ткани, которая постепенно заполняет зону травматического поражения. И пациент получает как бы новый коленный сустав. Единственный недостаток нового метода – время. Процедура занимает около года.
ВОЗДУШНЫЙ МОТОЦИКЛ
В январе 2002 года американская компания «Миллениум джет» провела в Калифорнии первые испытания принципиально нового индивидуального летательного аппарата SoloTrek («Соло-трек»), напоминающего миниатюрный открытый вертолет.
Одноместная машина, полет на которой пришелся бы по вкусу самому «агенту 007» Джеймсу Бонду, оторвалась от земли и зависла, продержавшись в воздухе 19 секунд. Управлял уникальным аппаратом его создатель – глава компании Майкл Мошир, увлекшийся конструированием после окончания службы в ВВС США. Журналистов на просмотр и «разбор» полета не пригласили, а лишь показали видеозапись необычного испытания.
«Соло-трек» висел над землей на высоте около метра и фиксировался тремя тросами – двумя снизу, закрепленными на поверхности земли, и еще одним сверху, отходящим от стрелы подъемного крана. Сделано было так с целью обезопасить полет от всякого рода неожиданностей, которые, судя по крайне недолгому пребыванию в воздухе, ожидались весьма вероятными.
Так выглядит «Соло-трек» в воздухе и на земле.
На пресс-конференции было доложено, что Мошир и его команда из 10 человек работают над этим проектом уже 6 лет, потратив на его осуществление несколько миллионов долларов.
Масса «Соло-трека» 150 кг, а его высота – 2,5 м. Бензиновый двигатель вращает два пропеллера над головой пилота, который находится в вертикальном положении и маневрирует в воздухе с помощью двух ручек управления. По замыслам конструкторов, аппарат сможет развивать скорость до 130 км/ч, а запаса топлива в его баке должно хватать на 240 км полета.
В перспективе Мошир собирается оснастить «Соло-трек» навигационным оборудованием и креслом-катапультой с парашютом. Он полагает, что основное применение его детище найдет в вооруженных силах, в частности, в войсках спецназа, которые смогут с его помощью преодолевать минные поля и другие препятствия. Не случайно министерство обороны США стало одним из заказчиков компании «Миллениум джет», выделив ей 5 млн. долларов. НАСА также поддерживает этот проект, предоставив Моширу для испытаний аэродинамическую трубу в своем Центре имени Эймса.
Конструктор сознает, что пока им сделаны лишь первые шаги и 19 секунд полета – не гарантия окончательного успеха. «Прежде чем научиться бегать, надо научиться ходить», – философски говорит Мошир, но уверен, что в соответствии с контрактом сможет представить Пентагону готовый к полетам «Соло-трек» к концу 2003 года.
С. НИКОЛАЕВ
* * *
У СОРОКИ НА ХВОСТЕ
РОБОТ С РЫБЬИМИ МОЗГАМИ. Научный журнал «Hew Scientist» опубликовал сообщение, что американские ученые успешно работают над созданием робота, управляемого мозгом рыбы. Световые импульсы, воспринимаемые датчиками в механическом корпусе, снабжают мозг информацией. Тот обрабатывает полученные данные и выдает сигнал, являющийся командой для мотора робота. Если вы думаете, что робот загружает работой весь рыбий мозг, то глубоко ошибаетесь – для этого достаточно нескольких клеточек-нейронов миноги – очень примитивной рыбы типа угря, способных отвечать на более или менее сложные световые сигналы.
Фердинанде Мусса-Ивальди из Северо-Западного университета в Чикаго, его коллеги из университета штата Иллинойс и итальянские ученые из университета в Генуе охарактеризовали робота как «искусственное животное».
Зачем нужен «рыборобот»?
На первый взгляд, этот кибернетический гибрид кажется никчемной игрушкой. Но Мусса-Ивальди надеется, что его изобретение поможет в усовершенствовании существующих протезов. Другие же кибернетики смотрят на дело шире: если тело человека только что умерло, а мозг еще жив, то живой мозг теоретически можно пересадить в робота. При современном уровне науки и техники это кажется фантастикой, но не исключено, что в недалеком будущем такой эксперимент попытаются осуществить.
ГРЯЗЬ ТОЖЕ ПОЛЕЗНА. К такому выводу пришли недавно немецкие исследователи. Они призывают матерей не верить рекламе и не применять в своем доме чрезвычайно сильных дезинфицирующих средств, ограничиться при мытье детей лишь водой и мылом. «Дети не должны расти в стерильных условиях, – утверждают ученые. – Наличие микробов тренирует и укрепляет их иммунную систему».
ЭКОЛОГИЧЕСКИЙ ДОМ. Его собираются построить в Нью-Йорке. Это 26-этажное здание на 250 квартир будет сооружено с применением новейших энергосберегающих и экологически безопасных технологий. Если сбудутся все проектные задумки авторов проекта, то «экодом» станет оазисом чистого воздуха в южной части Манхэттена. Здесь, в фешенебельном районе Беттерипарк, и поставят новостройку с таким расчетом, чтобы многие его жильцы могли полюбоваться на статую Свободы, не выходя из собственной квартиры. Но главное достоинство дома, конечно, не в красивом виде из окна. Архитекторы намерены оснастить вентиляционную систему здания особыми фильтрами, которые блокируют проникновение внутрь не только обычных загрязнителей воздуха, но также газов, вызывающих парниковый эффект, пыльцы растений и других вредных веществ. Это создаст идеальные условия для жильцов, страдающих аллергией и астмой.
Ожидается также, что здание будет потреблять на 30 % меньше электроэнергии, чем типовой небоскреб таких же размеров. Его планируют оснастить также усовершенствованной системой очистки водопроводной воды. По плану строительство здания должно завершиться в 2002 году и обойдется в 95 млн. долларов.
НОВАЯ ЖИЗНЬ ЗАБЫТЫХ ИДЕЙ
Маховик и пар
В 1831 году известный физик Майкл Фарадей поставил опыт, о котором помнит сегодня далеко не каждый учитель физики. Между полюсами магнита он поместил вращающийся металлический диск. Одна проволока прикасалась к оси вращения диска, другая – к его ободу. Присоединенный к этим щеткам гальванометр показал наличие тока (рис. 1).
Этот опыт послужил толчком к созданию новых по тем временам генераторов электрического тока, получивших название униполярных. На рисунке 2 изображено одно из конструктивных решений такого генератора.
Рис. 2 Униполярный генератор:
1 – постоянный магнит; 2 – ртутный контакт; 3 – ротор.
Между полюсами постоянного магнита, похожими по форме на блюдца, размещен вращающийся дисковый ротор. На оси и ободе ротора – скользящие контакты, снимающие ток во внешнюю цепь. Ротор при вращении пересекает силовые линии магнитного поля, поэтому возникает ЭДС, направленная вдоль его радиуса, пропорциональная скорости вращения, диаметру диска и напряженности магнитного поля.
В обычных коллекторных генераторах постоянный ток постоянен лишь по направлению, но по величине сильно пульсирует. Униполярные же генераторы дают ток, строго постоянный по величине и направлению. Одна беда: скорости вращения, свойственные турбинам обычных электростанций, малы для униполярных генераторов. Поэтому они дают токи очень низкого напряжения (5–7 В), силой в десятки тысяч ампер. Передавать их можно лишь на короткие расстояния по очень толстым проводам. Поэтому униполярные генераторы устанавливали непосредственно там, где они были нужны, например, в цехах электрохимических производств.
А вскоре о них и вовсе забыли. И лишь в конце 1910-х годов профессор Б.И.Угримов обратил внимание на то, что униполярный генератор Фарадея и турбина Лаваля как бы созданы друг для друга. Паровые турбины Лаваля известны были с 1889 года.
Они хорошо работали только при очень высоких (30 000 оборотов в минуту и более) скоростях вращения. Обычному электрогенератору нужна скорость в 10–12 раз меньше. Несмотря на это, с 1890-х годов выпускались небольшие (0,5 – 200 кВт) электростанции. Их генераторы работали от турбин Лаваля через замедляющие передачи. На рисунке 3 показан один из таких агрегатов в разобранном состоянии.
Крохотный диск турбины едва заметен слева от шестерен, и не случайно: ротор турбины Лаваля мощностью 10 л.с. весил меньше килограмма, а шестерни – более сорока! Вот эту турбину и решил соединить профессор Угримов с униполярным генератором.
Сделать это оказалось непросто: линейная скорость на окружности ротора генератора достигала сотен метров в секунду, и это приводило к очень быстрому износу медно-графитовых щеток. Попробовали сделать их из специальной бронзы, а обод ротора – из отполированной как зеркало закаленной стали. Износ продолжался, причем металлические щетки порою даже плавились. А стоит ли ждать, когда щетки расплавятся, решил профессор Угримов, сделаем их… из жидкого металла.
Сделали на статоре особую канавку. Придали краю обода специальную форму, а зазор между ними заполнили жидким металлом – ртутью. Износ практически исчез.
Униполярный генератор с жидкометаллическим контактом профессор Угримов построил в начале 20-х годов. Он был напрямую соединен с турбиной Лаваля и выдал рекордно высокое для таких машин напряжение – 110 В, почти в 20 раз выше, чем достигали ранее униполярные генераторы. Более того, полученное напряжение соответствовало принятому в то время стандартному напряжению для городских осветительных сетей постоянного тока. А отсутствие механической передачи и появившаяся возможность не стараться делать турбину тихоходной повысили экономичность установки в целом почти на 20 %.
Увы, новинка запоздала. Начался переход к переменному току. Турбины, впрочем, совершенствовать не перестали.
Сегодня паровые турбины, подобные турбинам Лаваля, достигли высочайшего совершенства. Применяют их в основном для подачи топлива в реактивные двигатели. Скорость вращения турбин превышает 100 000 оборотов в минуту, а мощность достигает тысячи киловатт при весе турбины в несколько килограммов.
Оснащенные турбинами Лаваля легчайшие атомные электростанции мощностью в несколько кВт неоднократно выводились на околоземную орбиту и по многу лет работали в космосе. Повысили и КПД: турбины Лаваля начала века работали с водяным паром давлением 10,5 атм и температурой 190 градусов. При этом их КПД достигал 10–14 %. Подняв температуру пара до 550 градусов, КПД турбин почти удвоили. Однако на этом не остановились. В некоторых установках воду заменили парами ртути и щелочных металлов, а температуру довели до 700 градусов. За счет этого КПД подскочил до 40 %, стал почти как у дизеля! Однако КПД сидящего на валу турбины быстроходного электрогенератора не превышает 60 %. В итоге КПД электростанции в целом не выше 24 %! Много это или мало?
Для сравнения можно вспомнить, что КПД автомобильного двигателя сегодня превышает 40 %. Чуть не вдвое выше. Однако за счет потерь на трение и резкого роста расхода топлива на частичных нагрузках среднее значение КПД автомобиля в городском цикле не превышает 8 %. В смешанном цикле, когда водитель часто и подолгу движется без остановок, КПД тоже невелик – 12,5 %. Выходит, поставив на автомобиль паровую электростанцию, можно еще получить выигрыш. По существу, получится электромобиль, в котором роль аккумуляторных батарей выполняет электростанция. Существуют специальные электромоторы, предназначенные для электрических автомобилей. Их КПД всегда высок, лежит в пределах от 60 до 95 %. Это означает, что в самых худших случаях, когда электромоторы работают наименее эффективно (разгон и троганье с места), КПД нашего автомобиля не будет опускаться ниже 15 %, а расход топлива в городском цикле получится в 2–3 раза ниже, чем у лучших современных автомобилей. Но это еще не все.
Движение по городу сопровождается частыми остановками. При торможении обычного автомобиля вся его энергия переходит в тепло. Полагают, что на это расходуется более половины энергии топлива. На электромобилях при торможении электродвигатели переходят в режим генератора. Энергией, которую они при этом вырабатывают, подзаряжают аккумуляторы. (Это называется рекуперативным торможением.)
Но за короткое время торможения аккумуляторы успевают «поймать» лишь незначительную часть поступающей к ним энергии. Гораздо лучше с этой задачей справляются конденсаторы. Экономия энергии от их применения на электромобиле достигает 30 %. Можно, конечно, поставить конденсаторную батарею и на наш, существующий пока лишь в воображении, автомобиль. Можно, но… не нужно. Вращающиеся с огромными скоростями роторы турбины и униполярного генератора сами по себе являются прекрасными накопителями энергии. В момент торможения автомобиль с паровой электростанцией профессора Угримова мог бы работать так: электродвигатели привода колес переводятся в режим генератора и посылают свой ток в генератор, стоящий на оси турбины. Подача пара в турбину прекращается. Сидящий на ее оси униполярный генератор превращается в двигатель. Он раскручивает сам себя и турбину. За счет накопления энергии торможения скорость их вращения возрастает. Некоторое время после нового старта автомобиль движется только за счет накопленной энергии. Затем подача пара на лопатки турбины возобновляется.
Таким образом, появляется возможность создать автомобиль, расходующий при езде по городу в 3–4 раза меньше топлива, чем лучшие из существующих, – 2–2,5 литра бензина на 100 км пути (рис. 4).
Рис. 4. Паротурбинный электромобиль:
1 – униполярный генератор; 2 – турбина; 3 – парогенератор; 4 – конденсатор пара; 5 – электродвигатель.
При этом для получения пара бензин не обязателен. Можно сжигать мазут, газ, спирт. Выхлоп во всех этих случаях будет экологически абсолютно чист. Вообще-то в паровом котле можно сжигать даже каменный уголь. Его на 100 км потребуется всего 3–5 кг в зависимости от сорта. При современных способах сжигания даже самого плохого угля вы не почувствуете никакого запаха. А если еще достаточно аккуратно и точно выполнить силовую установку автомобиля, он будет шуметь не больше, чем хорошая кофемолка.
А.ИЛЬИН
Рисунки автора и художника В.ГУБАНОВА
ВЕСТИ С ПЯТИ МАТЕРИКОВ
УЛЫБАЮЩЕЕСЯ АВТО. Японские корпорации «Тойота» и «Сони» представили на суд общественности свое совместное творение – автомобиль, который умеет соображать, чувствовать и общаться с хозяином. Его передняя часть оборудована специальными бороздками, имитирующими рот, в качестве глаз выступают фары, а в роли ушей – боковые зеркала. Радиоантенна, установленная в задней части автомобильчика, выполняет еще роль хвостика. При приближении владельца с электронным ключом машина улыбается и подмигивает глазами-фарами. А хвостик-антенн а начинает приветливо вилять.
РОБОТ-КОСМОНАВТ создан в КНР. Профессор Харбинского политехнического университета Лю Хун, который руководил работами по созданию суперробота, утверждает, что новый аппарат сможет полностью заменить человека в проведении сложных операций на орбите и даже на поверхности Луны. Рука робота соразмерна человеческой, но имеет лишь четыре пальца. Тем не менее их оказывается достаточно, чтобы поднимать предметы весом до 10 кг, пользоваться отверткой, гаечным ключом и другими инструментами. Прежде чем отправиться в космос, новый работ должен пройти всесторонние испытания на Земле. В частности, его намечено использовать помощником сапера в операциях по разминированию.
МЫЛО ИЗ САХАРА хотят получать мексиканские специалисты. Дело в том, что многие врачи не советует потреблять сахар, рекомендуя заменять его фруктозой или другими подсластителями. Судя по всему, многие прислушались к совету. Потребление сахара резко упало, и, чтобы спасти производство, исследователи Национального политехнического института Мексики придумали, как получать из свеклы и сахарного тростника сырье, на основе которого можно производить туалетное мыло и стиральные порошки. Как показали первые эксперименты, производство моющих средств из нового сырья втрое дешевле. А кроме того, «сахарные» порошки оказались экологичнее прежних.
ПИНГВИНЫ-ФОТОГРАФЫ… Оригинальный способ наблюдения за недоступной человеку подводной жизнью Антарктики придумали японские биологи. Ученые из Национального института полярных исследований установили электронные фотоаппараты на спинах животных, проводящих долгое время в морских глубинах. По словам авторов проекта, компактные камеры с мощными вспышками, установленные на спинах императорских пингвинов, ныряющих до 500 м в глубину, или на морских слонах, которые погружаются до 1,5 км, способны за двухчасовое плавание «нащелкать» 1200 снимков. Кроме того, аппараты оснащены датчиками температуры воды, ее чистоты, а также ультразвуковым маяком, который позволяет установить точные координаты животного. Последнее необходимо, чтобы найти его и снять дорогостоящую аппаратуру по окончанию съемки.
ВОДОРОД С ПОМОЩЬЮ СОЛНЕЧНОГО СВЕТА. Японские исследователи из научного центра при Объединенном институте промышленных технологий в городе Цукуба сообщают, что близки к получению практически неисчерпаемого источника энергии. Они научились разлагать воду на водород и кислород с помощью обыкновенного солнечного луча. Конечно, для этого им пришлось подыскать особый катализатор. Он представляет собой порошок из оксидного соединения танталита индия с никелем. Это вещество впитывает в себя солнечный свет и за счет накопленной энергии активизирует процесс образования кислорода и водорода.
Способ, как говорят разработчики, получился крайне дешевым, не требующим особых хлопот. Его широкое применение позволит наконец человечеству освободиться от зависимости в ископаемом топливе. Переход на водородное топливо выгоден еще и экологически. Ведь в результате его горения опять-таки образуется вода.
АВАРИЯ «ГАЛИЛЕЯ». Американский космический зонд, который с 1995 года находится на орбите Юпитера, не вышел во второй половине января на очередной сеанс связи. И на Землю не были переданы изображения спутника Ио. Однако специалисты НАСА вовсе не торопятся обвинять в диверсии инопланетян, нарушивших работу главного компьютера «Галилея». Они полагают, что скорее всего причиной отказа стало сильное ионизационное излучение космоса, а также исходящее от самого Юпитера. «Зонд и так проработал дольше запланированного срока, совершив 32 оборота вокруг Юпитера, размеры которого в 300 раз превышают Землю», – поясняют специалисты. Тем не менее, они еще не потеряли надежду восстановить связь. Ведь согласно расчетам, зонд должен упасть на Юпитер лишь в 2003 году.
ЕЩЕ ОДИН ТЕЛЕСКОП вознамерились построить американские астрономы. Специалисты университета Техаса начали подготовку 29-метрового зеркала, которое обеспечит обзор 70 процентов звездного неба. Для сравнения: еще недавно зеркало диаметром 6 – 10 м считалось гигантским. Стоимость проекта оценивается в 200 миллионов долларов.