355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2012 № 07 » Текст книги (страница 2)
Юный техник, 2012 № 07
  • Текст добавлен: 7 июля 2017, 19:00

Текст книги "Юный техник, 2012 № 07"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 2 (всего у книги 5 страниц)

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Легче пуха



Исследователи из университета Калифорнии в Ирвине и Калифорнийского технологического института, объединив свои усилия в одном научном центре, получили из металла материал в сотню раз легче пенопласта и даже невесомее пуха, сообщает журнал Science.

В начале 2011 года специалисты признали самым легким аэрогель, состоящий из многослойных углеродных нанотрубок. Его плотность – 4 мг/ см3. И вот новый рекорд. Плотность вещества, которое еще не имеет названия, – всего 0,9 мг/см3! Но главное даже не в абсолютном показателе, полагает доктор Тобиас Шедлер из исследовательского центра HRL Laboratories (США). Он и его коллеги предложили новый способ получения очень легких материалов с неожиданными свойствами.

Многие материалы с ультранизкой плотностью получаются на основе углеродных нанотрубок и металлической пены. Но это случайные структуры, пояснил Шедлер. Новая структура состоит из правильно, регулярно расположенных, пересекающихся металлических трубок микроскопических размеров.

Подыскивая наглядный пример, исследователь сравнил свое детище с… Эйфелевой башней. Высокую жесткость при относительной легкости ей обеспечила строго продуманная конструкция. «Почему бы не применить достижения архитекторов больших строений к материаловедению?» – рассуждает ученый. Он надеется, что его изобретение приведет к появлению нового подхода к созданию наноструктур, которые позволят получать материалы со свойствами, сильно отличающимися от свойств элементов периодической таблицы.

Сложность создания нового материала заключалась в том, чтобы создать решетку из взаимосвязанных пустотелых трубок, имеющих толщину стенки около 100 нанометров, – рассказал Уильям Картер, руководитель группы конструкционных материалов HRL Laboratories. Трубки соединены между собой в узлах решетки.

А сам материал изготавливается путем нанесения никель-фосфорного покрытия на аккуратно подготовленную полимерную микрорешетку. Получается ажурная, легкая, но при этом очень прочная конструкция.

При испытаниях новый материал проявил свойства, которых не ожидали даже его создатели. Будучи, по сути, металлом, он обладает особыми механическими свойствами. При надавливании на «сетку» трубки не ломаются, и конструкция, словно резиновая, возвращается к своей первоначальной форме даже после сжатия более чем на 50 %. К тому же материал способен хорошо поглощать энергию удара или вибраций.

Ученые создали новый материал по заказу Научно-исследовательского агентства Пентагона (DARPA) и подготовили несколько версий своей металлической микрорешетки. Вероятно, она найдет применение в качестве электродов аккумуляторных батарей, а также будет использована как амортизатор, защита от акустических волн и вибраций в аэрокосмической промышленности.


Структура сверхлегкого материала под микроскопом.

ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Если увеличить атом…

Классическая механика описывает движение больших объектов, таких как планеты, звезды и галактики. Но для описания поведения таких микроскопических объектов, как атомы и субатомные частицы, требуются совершенно иные законы – законы квантовой механики.

Это очевидно. Однако что может произойти, если атом искусственно сделать достаточно большим для того, чтобы его электроны вели себя аналогично планетам, вращающимся на орбите вокруг Солнца. Ученые-физики провели эксперимент и заставили гигантский атом вести себя подобно крошечной планетной системе.

В начале XX века нобелевский лауреат, знаменитый датский физик Нильс Бор, предложил такую наглядную модель атома. Он предположил, что атом в некоторой степени схож с нашей Солнечной системой: вокруг светила-ядра вращаются по своим орбитам-уровням планеты-электроны.

Потом это представление неоднократно пересматривалось и усложнялось. В частности, внутри ядра были обнаружены протоны и нейтроны, а сами электроны, как оказалось, вовсе не представляют собой некие точечные образования, подобные твердым телам-планетам.

Но возвращаются миры на круги своя. Никто ведь никогда не видел атом воочию, а потому и не знал, как он на самом деле выглядит. Выяснить это взялись недавно ученые из университета Райс, США. Но поскольку современная техника все еще не позволяет разглядеть строение атома во всех деталях, исследователи решили… увеличить его размеры.


Идет эксперимент по накачке атома энергией с помощью лазера. Фото вверху: так выглядит атом при первом приближении.

Для этого они взяли один-единственный атом калия и накачали его электроны энергией с помощью ультрафиолетового лазера. При этом электроны перешли на столь высокие энергетические орбиты, что размер атома увеличился в 100 000 раз по отношению к его нормальному состоянию.

При этом электроны, вращающиеся вокруг ядра, должны вести себя, как планеты крошечной солнечной системы, подчиняясь законам классической ньютоновской механики, предположили физики. Правда, отследить перемещения каждого электрона в отдельности они пока не смогли, но о его энергии, скорости и положении можно судить и по косвенным показателям – например, по волновой функции электрона, которая называется волновым пакетом.

Использовав радиоизлучение с вращающейся поляризацией, исследователи стали как бы кадр за кадром фиксировать движение электрона вокруг атома.

В следующих экспериментах они попробуют «запустить» на различные высокие орбиты вокруг ядра одновременно два волновых пакета электронов, что позволит им смоделировать более сложную «планетную систему».

УДИВИТЕЛЬНО, НО ФАКТ
Повелители мух



У роботов три недостатка: они дороги, сложны и слишком велики. Несмотря на все успехи нанотехнологий, собирать крохотных и при этом эффективных роботов человек еще не научился. Тогда почему бы нам не воспользоваться «наработками» природы?

Ученые и инженеры ныне занимаются созданием животных-киборгов, поведение которых можно контролировать. Наиболее продвинулись они в управлении насекомыми.

Представители этого класса интересны хотя бы тем, что умеют ползать, бегать (некоторые даже на двух ногах), плавать и летать. При этом они невелики по размерам и очень эффективно расходуют энергию.

Работы по созданию киберкопий насекомых начались довольно давно, в 80-х годах XX века. Ученые и инженеры Массачусетского технологического института построили в то время аппарат Ghenhis. В 2001 году здесь же был создан робот, напоминающий таракана; он мог довольно быстро двигаться даже по неровным поверхностям.

Еще быстрее, чем тараканы, перемещаются летающие насекомые. Об этом исследователи тоже не забыли. На протяжении последних десятилетий они ведут изучение проблем машущего полета и управления им. Они хотят понять, благодаря чему, например, плодовые мушки-дрозофилы способны летать с недостижимыми пока для созданных человеком систем точностью и эффективностью.

Так, один из наиболее совершенных ныне роботов-насекомых – крошечный летающий аппарат Deify Micro, весящий 3 г, – может провести в воздухе всего три минуты из-за батарейки, которая составляет треть его веса.

В общем, похоже, что легче научиться управлять живыми летательными аппаратами, чем строить самим, – задумались они.

В 1993 году немецким исследователем Д. Кутшем и его коллегами была разработана система весом всего 0,42 г, которая передавала по радио электромиограмму – сигнал активности отдельной мышцы насекомого. Затем ученые добавили еще один радиоканал для считывания мозговой активности и в итоге получили важные данные по взаимодействию мышц и рецепторов во время полета.

Оставалось на основе полученной информации разработать алгоритмы управления активностью тех или иных мышц, чтобы управлять полетом насекомого по своему усмотрению.

Для этого разные группы ученых используют разные способы и оборудование. Так, команда Калифорнийского университета в Беркли, возглавляемая Хиротаки Сато, применяет 8-канальную радиосистему под управлением микроконтроллера. Применение керамических антенн позволило добиться малого размера и веса конструкции.

Команда, возглавляемая Алпером Боцкуртом из университета Северной Каролины, применяет двухканальную систему, включающую АМ-приемник собственной конструкции и микроконтроллер PIC. Однако это оборудование пока настолько громоздко и тяжело, что его поднимает в воздух не само насекомое, а особый воздушный шарик, наполненный гелием.

Исследователи Массачусетского технологического института использовали чип-приемник, который работал по беспроводному протоколу 802.15.4а, потребляя при этом рекордно малое количество энергии – 2.5 милливатта (1,4 наноджоуля на один бит информации) при скорости передачи данных в 16 Мб/с. Приемник был связан с микроконтроллером, а электроды вживлялись насекомому еще на стадии куколки, и взрослая особь уже содержала в себе надежно интегрированную систему контроля.

Основная идея всех трех разработок состоит в том, чтобы использовать не только крылья и мышцы насекомого, управляя напрямую их движением, но и научиться отдавать приказы нервной системе, которая сама уже позаботится об их исполнении. Сигналы, посылаемые в мозг таким образом, контролируют полет насекомого.

Если в помещении, где летает жук Mecynorhina ugandensis из подсемейства бронзовых, выключить свет, то он тут же садится. Подобное поведение жука подсказало ученым из группы Хиротаки Сато идею управлять полетом при помощи сигналов, посылаемых в зрительную часть мозга насекомого. Разность потенциалов, подаваемая при помощи электродов к левой и правой зрительным областям жука, заставляет насекомое лететь туда, где, как ему кажется, светлее. Причем нервная система, получив сигнал к действию, дальше сама посылает команды мышцам, чтобы поддерживать полет.

Основная сложность, с которой столкнулись ученые, – индивидуальность реакции насекомого на управляющий импульс. Один жук в ответ на стимуляцию летает несколько секунд, другой – две минуты. Стандартизация позволит не только делать более надежных насекомых-киборгов, но и повлечет за собой лучшее понимание принципов работы нервной системы в целом.

Группой ученых-нейробиологов из Германии был создан симулятор полета для обычных мух. Используя это устройство, ученые из Института нейробиологии Макса Планка надеются улучшить обработку динамических изображений для дальнейшего применения этой технологии в робототехнике.

Симулятор представляет собой специальный дисплей с циклически изменяющимся изображением. Насекомое удерживается перед дисплеем на месте с помощью тончайших проводов, которые одновременно являются электродами, позволяющими регистрировать реакции мозговых и нервных клеток на раздражители.


Изображение в симуляторе для мух.

И это не единственный способ управления. Перед тем как поменять направление полета, многие насекомые, обладающие подвижной шеей, как правило, разворачивают голову в нужном направлении. Это позволяет осуществить весьма элегантный способ «руления», который напоминает управление лошадью: при помощи повода и уздечки всадник немного разворачивает голову животного, и оно следует в ту же сторону. Так, используя схожий принцип, группе А. Боцкурта удалось управлять направлением движения бабочки Manduca sexta, подавая электрический потенциал к мышцам ее шеи.

Наконец, мухи-дрозофилы из Йельского университета взлетают, подчиняясь нажатию кнопки. Этому простому действию предшествовала сложная процедура.

Для начала мух изменяют на генетическом уровне. Им встраивают специальный ген, информация с которого считывается при синтезе белка, воздействующего на участок нервного узла в теле насекомого, который отвечает за паническую реакцию. Под действием страха муха взлетает. Но как заставить ген вырабатывать белок в нужный момент? Для этого насекомому вводят молекулы АТФ (аденозинтрифосфорной кислоты) в специальной оболочке, которая разрушается под воздействием ультрафиолетового излучения. Нажимая на кнопку, ученые включали излучение. Молекулы АТФ освобождались от оболочки, воздействовали на модифицированные гены в клетках нервного узла, те вырабатывали белок, который раздражал центр паники. После этого до 80 % мух тут же взмывали в воздух.


Схема установки для контролируемого полета насекомого. Для того чтобы вес электронных компонентов не мешал полету, они прикреплены к наполненному гелием шарику.

Цифрами обозначено: 1 – баллон с гелием, 2 – пластиковая трубка, 3 – магнит.

Руководитель проекта Геро Мизенбек надеется, что таким образом можно будет управлять не только мухами и тараканами, но даже млекопитающими, например, мышами. Причем им даже не придется делать инъекции АТФ – достаточно будет дать это вещество в виде таблеток или капель.

Удобно то, что облучать ультрафиолетом можно любую часть подопытного животного или насекомого: нейроны есть везде, а не только в головном мозге. Хотя ученые утверждают, что цель их эксперимента не дистанционное управление мухами, а изучение деятельности нейронов, верится им с трудом. Ведь перспективы у подобных экспериментов весьма заманчивые – от превращения насекомых, способных проникнуть в самые укромные уголки, в шпионов, пожарных и т. д. до дистанционного управления людьми, превращенными в зомби (см. «Подробности для любознательных»).

По материалам агентства CNews


Подробности для любознательных

ОТ НАСЕКОМЫХ ДО ЛЮДЕЙ

Мало кто ныне знает, что Вельзевул – одно из имен дьявола – в переводе с древнееврейского означает «повелитель мух». Получается, что начал он с управления мухами, а закончил установлением власти над людьми.

Не получится ли так не только в мифологии, но и в реальной жизни? Ведь наряду с опытами над насекомыми, исследователи неоднократно пытались командовать и более крупными живыми организмами.

Например, еще в 50-х годах XX века испанскому нейрохирургу Хосе Дельгадо удалось при помощи стимуляции определенных зон мозга кошки заставлять ее поднимать лапу. А в 1965 году он вживил электроды в центр агрессии быка и не побоялся встретиться с ним на арене.

Вместо острой шпаги в руках у Хосе был пульт управления. По нажатию кнопки в мозг животного посылался электрический импульс. Эксперимент прошел успешно: Дельгадо нажал на кнопку, и разъяренный бык остановился перед ученым, не нанеся ему вреда.


Следующий крупный шаг в этой области был сделан уже в нынешнем веке. В 2005 году специалисты японской компании NTT продемонстрировали систему дистанционного управления человеком. Техника управления называется GVS, что расшифровывается как гальваническая стимуляция вестибулярного аппарата.

В область внутреннего уха, где, как известно, находятся органы, отвечающие за ориентацию в пространстве, помещаются электроды. Подаваемые ими электрические импульсы воздействуют на вестибулярный аппарат. В результате человек превращается в радиоуправляемое устройство, движение которого можно контролировать с помощью обычного джойстика.

Представители NTT заявляют, что их изобретение может применяться в видеоиграх или в медицине (для помощи людям с нарушением чувства равновесия). «Остается надеяться, что власти не допустят неконтролируемого использования GVS для иных целей», – говорит по этому поводу эксперт Института неврологии Лондонского университета Брайан Дэй.

У СОРОКИ НА ХВОСТЕ


ШЕСТОЕ ЧУВСТВО. Ученые подтвердили существование шестого чувства – особой чувствительности к жиру – у некоторых людей. Как пишет Journal of Lipid Research, в исследовании, которое провели ученые Вашингтонского университета в Сент-Луисе, впервые показано, что способность людей распознавать вкус жира определяется вариантами одного гена.

Этот ген кодирует белок CD36, находящийся во вкусовых сосочках языка. У более восприимчивых к вкусу жира людей синтезируется больше белка CD36, и они в 8 раз более восприимчивы к присутствию жира, чем те, у кого белка было вполовину меньше базового уровня.

«Конечной целью нашей работы является выяснение того, как наше восприятие вкуса жира влияет на выбор пищи и количество потребляемых жиров», – отмечает руководитель работы Нада Абумрад. Ранее в исследовании австралийских ученых из Университета Дикина уже было показано, что люди с высокой чувствительностью к жиру едят менее жирную пищу и реже набирают лишний вес.

МОЛЕКУЛА КЛИМАТА. В земной атмосфере обнаружена молекула, которая способна обратить глобальное потепление в глобальное похолодание, сообщает журнал Science.

Обнаруженная молекула относится к так называемым интермедиатам Криге. Существование этих интермедиатов или бирадикалов – промежуточных продуктов превращения имеющихся в атмосфере соединений под воздействием озона – немецкий химик Рудольф Криге предсказал еще в середине прошлого века. Но выявить их удалось только сейчас благодаря техническим возможностям американских Национальных лабораторий Сандиа и совместным усилиям их сотрудников и ученых британских университетов Манчестера и Бристоля.

Интермедиаты Криге должны быть мощными окислителями таких загрязняющих атмосферу газов, как двуокиси азота и серы, говорят ученые.

При быстром сжигании окислов азота и серы с образованием сульфатов и нитратов возникают аэрозоли, которые, в свою очередь, образуют облака, содействующие охлаждению планеты.

ВИДЕТЬ ТЕЛОМ. Скорпионы способны видеть не только глазами, но и всем телом. Во всяком случае, в ходе опытов научная группа из Университета штата Оклахома установила, что клетки панциря этих членистоногих способны различать ультрафиолет.

Во время исследований ученые закрывали специальными очками глаза скорпионам, и те на время лишались способности видеть окружающий мир. В таком положении они предпочитали не двигаться. Однако когда наряду с обычным светом скорпионов освещали также и ультрафиолетом, то они прекрасно ориентировались на местности.

Согласно гипотезе американских ученых, способность видеть телом возникла у скорпионов в ходе длительной эволюции, так как они ведут активную жизнь в ночное время под лунным светом, в котором довольна велика ультрафиолетовая составляющая.

ПРИМИТЕ К СВЕДЕНИЮ
Циклоп – это слон… только маленький

Многие из тех, кто читал о странствиях Одиссея, сопереживая герою бессмертного произведения Гомера, с облегчением вздыхали, когда ему удавалось победить циклопа. Но недавно выяснилось, что легендарному Одиссею впору предъявлять обвинения в… браконьерстве и варварском истреблении редких видов животных, некогда обитавших на острове Сицилия. Во всяком случае, к такому выводу могли бы прийти заступники животных, посетив выставку итальянских палеонтологов, организовавших экспозицию своих находок.

Главной ее достопримечательностью стали черепа с одной фронтальной глазницей. На первый взгляд, действительно глаз во лбу. Неужели исследователям и в самом деле удалось найти останки легендарных циклопов – одноглазых людей-великанов со свирепым характером?

Однако найденные рядом с черепами кости показали, что, судя по всему, они принадлежат млекопитающему, которое имело размеры крупного медведя. Только обладатель этих останков был все же не медведем, а карликовым слоном. «Глаз» же во лбу – это отверстие для дыхательных путей, иными словами – для хобота. А небольшие глаза находились по бокам головы.

Аналогичные останки были обнаружены на многих островах в бассейне Средиземного моря – на Сардинии, Мальте, Крите, Родосе и Кипре. Каким же образом карликовые слоники превратились в страшных циклопов и попали в знаменитую «Одиссею»?

«Скорее всего, не только поэт Гомер, который, согласно легенде, был слеп, но и его герой Одиссей никогда не видывали никаких циклопов, – считают исследователи. – Да и карликовых слонов тоже. Потому что Одиссей и его команда попали на Сицилию уже после того, как легендарные животные вымерли. И могли видеть лишь их черепа с одиноким отверстием во лбу. Этого оказалось достаточно, чтобы мореплаватели сочинили легенду о циклопах».

Но в данном конкретном случае, рассудили археологи, черепа все-таки принадлежали мирным пахидермам – толстокожим толстякам, которые были в несколько раз меньше тех слонов, что мы привыкли видеть в цирке. На латыни они зовутся «элефас фальконери» – слон-сокол.

Как слоны-«крошки» расселились по островам Средиземного моря – остается загадкой и по сей день. Можно предположить, что давным-давно эти клочки суши соединялись с Африканским континентом. К тому же все слоны умеют плавать. Поэтому обладатели черепов циклопов могли добраться до Сицилии или Родоса по морю вплавь.

Исчезновение с лица Земли «элефас фальконери» тоже не связано с людьми, а было обусловлено резким похолоданием климата. В результате на смену тропической растительности с мясистыми листьями пришли хвойные и колючие кустарники. Слоникам стало нечего есть.

Так что единственное светлое пятно в этой истории: Одиссей к исчезновению слоников отношения не имел.



    Ваша оценка произведения:

Популярные книги за неделю