355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2001 № 05 » Текст книги (страница 1)
Юный техник, 2001 № 05
  • Текст добавлен: 1 августа 2017, 17:00

Текст книги "Юный техник, 2001 № 05"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 1 (всего у книги 5 страниц)

ЖУРНАЛ «ЮНЫЙ ТЕХНИК»
НАУКА ТЕХНИКА ФАНТАСТИКА САМОДЕЛКИ
№ 5 май 2001

Популярный детский и юношеский журнал.

Выходит один раз в месяц.

Издается с сентября 1956 года.


ФОТОФАКТ

Фото Ю.ЕГОРОВА

Велосипед хоть и консервативная конструкция, а эволюционирует непрерывно. Свою лепту в этот процесс внес и одессит В. Кадыров, решив задачу трансформации машины. Чтобы сложить велосипед, например, перед входом в метро, требуется одно движение: поднять за руль – и заднее колесо подъедет к переднему, встав на защелку. А чтобы уместить велосипед в «дипломате». Кадыров решил несколько головоломок.

Попробуйте разгадать каких.


Такую вот конструкцию изобрел и уже испытал московский инженер Л. Гурфинский. Вариантов же может быть несчетно. Пробуйте!



Парить над землей практически на любой высоте – огромное удовольствие. А всего-то и требуется – усовершенствовать монгольфьер. Что и сделал англичанин Дон Камерон. Шары его конструкции просты и удобны, легко наполняются горячим воздухом, который дают мощные газовые горелки.


А эту необычную водоплавающую машину смастерил магнитогорский инженер А.Бакишиов. Она бегает по воде, опираясь на вращающиеся с большой скоростью винты, установленные под определенным углом. Словом, механический жук-водомерка, что передвигается по поверхности воды, вибрируя гидрофобными лапками. Этих словно скользящих по глади скоростников можно наблюдать в тихих заводях и на прудах.


«Живая» и «мертвая» вода – сказка это или реальное техническое достижение, до конца неясно. Но уже выпускаются бытовые установки для ее получения. Называются они «ЭСПЕРО».

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Так есть ли предел силам человеческим?

«Быстрее, выше, сильнее!» – лозунг спортивных Олимпиад. Но казалось бы, куда уж быстрее и выше, когда напряжение человеческих сил уже на пределе. Однако проходят очередные соревнования – и вот вам новый рекорд. Только теперь это не просто достижения спортсменов. Разделить с ними успех по праву могут ученые, инженеры, спортивные специалисты. Соревнования в Сиднее стали своеобразным полигоном для испытания последних научно-технических достижений в спорте.



«Быстрая кожа»

Взглянув на старые фотографии, нетрудно заметить разительные перемены во внешнем облике спортсменов, что произошли за последние полвека. И прежде всего в экипировке.

На смену мешковатым шерстяным костюмам, просторным трусам и майкам пришла аэродинамическая амуниция. Вспомните, какое ошеломляющее впечатление на зрителей и судей произвели в Сиднее пловцы, от шеи до пят затянутые в комбинезоны из черной блестящей ткани, прозванной «акульей кожей»! Они и впрямь напоминали в воде сильных морских хищников, способных атаковать почти молниеносно.

Для сравнения: на соревнованиях по плаванию в олимпийской Атланте-96 было установлено 4 мировых рекорда. На Играх в Сиднее-2000 – 15! И все без исключения рекордсмены были облачены в комбинезоны из «акульей кожи».

Феноменальный австралиец Иан Торп – в специально разработанный для него фирмой Adidas. Остальные – в костюмах американской фирмы Speedo.

А вот сама идея их разработки принадлежала нашему спортивному специалисту Геннадию Турецкому, тренеру четырехкратного олимпийского чемпиона Александра Попова. Это он подметил, что акулы и дельфины плывут, практически не оставляя за собой бурунов. По его мнению, завихрения, естественные при движении, но создающие ненужное гидродинамическое сопротивление у морских животных, гасит структура кожи. Базируясь на этой мысли и разрабатывались специальные комбинезоны под названием «Fast skin» – «быстрая кожа».

При детальном рассмотрении обтекания тела спортсмена водой оказалось, что против завихрений можно бороться с помощью тех же завихрений. Вот и был «выткан» костюм, части которого отличались от соседних жесткостью и направлением ворсинок ткани. Вместе они создают крошечные бурунчики – турбулентность, говоря языком специалистов по гидродинамике.

На поверхности возникает своеобразная вихревая оболочка, которая и снижает сопротивление.

По ходу экспериментов выяснилось, что трение о воду уменьшается в среднем на 3 %. Казалось бы, немного. Однако стоит учитывать еще и психологический эффект. Спортсмены признавались, что в таких костюмах им казалось, у них словно выросли плавники. Все это вместе повысило показатели в среднем на 7 – 10 %. Они-то и принесли новые мировые рекорды.


«Акулья кожа» помогает устанавливать рекорды.


Рассекая воздух

В немалой степени новая техника помогла увеличить скорость велосипедистов. И если на прошлых Олимпиадах инженеры в основном обращали внимание на сами машины, то теперь взялись за амуницию седоков.

Дело в том, что последние исследования показали: велосипеды из углеродных пластиков с дисковыми колесами на специальных подшипниках позволили выжать из машины все. Вот некоторые данные: 90 % сопротивления приходится теперь на аэродинамику и лишь 10 % – на сопротивление механическое – от трения качения шин о дорогу, в подшипниках.

И велосипедисты не только надели обтягивающие аэродинамические костюмы, но изменили и технику посадки – теперь многие держатся руками за специальные «рога» посередине руля. И руки вместе с наклоненной головой становятся своеобразным рассекателем воздуха. На головах к тому же появились обтекаемые шлемы и очки. Зеркальная поверхность каски отражает солнечные лучи, а причудливая обтекаемая форма направляет, как бы придавливает встречный поток воздуха к спине гонщика и тем самым как бы подталкивает его в спину! А соединенные со шлемом громадные линзы позволяют смотреть вперед, не поднимая головы.

Даже туфли у многих гонщиков специальной формы – с острыми закругленными носками; опять-таки для лучшего рассекания воздуха. Все, вместе взятое, это позволяет экономить до 10 % усилий спортсмена. А значит, увеличивает и скорость.


Велосипедист в своей каске похож на инопланетянина.


Кроссовки с компьютером

У легкоатлетов тоже появилась своя «быстрая кожа». Их форма имеет специальный крой и сшита из таких полимерных материалов, которые упруго обтягивают мышцы, как бы усиливая их работу. Ткань отводит избыточное тепло, позволяя телу не расходовать лишнюю энергию на потоотделение. Она же гасит ненужную вибрацию.

Еще одна интересная деталь. На последней Олимпиаде все обратили внимание на одежду австралийских марафонцев. И оказалось, что их сетчатые полупрозрачные маечки изготовлены из переработанных пластиковых бутылок. Сырье-то бросовое, но из него удалось создать материал, который прекрасно «дышит», охлаждая тело.

А над оптимальной обувью для бегунов работали специальные научные центры. И специалисты, кстати, выяснили, что лучше всего бегать… босиком. При этом отдача мышц стопы будет наибольшей.

Только вот беда: бегать при этом надо не по асфальту, гаревой и даже тартановой дорожке, а по земле, покрытой травкой. А поскольку таких условий на стадионах и марафонских трассах нет, то приходится приспосабливаться.

Бегун-стайер, привыкший одолевать дистанции во многие тысячи метров, сегодня ни за что не наденет шиповки. Потому как техника бега у него в отличие от спрингера совсем другая.

Большинство бегунов на длинные дистанции при беге наступает на пятки, в то время как спринтеры бегут практически на носках. При этом, как установили сотрудники фирмы Nike, максимальная сила, действующая на стопу во время контакта с дорожкой, может втрое превышать вес бегуна. А ускорение, сообщаемое ноге, вдесятеро превосходит нормальное ускорение силы тяжести.

При таких нагрузках обувь сама по себе должна быть исключительно прочной. Вот ее и делают из кевлара и углеводородных соединений, прошивают для крепости нейлоновыми и золотыми нитями. А супинаторы, пяточные клинья, подметки и прочие элементы обуви подбирают с таким расчетом, чтобы уберечь ногу спортсмена от травм, разрывов сухожилий и мышц. Некоторые тренировочные кроссовки снабжают даже компьютером, чтобы спортсмен имел полную информацию о скорости бега, количестве шагов, величине перегрузок…


Эпюры давления босой ноги на грунт тщательно изучаются специалистами.


Спортивная обувь – синтез научно-технических достижений.


Ускорение до 300 g

Поскольку мы с вами заговорили о безопасности, есть смысл поговорить и о том, как современная амуниция предохраняет спортсменов от травм и несчастных случаев.

Головной шлем на сегодняшний день, пожалуй, наиболее разработанный защитный элемент в спортивном снаряжении. А первая попытка испытания шлемов на научной основе была предпринята в США Фондом Снелла в Уэйкфилде (шт. Род-Айленд) еще в 1957 году. Фонд назван в честь Питера Снелла, автогонщика, погибшего от черепных травм, полученных в гонках.

В 1966 году получили распространение созданные фондом стандарты на шлемы для мотоциклистов и автогонщиков. Ныне Фонд распространил свои стандарты также на шлемы для горнолыжников, велосипедистов, конников.

Один из параметров, обычно подвергаемый проверке, – сила удара, которую должен выдерживать шлем, сохраняя голову от повреждений. На испытаниях шлем, надетый на специальную болванку, сбрасывается с высоты около 3 м на плоскую или полукруглую наковальню. Максимальное отрицательное ускорение при ударе измеряется акселерометром, вмонтированным в центре тяжести системы «шлем – болванка».

Физиологические исследования показали, что сотрясение мозга и другие травмы головы могут быть сведены к минимуму, если шлем выдерживает мгновенные ускорения порядка 300 g.

Проводят также испытания на прочность ремешка, способность внешней оболочки сопротивляться проколу острым предметом.

Обычно последнюю делают из стекловолокна или формованного под давлением пластика. Причем, как показывает практика, стекловолокно прочнее и долговечнее.


Кроме того, шлемы снабжают внутренней ударопоглощающей подкладкой из сжимаемого пенополистирола или пенополиуретана. Как и в спортивной обуви, сжимаемые материалы являются идеальным поглотителем энергии. Шлемы для мотоциклистов, конников, лыжников, велосипедистов и бейсболистов могут быть рассчитаны на одиночный сильный удар, так что такая подкладка здесь вполне уместна. А вот в игровых видах спорта с силовыми приемами, таких, как американский футбол или канадский хоккей, шлем должен обеспечивать многократную защиту от ударов, и поэтому подкладка должна быть сделана из упругого материала.

И когда в правила были внесены соответствующие изменения, запрещающие играть в хоккей без шлема, число черепно-мозговых повреждений и сотрясений мозга сократилось более чем вдвое.

Сегодня специалисты разрабатывают усовершенствованную конструкцию шлема для боксеров. По их мнению, стоило бы и здесь изменить правила, запретив боксерам бить противника по голове, поскольку даже самый совершенный шлем не может обеспечить стопроцентную безопасность людям, которые выходят на ринг только для того, чтобы отправить соперника в нокаут, иными словами – потерять сознание.


Диаграмма аэродинамического сопротивления различных видов одежды бегуна. Как видите, на результат может повлиять даже прическа.


Преодолеть земное тяготение

Еще одна область, где последние достижения науки и техники позволяют существенно повысить спортивные результаты, – это прыжки, в особенности прыжки с шестом.

Вспомним историю. Первый олимпийский чемпион нового времени Уилл Хойт показал рекордный результат того времени – 330 см! Прыгал он с деревянным шестом – по существу, с палкой. И когда появился бамбуковый шест, рекорд сразу подскочил до 477 см.

Шесты из стали и алюминия позволили поднять планку мировых достижений всего на один сантиметр. Уже в ту пору все стали ждать: кто придумает лучший шест?

Секрет изготовления фибергласового шеста охранялся фирмой как величайшая военная тайна. Еще бы: ведь благодаря этому шесту «летающий пастор» Боб Ричардс (он действительно был священником) стал двукратным олимпийским чемпионом. А когда он перестал прыгать, новый шест освоил другой американец, Джон Юлсес, и в 1960 году тоже выиграл Олимпийские игры с новым мировым рекордом.

Ныне мировой рекорд перевалил уже за 6 м. Первым одолел эту высоту советский прыгун С. Бубка. И теперь вновь все ждут, когда появится новый шест-катапульта, который подбросит прыгунов еще выше.

Ну а поскольку упрямое притяжение вновь возвращает прыгуна на землю, конструкторам пришлось немало поломать головы и над конструкцией места приземления. И если бы прыгунам не подкладывали там, «где упасть», толстенные поролоновые маты, многие из них могли бы свернуть шею.

Вот-вот наступит новый этап и в эволюции беговой дорожки. Еще в начале XX века они были земляными, потом стали гаревыми, и, наконец, впервые на Олимпиаде в Мехико появилась синтетическая, тартановая – быстрая, как никакая другая. Именно с ее помощью спринтеры на стометровке преодолели рубеж в 10 секунд. Теперь вот ждут новую дорожку – такую, которая бы позволила им пробежать стометровку, скажем, секунд за восемь… Так есть ли предел человеческим возможностям?

С.НИКОЛАЕВ


Кстати…

В ПОИСКАХ СКРЫТЫХ РЕЗЕРВОВ…

Впрочем, далеко не все определяется лишь техническими возможностями. Кое-чего – и даже многого – достигают сами атлеты. Некоторые из них устанавливают рекорды, которые затем остаются непобитыми многие десятилетия и даже века.

История донесла до нас, например, что один из чемпионов античных Олимпийских игр, прыгун Фаилл, если верить сохранившимся данным, однажды прыгнул в длину на… 16,5 м! А ведь это почти вдвое дальше современных рекордсменов. Как ему это удалось?

Кое-кто из историков спорта полагает, что Фаилл при прыжке держал в руках гальтеры – нечто вроде современных гантелей, – которые в самый последний момент отбрасывал назад, тем самым увеличивая свою «реактивную тягу». Однако все попытки современных атлетов скопировать технику Фаилла и превзойти его рекорд, ни к чему не привели…

Еще одна головоломка античных времен относится к тяжелой атлетике. В музее Олимпии и по сей день можно увидеть камень, на котором высечена надпись: «Бибон поднял меня над головой одной рукой». Как он мог это сделать, если весит тот «камушек» 143 кг?!

Попытки разгадать тайны древних времен, отыскать в них подсказку современным атлетам, как лучше всего готовиться к побитию рекордов, привели в конце концов к созданию новой науки – антропомаксималогии. У истоков ее стоял замечательный атлет, в прошлом рекордсмен СССР в метании копья, заслуженный мастер спорта, доктор педагогических наук Владимир Васильевич Кузнецов.

Появление новой науки поначалу встретили в штыки. Но вскоре даже консерваторы были вынуждены признать, что, вобрав в себя достижения антропологии, биомеханики, физиологии, медицины, психологии, эта наука наметила новые пути к познанию возможностей человека.

Самого Кузнецова давно уж нет с нами, но дело, начатое им, не погибло, живет и заставляет иначе думать о будущем спорта.

Впрочем, только ли спорта?.. Герой Советского Союза Ю. А. Антипов как-то рассказал о случае из собственной практики. Во время испытаний самолет вошел в штопор, и спасти его не было никакой возможности. Пилот уже хотел покинуть машину, но катапульта не срабатывала, поскольку не отстреливался фонарь кабины. Антипов вручную отстегнул замки, но поток воздуха намертво прижимал фонарь… Собрав все силы, летчик руками отжал фонарь, открыл дорогу для катапультирования.

Потом на тренажере специалисты имитировали эту ситуацию, и оказалось: Антипов, человек далеко не атлетического сложения, сумел приложить усилие в 220 кг! Помогла ему собрать силы жажда жизни. Сработал таившийся в недрах организма резерв.

Вот эти резервы специалисты и хотят научить спортсменов использовать. Пока получается не все. Селекционеры от спорта ищут по дворам перспективных ребят – высокорослых подростков. Объяснение простое. Самый первый рекордсмен мира американец Уилл Пейдж, преодолевший в 1887 году высоту 193 см, имел рост всего 169 см. Сегодня бы его и близко к сектору для прыжков не подпустили. Там ныне царствуют гиганты ростом под 2 м и выше. То же самое можно наблюдать и на беговых дорожках…

А взгляните на баскетболистов, волейболистов… Даже в футболе, по существу, не осталось игроков невысокого или среднего роста. А почему, собственно, такая дискриминация? Почему, например, в борьбе или тяжелой атлетике есть деления спортсменов по весу, а вот по росту нет!

И пока чиновники от спорта размышляют над этим вопросом, специалисты по спортивной медицине ищут способы увеличить рост будущих спортсменов, увеличить скорость их передвижения, мышечную массу. В ход идут самые разнообразные фармакологические средства, и дело уж дошло до того, что многие нынешние спортсмены всерьез полагают: без допинга рекорда не видать! Так что не случайно на каждом крупном соревновании победителя ждет допинговый контроль. И многих уже поснимали с соревнований, дисквалифицировали за применение запрещенных препаратов.

Но помогает все это слабо: слишком уж велика жажда олимпийского золота и больших премиальных. И в борьбе за них, получается, хороши любые средства.

Кое-кто даже поговаривает, что в скором будущем в спортивных целях начнут использовать новейшие достижения генетики. И тогда спортсменов будут «растить под заказ»: пловцов с загребущими руками и ногами-ластами, штангистов и борцов – с горами мышц, бегунов – с двухметровыми ногами.

Только вот нужен ли будет кому такой спорт?

ИНФОРМАЦИЯ

НОВЫЙ ПЕРСПЕКТИВНЫЙ САМОЛЕТ С-80, созданный в КБ им. П.О. Сухого, совершит первый полет в апреле этого года. Он предназначен для замены устаревающих самолетов Ан-24, Ан-26 и Ан-28. Машина рассчитана на перевозку 25 пассажиров на местных авиалиниях протяженностью 1200 километров со скоростью 520 километров в час. Маркетинговые исследования показали возможность продажи 300–400 машин С-80 в России и за рубежом. На самолет С-80 прислали запросы Вьетнам, Таиланд, Китай и Малайзия.

Первый опытный самолет уже доставлен в Москву из Комсомольска-на-Амуре и готовится к испытаниям в Летно-исследовательском институте (г. Жуковский). Программу летных испытаний С-80 планируется завершить за два года.

«РАДИОМОСТ» ДЛИНОЙ В 2500 КМ. Эксперимент по программе «Квазар-КВО» был осуществлен в феврале 2001 года одновременно в двух радиоастрономических обсерваториях – «Светлое» под Санкт-Петербургом и «Зеленчукская» в Карачаево-Черкесской Республике. Суть его, как рассказал директор Института прикладной астрономии Андрей Финкельштейн, состояла в том, что два радиотелескопа работали синхронно, представляя собой как бы единый астрономический прибор «диаметром» в 2,5 тыс. км. Огромная разрешающая сила подобного инструмента даст новые возможности как в развитии фундаментальной науки, так и для решения практических задач в области обороны, прогнозирования землетрясений и других.

Вводом в действие новой радиоастрономической обсерватории в станице Зеленчукской в конце 2000 года завершился очередной принципиально важный этап реализации программы. Для ее завершения предстоит построить еще одну обсерваторию в районе озера Байкал. Это позволит увеличить «диаметр» уникального радиотелескопа до 6 с лишним тысяч километров.

ОРИГИНАЛЬНЫЙ ПОДЗЕМНЫЙ ЛОКАТОР сконструировали российские ученые. Он способен разглядеть на глубине строение подземных слоев на месте, выбранном под строительство. Вся картина записывается в память компьютера и может быть детально проанализирована. Прибор получился достаточно компактный и дешевый и найдет широкое применение при строительстве зданий, дорог, мостов, дамб и прочих сооружений, нуждающихся в надежных фундаментах.

ВЗРЫВ ПРОТИВ ПОЖАРА. Новосибирские ученые установили, что фронт лесного пожара неоднороден. И чтобы остановить его распространение, можно воздействовать не непосредственно на пламя, а на его летучие компоненты, которые образуются в зоне горения – окись углерода, метан, водород… Они дают более 70 процентов энергии пожара. И если их каким-то образом нейтрализовать, горение прекратится.

Но как это сделать? Проще всего с помощью взрыва. Шнуровой заряд взрывают непосредственно при подходе фронта пожара. Воздушная волна сбивает пламя, нарушает условия пиролиза, и пожар затухает.

УДИВИТЕЛЬНОЕ – РЯДОМ
Гроза небесная и гроза… земная


Художник Ю. САРАФАНОВ

Это случилось темной августовской ночью 1996 года в глухой карельской тайге, близ побережья Ладоги. Местный егерь возвращался домой по просеке после обхода участка. Внезапно темное небо осветилось яркой вспышкой, дрогнула под ногами земля, и где-то глухо грохнуло. И тут же над лесом почти вертикально поднялся огненный шар и скрылся в тучах.

«Наверное, с соседнего полигона какая-нибудь штуковина взлетела или шпана костер разожгла над старым снарядным складом, – решил егерь. – Придется завтра пойти проверить».

Подождав еще немного и убедившись, что все тихо и дальний взрыв не вызвал лесного пожара, очевидец странного происшествия пошел домой. А на следующий день, добравшись до района, где ночью произошла вспышка, увидел следующую картину. Земля на протяжении сотен метров была выворочена так, что образовалась ровная неглубокая траншея. Деревья, которые оказались на ее пути, были вырваны с корнями и отброшены в сторону. А корни у многих были обуглены и дымились.

Можно было предположить, что здесь зачем-то производили взрывные работы. Но почему ночью?

Дело окончательно запуталось, когда через несколько дней на место происшествия прибыли специалисты, в том числе и военные с полигона. Они уверяли, что той ночью никаких стрельб и испытаний не велось; не похожа странная воронка и на следствие локального взрыва боеприпасов. Геологи тоже засвидетельствовали, что никаких траншей здесь не рыли, а взрывных работ даже не планировали.

Специалисты почесали затылки, на всякий случай прошлись вдоль нерукотворной канавы с радиометром, но все было чисто. С тем и отбыли, не придя к какому-либо окончательному заключению. А наблюдательный лесник обнаружил еще одну странную особенность: у одного из деревьев, кроме обугленных корней, оказалась обгоревшей и вершина, словно ее поразила молния. Но когда гроза-то случилась? Метеорологи божились, что никаких атмосферных фронтов поблизости не проходило.

И тем не менее гроза была. Только необычная – подземная.

«Интересно отметить, – пишет по этому поводу кандидат физико-математических наук Валентин Псаломщиков, – что, если бы этот случай произошел лет сто назад, тогдашние геофизики без труда объяснили бы его именно как следствие подземной грозы».

Так, в 1903 году известный французский исследователь Жорж Дари в своей книге «Электричество во всех его применениях» отмечал, что «земное электричество производит бури, которые разрушают внутреннее строение нашей планеты точно так же, как бури в атмосфере приводят в беспорядок воздушное пространство».

В то время даже считали, что известные всем землетрясения вызываются, несомненно, электричеством. Земля, дескать, наэлектризована во всей своей совокупности, и сильные электрические токи беспрестанно пробегают по ней. «И если воздух сух и горяч или настолько насыщен электричеством, что не может принять в себя избытка его, выделяемого землею, если залежи мела и кремнистых почв находятся поблизости от мест, богатых металлами, тогда накопление электричества в конце концов ведет к разряду совершенно так же, как это бывает во время атмосферной грозы».

Такая вот любопытная теория была разработана Ж. Дари и его коллегами еще в 1895 году.

И, как писал сам исследователь, «в настоящее время она признана многими метеорологами и физиками, которые нашли новые, подтверждающие ее факты».

Однако прошло еще некоторое время, и выяснилось, что француз скорее всего перепутал причину со следствием. Не электричество вызывает землетрясения, а перемещение земных слоев относительно друг друга приводит к электризации, накоплению электростатического заряда, в точности так же, как хаотические движения кристалликов льда, частичек пыли в облаке приводят к накоплению «небесного электричества» грозы.

В начале 70-х годов XX века такую гипотезу в подробностях обосновал профессор Томского политехнического института А. А. Воробьев. Более того, собрав группу единомышленников из молодых сотрудников, он приступил к экспериментам в разных районах страны. Цель их была такова: если при подвижках горных пластов происходит их электризация, значит, неизбежно при этом должны генерироваться и радиоволны. Всем ведь известно, что во время грозы практически невозможно слушать радиоприемник – слова диктора и музыка начисто забиваются радиоголосом грозы. Но коли так, значит, в принципе появляется возможность предсказывать по радиоголосу и приближение грозы подземной, то есть землетрясения…

Исследователям действительно удалось зафиксировать усиление напряженности подземного радиофона непосредственно перед землетрясениями! Но попытки представить результаты этой важной работы в самый престижный научный журнал – «Доклады Академии наук СССР» – натолкнулись на сопротивление оппонентов из Института физики Земли АН СССР.

Еще бы! Какой-то ученый с периферии посягнул на монополию столичных светил. Однако разгромив в пух и прах идею Воробьева, кое-кто не утерпел и рискнул сам провести аналогичные эксперименты. В итоге через несколько лет статьи на те же темы все-таки появились в научной печати. Только уж, конечно, без ссылок на Воробьева и его коллег.

Томский же исследователь и его сотрудники тем временем выдвинули еще ряд интересных идей. По их выкладкам и опытам получалось, что радиоголоса имеют еще очень многие явления природы: снег во время метели и перед сходом лавины; ледовые поля во время подвижек и торошения; ледники во время спуска с гор…

А также процессы растрескивания горных пород, осадка недавно построенного здания…

Но, к сожалению, ранняя смерть профессора Воробьева фактически поставила крест на его работах. Про подземные грозы и «радиоголоса» природы не то чтобы забыли… Просто у нынешних исследователей руки до них не доходят. И денег нет. Да.

А жаль… Подземные грозы еще о многом могли бы рассказать пытливому уму. Глядишь, и грандиозная задача надежного прогнозирования землетрясений тоже сдвинулась бы с мертвой точки.

Олег СЛАВИН


    Ваша оценка произведения:

Популярные книги за неделю