355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2000 № 04 » Текст книги (страница 6)
Юный техник, 2000 № 04
  • Текст добавлен: 1 августа 2017, 13:00

Текст книги "Юный техник, 2000 № 04"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 6 (всего у книги 6 страниц)

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Не все комар, что пищит

Летом иногда даже в средней полосе нет спасенья от комаров, что же говорить о Сибири и Заполярье, где даже у привычных к ним местных жителей трудоспособность снижается более чем вдвое, резко уменьшаются привес и надои скота. Можно было бы комара вовсе уничтожить, но он нужен живой природе. Известны случаи, когда после уничтожения комаров исчезали птицы и звери, а леса гибли от гусениц.

Поэтому приходится лишь отгонять комаров от людей и домашних животных. И здесь помогает радиоэлектроника.

Генератором электрических колебаний ультразвукового диапазона (рис. 1) служит мультивибратор, построенный на логических ячейках микросхемы DD2, нагруженной пьезоэлектрическим звукоизлучателем BQ1.


Рис. 1

Характер излучения задается генератором инфранизких колебаний, в котором работает микросхема DD1 совместно с времязадающей цепочкой R1, R2, С1. Связь между обоими генераторами выполнена с определенной «изюминкой»: узел DD1 осуществляет периодическое питание ультразвукового генератора через диод VD1 и конденсатор С2. Когда на выходе 3 микросхемы DD1 возникает прямоугольный импульс напряжения, происходит быстрый заряд конденсатора С2; одновременно начинает действовать высокочастотный генератор. По окончании импульса конденсатор С2 оказывается разобщенным с выходом DD1 благодаря диоду VD1. Питание «комариного» генератора продолжается еще некоторое время падающим напряжением разряда конденсатора, отчего частота импульсов генератора может плавно изменяться. Весьма вероятно, что в этом диапазоне излучений находятся сигналы тревоги, способные отпугивать комаров или еще кого-нибудь из кусачего сообщества. Эффективность действия устройства следует проверять, направляя его излучение на густо роящихся насекомых.

Для сборки конструкции можно использовать постоянные резисторы МЛТ-0,125 или более мощные, переменный – СП-0,4; конденсаторы типа КЛС или МБМ (СЗ) и оксидные К50-6 остальные. «Цоколевка» примененных микросхем приведена на рисунке 2.


В роли ультразвукового излучателя взят пьезоэлектрический микрофон типа УМ-1.

Времязадающая цепочка генератора на DD2 имеет переменный резистор R7, позволяющий регулировать частоту в пределах 10…50 кГц. Примененный для воспроизведения излучатель имеет собственную резонансную частоту, на которой интенсивность излучения максимальна. Наряду с основной бывают побочные резонансные частоты. Настройку генератора в резонанс с излучателем можно проводить, присоединив к резистору R8 вход осциллографа: в момент резонанса амплитуда колебаний напряжения на экране значительно возрастает. Тем не менее, наряду с резонансными частотами в процессе экспериментов следует проверить влияние на жалящую «биомассу» ряда промежуточных частот во всем рабочем диапазоне. Во время экспериментов желательно вести записи с характеристикой этих условий – места, наличия освещения, температурной обстановки, условных делений на шкале при регуляторе R7. Ну, конечно, и расстояний, на которых, возможно, будет заметно проявляться влияние излучения.

Кстати, на шкале следует отметить и обнаруженные резонансные частоты излучателя. Фиксация данных экспериментов позволит избежать ненужных «повторений пройденного», а также четко выделить зону продолжительных результатов. К таковым можно было бы отнести не только факты отпугивания насекомых, но и обратного действия – приманивания к излучателю.

Ведь неплохо, если комары и их собратья потеряют интерес к вашему лицу, рукам и набросятся на микрофон-излучатель, где их будут ждать, например, липкие ленты или пылесос.

Ю.ПРОКОПЦЕВ

Зачем нужны радиолампы?

Появившиеся лет сорок назад транзисторы так и не смогли полностью вытеснить радиолампы. Кинескоп телевизора – электровакуумный прибор, в сущности – радиолампа.

СВЧ-генераторы кухонных электроплит и мощные выходные каскады радиолокационных станций выполняются на радиолампах. Многие специалисты утверждают, что по-настоящему качественно способны усиливать звук только ламповые усилители. Поэтому стоит еще раз посмотреть повнимательнее, на что же способна радиолампа. К примеру, добавив к лампе всего три детали, используя некоторые малоизвестные схемные решения, можно создать вольтметр с огромным входным сопротивлением. Но прежде напомним о том, как работает лампа.

В вакуумированном баллоне лампы находятся электроды – катод (к), анод (а) и сетки (с); простейшая лампа – триод – располагает одной сеткой (рис. 1).


Поскольку назначение катода – испускать свободные электроны под воздействием высокой температуры нити накала (н), катод покрывают такими материалами, как барий, торий, которые при сравнительно слабом нагреве «отпускают» электроны. Те образуют вокруг катода «электронное облако», поэтому он приобретает относительно «облака» положительный заряд, удерживающий «облако» от рассеивания.

Это поясняет рисунок 2а, где радиолампа показана так, как ее изображают на принципиальных схемах. Если теперь к катоду и аноду приложить постоянное напряжение (рис. 2б) от источника G1, под действием возникшего между ними электрического поля внутри лампы потечет ток электронов, вытягиваемых из упомянутого «облака». Такая схема работает как диод.


Чтобы лампа начала работать как усилительный прибор, между катодом и управляющей сеткой нужно приложить небольшое переменное напряжение сигнала Uc. Благодаря тому, что сетка расположена ближе к катоду, нежели анод, слабое поле окажет значительное влияние на величину анодного тока, который станет пульсирующим. Выделить переменный сигнал, усиленный по току и напряжению, можно с помощью, например, трансформатора, включенного в анодную цепь лампы. Большинство радиоламп устроено сложнее рассмотренного триода – они имеют по нескольку сеток, порою два анода и даже раздельные катоды. Но не станем углубляться в теорию, а вернемся к нашему вольтметру.

Если обычный стрелочный вольтметр имеет на пределе измерения 50 В сопротивление порядка 0,5 Мом, сопротивление лампового, собранного по схеме на рисунке 3, составляет около 50 Мом!


Работает он так. Пока на измерительные щупы XI не подано напряжение, электроны из прикатодного «облака» стекают к катоду по цепи R3, PJ1, вызывая максимальное отклонение стрелки миллиамперметра с пределом измерения 1 мА. Когда на щупы X1 подано измеряемое напряжение, отрицательный потенциал на аноде и соединенных с ним сетках угнетает «облако», снижая величину тока через миллиамперметр PJ1 тем заметнее, чем «сильнее» потенциал анода. Зависимость тока сетки Jc от измеряемого напряжения Uн на входе выражается вольт-амперной характеристикой, изображенной на рисунке 4.


За начало отсчета принимается положение, когда на щупах X1 напряжение равно выбранному пределу измерения (допустим, 50 В), а ток миллиамперметра I равен нулю; последний устанавливается переменным резистором R3.

Градуировать прибор лучше с помощью хорошего заводского вольтметра. Результатом градуировки может быть кривая согласно рисунку 4, либо дополнительная шкала, пристраиваемая к миллиамперметру. Для конструкции проще всего найти «сетевые» пентоды с 6-вольтовым накалом, например, металлические 6Ж7, 6КЗ либо «пальчиковые» 6К4П и т. п. Для них можно использовать 6-вольтовый адаптер с током до 0,3 А или батарею из четырех элементов LR20. С «батарейными» 2-вольтовыми лампами (2К2М и др.) достаточно двух элементов LR6; для «пальчиковых» типа 1К1П, 1К2П с напряжением накала 1,2 В – одного такого элемента, также с реостатом 30 Ом.

П. ЮРЬЕВ

ЧИТАТЕЛЬСКИЙ КЛУБ


Вопрос – ответ

«Мы с подругой собираем книги-малютки и книги-брелоки. Интересно, давно ли их начат издавать?»

Марина и Соня, 13 лет

Москва

По некоторым сведениям, первые миниатюрные печатные книги появились в 1494 г. в Венеции, в издательском доме, основанном Альдом Мануцием – ученым-гуманистом. К примеру, там были изданы произведения Петрарки с размером страниц от 20x30 до 50x70 мм. Позже внук основателя, Пий Мануций, удостоился чести издать первые сонеты и стихи В. Шекспира. По имени основателя издательского дома маленькие книжки называли «альдинами».

Всемирную славу книги-малютки приобрели и в голландских изданиях семьи Эльзевиров в середине XVI века.

В России драгоценным сокровищем отечественного полиграфического искусства по праву считается напечатанная в 1855 г. в Петербурге книга басен И.Крылова с размером страниц 22x28 мм. Для издания был отлит даже специальный шрифт «диамант», что в переводе означает «бриллиант».

Что же касается книг-брелоков, то они были очень популярны в конце XIX начале XX века у купеческого сословия России.


«Расскажите, пожалуйста, когда появился первый термос и кому пришло в голову его изобрести».

Володя Суханов, 14 лет,

г. Стерлитамак

Дрезденский физик и химик Фердинанд Вайнхольд обычно заказывал лабораторную посуду мастерам, но однажды попробовал изготовить колбы и реторты сам и незаметно увлекся ремеслом стеклодува. В 1879 году ученый изобрел сосуд с двойными стенками, из которых откачал воздух. В таком сосуде, как выяснилось, длительно сохранялся сжиженный воздух. Сосуд Вайнхольда быстро распространился по лабораториям Европы. В то время в Берлине хорошие колбы с термозащитной вакуумной рубашкой изготовлял мастер-стеклодув Р.Бюргер. Именно он догадался поместить хрупкий стеклянный сосуд в кожух из оцинкованного железа. Так на свет появился первый бытовой термос.

Поначалу обыватели отнеслись к изобретению с недоверием. Настоящая популярность пришла к термосу благодаря первым летчикам, ведь летали они на «этажерках», открытых всем ветрам, и горячий налиток на высоте был весьма кстати. Массовое же производство термосов началось в 1909 году.


«У бабушки в деревне стоит старая-престарая швейная машинка с ножной педалью и широким приводом. У нас с сестрой вопрос: когда создам первую швейную машину?»

Сестры Козочкины,

г. Электросталь

Первые швейные машины, изобретенные в конце XVIII в. в Англии, имели самую разнообразную форму, украшения, маскирующие детали конструкции. Одни привинчивались к столу, как мясорубки, а иные приводились в движение огромными «ножницами» – портной щелкал ими одной рукой, а другой подавал ткань под иглу. К сожалению, все эти машинки были однониточными – их шов состоял из одной нитки, протаскиваемой через ткань иглой, а челнока не было вовсе. Достаточно было потянуть за нитку – шов легко распускался, и вся работа шла насмарку. Знакомая всем форма и конструкция швейной машины сложилась только к началу XX века.


«Читал, что в стране ежегодно изымают из обращения тонны обветшавших бумажных денежных купюр. Неужели просто уничтожают?»

Сережа Лобанов, 15 лет

г. Йошкар-Ола

Долгое время сильно потертые или разорванные купюры сжигали, но не так давно деньги начали использовать для приготовления специального… бурового раствора для смазки и охлаждения бура. В то же время этот уникальный раствор упрочняет стенки нефтяной скважины.

Почему используют именно деньги?

Все дело в волокнистой структуре бумажной массы, сырьем для которой служит лен и хлопок. Волокна не только лучше смазывают режущие кромки инструмента, отчего он меньше греется, но и прилипают к стенкам скважины, укрепляя их.

В Голландии же на субстрате из денежной массы выращивают… тюльпаны. Оказалось, что красители, добавленные в голландские деньги, – это те самые микроэлементы, необходимые для питания растений.

Возьмите на заметку

«Все знают, как сложно правильно склеить углы рамы для картины. Случайно листая литературу, я наткнулся на гениально простое приспособление для склейки рамок. Сразу же оценив все преимущества приспособления, я решил изготовить его самостоятельно.

Через два часа на верстаке лежали 8 маленьких «башмачков» – по два каждому из четырех углов. С их помощью можно склеить различные угловые конструкции, в том числе из щитов и плит. Правда, для каждой пары понадобятся еще и по три струбцины, но они в хозяйстве никогда не помешают.

«Башмачок» состоит из двух деталей – основания и призмы, скрепленных между собой шурупами 3x20 мм, можно воспользоваться клеем. Основание 30x140 мм изготовлено из 5-слойной фанеры, ламинированной тонким пластиком. Благодаря этому отпечатков от струбцин на дереве не остается.

А на 8 «башмачков» пойдет буковый брусок 32x25x140 мм.

Разметив основания и «башмачки», просверлите в них отверстия под шурупы. Затем обработайте рубанком длинные кромки «башмачков», чтобы боковые стороны обеих деталей лежали в одной плоскости.

Семен Авдеев,

Москва».

ДАВНЫМ-ДАВНО

Принято считать, что микроскоп изобрел голландец А. Левенгук, но, как стало известно, еще в 1590 году некий Янсен из Миддельбурга подарил микроскоп герцогу Носсаусскому. Позднее роскошные модели микроскопов появляются в кабинетах вельмож. Те, что попроще, пользуются вниманием бродячих артистов и монахов-просветителей.

В 1650 году в маленькой тирольской деревушке умер естествоиспытатель, монах-иезуит Христофор Шейнер. В его вещах нашли непонятный стеклянный прибор. Когда любопытные заглянули в него, то увидели… самого дьявола! Покойного заподозрили в колдовстве и назначили следствие, а прибор тем временем вскрыли. Под сильным увеличительным стеклом лежала… блоха.

Как ни удивительно, уже в те времена умели шлифовать одиночные линзы, дававшие увеличение до 300 крат, и делать стеклянные капли с увеличением до 800. Вероятно, подобное стекло и было в приборчике, найденном у покойного Шейнера. Но изготовление таких стекол требовало огромного мастерства. Гораздо проще было шлифовать стекла меньшей кратности и, комбинируя их между собой, получать большие увеличения.

На этой основе и были построены первые микроскопы (рис. 1).


А. Левенгук (1632–1723) усовершенствовал их, укрепил лупу на удобной подставке со столиком, подъемным механизмом и вогнутым зеркалом для освещения (рис. 2).


Именно он открыл существование мира микроорганизмов, был приглашен императором Петром I и познакомил царя со своими открытиями. После этого микроскоп появился в России. И этим несложным оптическим приборам мы обязаны значительной части биологических открытий.

ПРИЗ НОМЕРА!


Наши традиционные три вопроса:

1. Как мог бы осуществить разворот многомоторный электрический самолет?

2. Почему при демонстрации опытов отказались от применения волновых ванн, наполненных ртутью?

3. Во что в конечном итоге превращается световое излучение?

Правильные ответы на вопросы

«ЮТ» № 11 – 1999 г.

1. Корабль, имевший круглое днище, на котором плавал известный полярный исследователь Фритьоф Нансен, назывался «Фрам».

2. Подлодку можно, к примеру, спрятать и под айсберг.

3. При обтекании поверхности радиатора сверхзвуковым потоком воздуха возникают зоны торможения с высокой температурой воздуха – такой же, как и на кромке крыла. Таким образом радиатор не сможет отдать свое тепло воздуху. Стало быть, он – бесполезен.

* * *

К сожалению, имя победителя в этот раз назвать не можем. Все читатели, приславшие письма на наш традиционный конкурс «Приз номера» (№ 11 – 1999 г.) оказались неточны – кто споткнулся на втором, кто на третьем вопросе. Но огорчаться не стоит – конкурс продолжается!

* * *

ЛЕВША Сразу после Второй мировой войны на вооружении большинства стран начали поступать бронетранспортеры для перевозки десанта, разведки, поддержки пехоты. И в нашей стране на базе горьковского вездехода был разработан БТР-40, верой и правдой прослуживший в армии до 70-х годов. Моделью этого бронетранспортера предлагаем пополнить музей бронетанковой техники.

Как всегда, не останутся без внимания любители «поработать» головой. Их ждут итоги конкурса «Хотите стать изобретателем?», а также очередные головоломки, изобретательские задачи и кроссворд.

Умельцы по нашей подсказке смогут смастерить электромузыкальный инструмент с сенсорной клавиатурой, малогабаритный тягач мотоблок для работ на приусадебном участке.

А почему? В очередном номере журнала вы прочитаете о секретах морских раковин и о том, как работает пейджер. Познакомитесь с историей обеденной посуды и узнаете, почему у кошки светятся глаза. А кроме того, вам предстоит совершить увлекательное путешествие на далекий Алтай, познакомиться с его уникальной природой.

Свое путешествие по русским былинам продолжат постоянные герои «Нашего мультика» Тим и Бит. А Настенька и Данила, как обычно, дадут полезные советы тем, кто любит работать своими руками.

Разумеется, будут в номере вести «Со всего света», «Сто тысяч «почему?», «Воскресная школа», «Игротека» и другие обычные рубрики.

* * *

Подписаться на наши издания вы можете с любого месяца в любом почтовом отделении.

Подписные индексы по каталогу агентства «Роспечать»:

«Юный техник» – 71122, 45963 (годовая);

«Левша» – 71123, 45964 (годовая);

«А почему?» – 70310, 45965 (годовая).

По Объединенному каталогу ФСПС:

«Юный техник» – 43133;

«Левша» – 43135;

«А почему?» – 43134.

Кроме того, подписку можно оформить в редакции.

Это обойдется дешевле.

Дорогие друзья!

Подписаться на наш журнал можно теперь в Интернете по адресу: www.apr.ru/pressa.

* * *



    Ваша оценка произведения:

Популярные книги за неделю