355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2013 № 07 » Текст книги (страница 2)
Юный техник, 2013 № 07
  • Текст добавлен: 7 июля 2017, 16:00

Текст книги "Юный техник, 2013 № 07"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 2 (всего у книги 5 страниц)

ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ
От вертолетов к винтокрылам

В 1903 году, 110 лет тому назад, совершили первый полет на своем аэроплане «Флайер-1» братья Райт. Так началась эра покорения пятого океана – воздушного. Об этом многим известно. А вот о том, что в том же году вертолет американца У. Пиккеринга впервые поднял в воздух живое существо – кролика, известно не так широко.

С тех пор два вида воздушного транспорта – самолеты и вертолеты – развиваются параллельно. Пока на первом месте по-прежнему самолеты. Однако долгое время находившиеся в тени вертолеты могут в ближайшие десятилетия взять реванш.

Правда, для этого, похоже, им придется стать вертостатами.


Наследники «Урагана»

Помните?.. «Внезапно в машинном отделении что-то загрохотало, широкие лопасти, висевшие по бокам лодки, развернулись в огромные крылья, «Ураган»… взмыл в воздух и перелетел через ревущий водопад, освещенный спектром лунной радуги!»

Вот так в романе Жюля Верна «Властелин мира» действует универсальное транспортное средство, совместившее в себе, благодаря гению изобретателя Робура, свойства автомобиля, корабля, подводной лодки и, наконец, летательного аппарата. Фантастика эта до сих пор так и не стала реальностью. Хотя попыток создать, например, самолет-субмарину или летающий автомобиль предпринималось немало.

Причин тому много. А главная, пожалуй, та, что попытка примирить между собой противоречивые требования, например, самолета и субмарины приводят к тому, что комбинированный агрегат и летает плохо, и ныряет неважно…

Поэтому, наверное, в последние десятилетия требования к трансформерам стали скромнее. И сейчас конструкторы хотят «всего лишь» создать гибрид вертолета и самолета. Называют такие конструкции кто – вертостатом, кто – конвертопланом…


Современный автожир на стоянке.

И здесь дела движутся не очень быстро. Скажем, для того чтобы довести до ума, начать выпускать малыми сериями конвертоплан «Оспри», американцам понадобилось более четверти века.

Тем не менее, они не успокоились на достигнутом и попробовали подойти к решению проблемы с другого конца. Если «Оспри» – это попытка научить самолет взлетать и садиться по-вертолетному, то разработчики программы Transformer собираются научить летать армейский джип.

А на очереди еще задача научить вертолет, не теряя своих качеств, летать с самолетными скоростями. Попытки эти тоже начались не вчера, но самолеты вертикального взлета и посадки (СВВП) тоже так толком и не прижились в армии, а уж тем более – в гражданской авиации. Капризные они слишком… На режимах взлета и посадки требуют прямо-таки ювелирного управления.

И это при том, что, например, на вертикально взлетающей модификации американского истребителя F-35 соединенный с двигателем вентилятор вертикального старта и посадки весит более двух тонн – больше, чем сам реактивный двигатель! При этом большую часть полета он выключен, и самолету приходится возить его как бесполезный груз.

«Чтобы преодолеть эту проблему, Агентство перспективных исследований DARPA недавно запустило проект СВВП Х-Рlапе, – сообщил журналистам куратор программы Ашиш Багай. – Мы хотим бросить вызов традиционным авиационным технологиям и выйти за известные границы сразу в четырех областях: скорости, эффективности управления, эффективной дальности и полезной нагрузке», – добавил он.

И далее сообщил, что работа движется с трудом – уж очень необычной является задача конструкторов. Ведь им, по сути дела, требуется создать принципиально новый летательный аппарат, совмещающий в себе достоинства самолета и вертолета, но при этом лишенный их недостатков! Причем на все про все разработчикам дается всего 42 месяца. После этого Х-Plane должен выйти на летные испытания и показать в горизонтальном полете скорость до 550 км/ч. Что из этого получится, покажет время.


Многоцелевой винтокрыл

А пока суд да дело, две именитые фирмы – Sikorsky и Boeing – решили построить общими усилиями скоростной многоцелевой винтокрыл.

Гибрид выглядит несколько необычно. Два соосных винта на небольшом расстоянии друг от друга поддерживают машину в воздухе, при этом вперед аппарат летит не за их счет, а с помощью заднего толкающего винта. Получился модернизированный автожир, который уже показал скорость 486 км/ч.

Обычные компоновочные схемы вертолетов имеют принципиальные ограничения, которые препятствуют наращиванию их скорости.

КПД несущего винта по определению ниже, чем у неподвижного крыла самолета. Поэтому классическому вертолету не видать больших и безопасных (без сильнейшей вибрации) крейсерских скоростей.

Скорее всего, винтокрыл S-97 будут использовать для оперативного заброса небольшой группы бойцов в тыл противника, поддержки их огнем при выполнении боевой задачи и столь же быстрой транспортировки назад.

А потому винтокрыл, среди прочего, будет иметь и довольно приличное вооружение – блоки неуправляемых ракет или ПТУР, а также подвижную турель с пулеметом М2НВ (калибра 12,7 мм с 500 патронами). Летные характеристики предполагаются такие – крейсерская скорость 426 км/ч, дальность 1300 км.


Варианты компоновки новых летатательных гибридов.


Вертолет еще поборется…

Демонстрационный образец S-97 должен появиться к 2017 году, так что прогнозировать его судьбу пока сложно. Тем более что и конструкторы традиционных вертолетов не сидят сложа руки.

Например, сотрудники немецкого аэрокосмического центра DLR экспериментируют с модифицированными вертолетными лопастями, которые должны снизить вибрации и увеличить маневренность и скорость вертолетов. Ноу-хау новой лопасти заключается в подаче сжатого воздуха через крохотные отверстия вдоль передней кромки.

Лопасти несущего винта вертолета вызывают возмущение воздуха в момент, когда лопасть движется в направлении, противоположном направлению движения вертолета. Поэтому вблизи задней кромки лопасти образуется так называемый срыв потока воздуха, снижающий скорость машины и ее устойчивость.

Подача воздуха из отверстий в передней кромке может уменьшить турбулентность и существенно повысить характеристики лопастей в экстремальных режимах. Для этого новая лопасть имеет 42 отверстия диаметром 3 мм для выпуска сжатого воздуха, а также 74 датчика, которые 6000 раз в секунду измеряют изменения давления воздуха. В настоящее время немецкие ученые тестируют метровую лопасть в трансзвуковой аэродинамической трубе института DLR в Геттингене, которая способна имитировать полет на скорости от 1000 до 2700 км/ч.

Израильская компания Urban Aeronautics также занимается разработкой проекта скоростного летательного аппарата вертикального взлета и посадки. Только они взяли за основу беспилотник AirMule и добились успехов в его совершенствовании.

Как ожидается, вариант нового грузового беспилотника получит 1600-сильный двигатель и может быть использован военными в качестве транспортного средства для быстрой доставки боеприпасов и продовольствия на поле боя.

Дизайн аппарата необычен. На нем два вентилятора: один спереди, другой сзади, а также горизонтальный стабилизатор в задней части корпуса. Оси вентиляторов расположены параллельно; благодаря их работе и создается подъемная сила. Для того чтобы лететь горизонтально, беспилотник будет просто наклоняться вперед или назад, в результате этого вентиляторы обеспечат ему не только подъемную силу, но и движение в заданном направлении.

Взлетный вес аппарата составляет 1400 кг, при этом он способен перевозить груз массой до 635 кг, развивать скорость до 180 км/ч, совершать полеты на высоте до 3700 м и находиться в воздухе до 5 часов.

В. ВЕТРОВ


Подробности для любознательных

«ВЕРТУШКА» В ВОЗДУХЕ

Как уже говорилось в самом начале, в 1903 году вертолет американца У. Пиккеринга отправил в полет кролика. Однако это была вовсе не первая конструкция летательного аппарата подобного типа…

Говорят, первый проект вертолета (геликоптера) в Европе появился на страницах рукописи «Атлантический кодекс» Леонардо да Винчи где-то между 1487–1490 годами. В качестве движителя он предлагал использовать большую пружину или мускульную силу человека.

Наш знаменитый соотечественник Михаил Ломоносов в 1754 году создал «аэродинамическую машину» – модель вертолета. При испытаниях модели он убедился, что для полета мощности пружины недостаточно, не говоря уж о мускульной силе.




Тем не менее, идея использовать мышцы человека для полетов существовала почти до конца XIX века. В 1782 году французский художник и артист Жан Бланшар пытался таким образом поднять в воздух вертолет собственной конструкции. Даже в нынешнем веке некоторые изобретатели все еще не оставляют этой идеи. Но пока на практике она привела лишь к созданию летательных аппаратов гибридной схемы. Так голландец Ван Гекк использовал несущие винты для увеличения подъемной силы воздушного шара.

Англичанин Джордж Кейли заметил способность винта самостоятельно вращаться в набегающем потоке воздуха и создавать подъемную силу. В наше время это называется авторотацией и используется при аварийной посадке вертолета, а также при проектировании автожиров.

Тот же Кейли первым предложил устанавливать два несущих винта вертолета рядом, а в качестве силовой установки он, подобно Александру Можайскому, пытался использовать паровую машину. И тоже потерпел неудачу.

В 60-х годах XIX века идея «ввинчивания в воздух» нашла себе новых многочисленных сторонников во Франции. Энтузиасты вертолета Понтон д'Амекур, Габриэль де ла Ландель и Гаспар Турнашон напечатали «Манифест воздушного движения», в котором предположили, что подобные летательные аппараты весьма пригодятся, например, при спасательных операциях.

Гражданская война в Северной Америке в 1861–1865 годах вызвала повышенный интерес к созданию новых видов вооружений. Генерал северян Митчелл, бывший до войны университетским профессором, предложил тогда построить «паровую летательную машину».


Она должна была иметь два соосных несущих винта диаметром по 6 м, сигарообразный фюзеляж длиной 10 м и паровой двигатель мощностью 40 л.с. Однако первый военный геликоптер так и не поднялся в воздух – слишком слабой оказалась для него паровая машина.

В 1871 году во Франции попытался построить военный вертолет и русский изобретатель А.Н. Лодыгин.

Его «Электролет» предназначался для перевозки пассажиров и грузов, разведки и нанесения бомбовых ударов. Машина имела несущий и толкающий воздушные винты, фюзеляж обтекаемой формы. Однако поднять ее в воздух с помощью электродвигателя мощностью 300 л.с. тоже не удалось – слишком маломощны и тяжелы были аккумуляторы того времени.

Лишь с появлением новых средств управления, таких, как первые варианты автомата перекоса, а также более мощных поршневых двигателей внутреннего сгорания французы Ш. Ренар, П. Корню и братья Дюфо создали вертолеты, которые все же смогли оторваться от земли. А в 1908 году двухвинтовой вертолет Поля Корню с двигателем «Антуанетта» поднял в воздух и человека. Так началась эра винтокрылых машин.

М. ДМИТРИЕВ

Рисунки автора

НАУКА И ИСКУССТВО

В конкурсе «Наука как искусство», ежегодно проводимом американским Обществом исследования материалов, принимают участие тысячи специалистов. Сегодня мы публикуем несколько работ.


1. Эмбрион мыши.


2. Случайные узоры, созданные сульфидом мышьяка на хроме.


3. Магнитная жидкость, подкрашенная акварелью, сфотографированная в магнитном поле.


4. Язык бабочки.


5. Ходы, проделанные в почве колонией бактерий Myxococcus xanthus.

ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Слухи о слухе

Физики из Университета Калифорнии установили, что в ушах человека есть специальные «усилители», позволяющие нам слышать даже самые тихие звуки.

Но обо всем по порядку.

Как известно, мы с вами живем в довольно-таки шумном мире. Сила звука обычно выражается в фонах, или относительных децибелах, названных в честь Александра Белла, изобретателя телефона. Эта единица измерения представляет собой минимальную разницу в силе звука, которую способно уловить ухо человека. Термин «децибел» (десятая часть бела) употребляется при измерении громкости чистых тонов.

Наиболее распространенные источники звука имеют следующие уровни громкости:

– шум дыхания человека равняется 10 дБ, или децибелам;

– шелест листвы, тихий шепот с расстояния одного метра равняется 15 дБ;

– тиканье часов – 30 дБ;

– приглушенный шум в зале ресторана, стрекот пишущей машинки – 50 дБ;

– шум от легкового автомобиля или громкий разговор с расстояния одного метра – 60 дБ;

– шум уличного транспорта – 70 дБ;

– шум в самолете – 100 дБ;

– треск отбойного молотка – 120 дБ;

– гром пушечного выстрела – 130 дБ;

– шум стартующей космической ракеты оценивается в 150–175 дБ.

Поскольку звуки играют довольно значительную роль в жизни многих живых существ, то природа за многие миллионы лет весьма усовершенствовала органы слуха. Акустические колебания, которые несут информацию о том или ином звуке, сначала попадают в ушную раковину, которая является своеобразным звукоуловителем. Далее звуковые волны идут по слуховому проходу, состоящему из узкого изогнутого канала, к барабанной перепонке и раскачивают ее.

Конечно, «раскачкой» это явление можно назвать лишь условно, потому что мы способны воспринимать столь слабые звуковые волны, при которых барабанная перепонка под их давлением перемещается всего лишь на 0,0000000001 миллиметра, то есть на расстояние в 1000 раз меньше диаметра атома водорода!

Далее движение перепонки передается в барабанной полости через специальный аппарат – слуховые косточки. Они усиливают толчки воздуха, связанные с колебаниями, и транслируют движение улитке, которая находится во внутреннем ухе и напоминает раковину морской улитки. Спирально закрученные каналы ее заполнены жидкостью.

Улитка устроена очень сложно, включает в себя несколько камер и мембран. На одной из мембран (она закручивается по спирали, повторяя извивы полости, и состоит из эластичных резонирующих волокон) расположен специальный рецепторный аппарат из волосковых слуховых клеток. Здесь происходит звуковое восприятие.


Так выглядят волосковые клетки под микроскопом.

Акустические волны вызывают резонанс тех волокон мембраны, собственная частота колебаний которых совпадает с частотой этих волн. Энергия звуковых колебаний с помощью чувствительных клеток преобразуется в нервный процесс и в виде электрического сигнала передается по слуховому нерву в кору головного мозга.

Таким образом, как мы видим, прежде чем звук будет воспринят мозгом, ему, этому звуку, необходимо из воздуха перейти в кость, из кости – в жидкость, а из жидкости с помощью рецепторных клеток преобразоваться в нервные импульсы.

И в этих процессах далеко не все тонкости исследованы до конца. Недавно объектом внимания калифорнийских ученых стали пучки волосковых клеток, полученные из внутреннего уха лягушек. Их колебания исследователи изучали при помощи анализа высокоскоростной видеозаписи.


Свои исследования ученые проводили на лягушках.

Исследователи показали, что волоски при достаточной силе сигналов колеблются синхронно, в такт. А вот звуки были очень слабы, и колебания волосков часто рассинхронизировались, словно бы в поисках нужной волны, после чего вновь восстанавливали фазовое «сцепление, пишут авторы статьи, опубликованной в Physical Review Letters. Такой механизм позволяет сделать слуховые рецепторы чувствительными даже к таким тихим сигналам, энергия которых не превышает обычного теплового шума.

Здесь нужно, наверное, сказать, что волосковые клетки являются рецепторами слуха у всех позвоночных.

Они собраны в пучки по 30–50 штук, колеблющихся как единое целое. Клетки расположены в Кортиевом органе внутреннего уха.


Кстати

Как и всякий сложный прибор, орган слуха не «всеяден», обладает определенной избирательностью. Из огромного многообразия звуков, которыми наполнена Вселенная, живые существа слышат довольно узкий интервал звуковых частот. Так человек может воспринимать звуковые колебания в пределах от 10…20 до 15 000… 20 000 колебаний в секунду.

Именно поэтому, наверное, физики на основании полученных данных время от времени создают все новые приборы и устройства, которые превосходят возможности нашего слуха. Так, недавно немецкие ученые создали наноухо, которое в шесть раз чувствительнее нашего слуха.

Оно сконструировано из наночастиц золота при помощи оптического пинцета. Такой «пинцет» на самом деле представляет собой лазерный луч, сфокусированный в требуемой точке пространства. При попадании частицы в лазерный луч в ней возникает дипольный электрический момент, под действием которого частица перемещается в точку пространства, где интенсивность лазерного излучения наиболее высока. Эта технология применяется в микробиологии с 1980 года.

Далее движение перепонки передается в барабанной полости через специальный аппарат – слуховые косточки. Они усиливают толчки воздуха, связанные с колебаниями, и транслируют движение улитке, которая находится во внутреннем ухе и напоминает раковину морской улитки. Спирально закрученные каналы ее заполнены жидкостью.

Улитка устроена очень сложно, включает в себя несколько камер и мембран. На одной из мембран (она закручивается по спирали, повторяя извивы полости, и состоит из эластичных резонирующих волокон) расположен специальный рецепторный аппарат из волосковых слуховых клеток. Здесь происходит звуковое восприятие.

У СОРОКИ НА ХВОСТЕ



ЛИЧНЫЙ «ТИТАНИК» МИЛЛИАРДЕРА. Австралийский угольный «король», миллиардер Ральф Палмер заказал на китайской судоверфи за 200 млн. долларов «Титаник-2» – почти точную копию корабля, затонувшего в начале прошлого века. Отличаться от своего прототипа судно будет лишь дизельными силовыми установками вместо паровых котлов и машин (но 4 трубы для сохранения подобия все же поставят), а также увеличенным количеством спасательного оборудования. Ведь на трагически погибшем «Титанике», как известно, спасательных шлюпок катастрофически не хватало.

Интерьеры кают и прочих помещений корабля, а также меню завтраков, обедов и ужинов оставят такими же, какими они были на прототипе. Это уже вызывает некоторые нарекания будущих пассажиров. Ведь за прошедшее столетие понятия о комфорте и о гастрономических изысках сильно изменились.

Тем не менее, уже нашлись богачи, готовые заплатить за билет на первый рейс на новом старом корабле до миллиона долларов. Между тем, ныне обычное 7-суточное путешествие через Атлантику стоит от 1500 до 15 000 долларов; причем в последнем случае в распоряжение пассажира предоставляется 2-этажная каюта со всеми мыслимыми и немыслимыми удобствами.

БЛОНДИНКА ОБОШЛА ЭЙНШТЕЙНА? Как сообщает британская газета The Daily Mail, шестнадцатилетняя англичанка со светлыми волосами по имени Лорен Марбе превзошла при тестировании на интеллект IQ многих знаменитых ученых, включая астрофизика Стивена Хокинга и создателя теории относительности Альберта Эйнштейна.

Такие испытания на интеллект время от времени проводит организация «Менса», отбирая умниц и умников по всему миру. Так что теперь Лорен Марбе входит в один процент самых умных людей мира.

Девушка рассказала, что с тревогой ожидала результатов теста, тем более, что ее оценку сообщили последней. Ее показатель оказался равен 101 баллу.

Для сравнения укажем, что в Великобритании средним IQ считается результат в 100 баллов.

При этом известно, что Чарлз Диккенс набрал в свое время 180 баллов, Чарлз Дарвин – 165, Стивен Хокинг, Альберт Эйнштейн, Квентин Тарантино и Билл Гейтс – по 160 баллов. Среди женщин довольно высоким интеллектом обладают актриса Шерон Стоун (154 балла) и певица Шакира (140 баллов). Кстати, говорят, тому же Эйнштейну очень сильно помогла в его работе первая жена, математик но образованию. Не случайно свою Нобелевскую премию Альберт отдал ей.

И потом до конца жизни так и не создал ничего равноценного теории относительности.

Впрочем, в обществе «Менса» есть и более молодые британки, чей интеллект даже выше, чем у Лорен. Трехлетняя девочка русского происхождения по имени Элис Мое живет в графстве Суррей, свободно говорит на двух языках (русском и английском)и набрала 162 балла. Ныне девочка считается самым юным членом сообщества самых умных людей.

ПО СЛЕДАМ СЕНСАЦИЙ
Что стоит за «гравицапой»?



«Гравицапа – это то, без чего пепелац может только так летать, а с гравицапой в любую точку Вселенной – вжик! за пять секунд», – так объясняют суть этого забавного слова герои остроумного фильма «Кин-дза-дза!» режиссера Г.Н. Данелия.

В переводе на наш обыкновенный язык сказанное выше означает следующее.

Звездолет-пепелац, используемый жителями галактики Кин-дза-дза, в принципе, может летать и без этой самой «цапы». Однако с нею он приобретает прямо-таки сказочные свойства.

Впрочем, сам фильм тридцать с лишним лет тому назад и задумывался как сказка.

И тем большей неожиданностью было узнать, что некую «цапу» решили лет пять тому назад создать в подмосковном НИИ Космических систем. Точнее, там изобрели двигатель, который, по словам его создателей, может разгоняться до бесконечности.


В чем идея?

Суть дела, по словам Юрия Даныпова, начальника отдела НИИ Космических систем, можно наглядно прояснить с помощью такой аналогии.

Представьте себе: на неподвижно висящих качелях сидит человек. Вот он медленно наклонился вперед, а потом с силой откинулся назад, выбросив вперед ноги.

Качели дернулись. Человек раз за разом повторяет свои движения и вот уже – гляди! – раскачался.

Еще один пример, который демонстрировали сами создатели «гравицапы». В тазик с водой кладут кусок пенопласта. На него ставят небольшую коробочку. В коробочке начинает тарахтеть нечто, и вскоре она трогается с места.

Юрий Даньшов при этом сказал: «Заметьте, тут нет ни винтов, ни весел. Тяга появляется за счет именно работы самого устройства». И пояснил, что в лаборатории были созданы шесть вариантов двигателя, работающего без отброса массы.

В основе самого первого, придуманного в свое время изобретателем С. Поляковым, – трубка толщиной с большой палец, по спирали обегающая конус. В трубке ртуть – очень тяжелая жидкость. Поднимаясь вверх по спирали и затем по вертикали возвращаясь вниз, ртуть циркулирует в замкнутом контуре и при этом создает тягу. Говорят, расход электричества на работу насоса, качающего ртуть, существенно меньше той энергии, которую получает для перемещения в пространстве подобное устройство.

«Представьте себе космический корабль с таким двигателем, – говорил Юрий Даньшов. – Солнечные батареи обеспечат его электроэнергией на долгие годы, поэтому движение ртути по спирали гарантировано. Тягу двигатель создает совсем небольшую – десятки граммов, но ее достаточно, чтобы корабль улетел в неведомые пределы»…


«Гравицапа» в космосе

Официальная наука не признала модель, созданную в подмосковной лаборатории. Но директор НИИ Космических систем, генерал-майор в отставке Валерий Меньшиков, который сам раньше занимался космосом, поддержал своих коллег.

В мае 2008 года с космодрома Плесецк ракета-носитель «Рокот» вывела в космос малый космический аппарат «Юбилейный» с «гравицапой» на борту. В течение полутора лет на борту «Юбилейного» отрабатывались новые приборы и системы, ради чего, собственно, и был осуществлен запуск. А когда они закончились, была включена «гравицапа».

Однако в феврале 2010 года специалист по космическим станциям из журнала «Новости космонавтики» Игорь Лисов заметил, что «никаких изменений в параметрах орбиты этого спутника, за который мог бы отвечать движитель «гравицапы», отмечено не было. Я смотрел сам эти параметры – ничего, никаких шевелений, – сказал он. – Спутник медленно снижается. Точно так же, как его напарники по запуску…»

То есть, говоря проще, эффект от «гравицапы» оказался нулевым.



В мае 2008 года ракета-носитель «Рокот» вывела в космос спутник «Юбилейный» с «гравицапой» на борту.


От американцев до китайцев

На том можно было бы закончить наше повествование. Однако здесь уместно вспомнить, что подобные «двигатели» пытались строить и раньше.

В 1956 году в Америке была запатентована System For Converting Rotary Motion Into Unidirectional Motion – «Система преобразования вращательного движения в однонаправленное» (U.S. Patent 2,886,976 от 13 июля 1956).


В 1956 году в Америке была запатентована «Система преобразования вращательного движения в однонаправленное».


Подмосковная «гравицапа» выглядела так… Ее расчетные характеристики предполагались следующими: сила тяги – 10–30 г, собственная масса – 1700 г, габариты – 200x82x120 мм, потребляемая мощность – до 8 Вт.

Ученые откликнулись на эту затею так. Журнал Astounding Science Fiction в июньском номере за 1960 год опубликовал статью Нормана Л. Дина под названием The Space Drive Problem. В ней прямо говорилось, что еще великий механик, математик и философ Жан д'Аламбер сказал: «Тело не может само себя привести в движение, потому что нет никакого основания к тому, чтобы оно двигалось предпочтительнее в одну сторону, чем в другую». В безопорной среде никакие инерцоиды двигаться не могут.

Гораздо позже, в феврале 2013 года, информационные агентства распространили весть о том, что китайские ученые из Северо-Западного политехнического университета в Сиане объявили об успешном испытании концептуально нового двигателя. Необычная силовая установка под названием EmDrive потенциально может использоваться как в космической технике, так и в летающих автомобилях.

EmDrive представляет собой закрытый конический контейнер, который резонирует под воздействием микроволнового излучения и создает тягу с широкой стороны «сопла». На первый взгляд, двигатель, который не испускает струю раскаленных газов, не потребляет топливо, а лишь излучает микроволны, нарушает закон сохранения импульса и попросту не может создавать тягу. Тем не менее, британский инженер Роджер Шайвер тоже ссылается на предшественников и напоминает, что еще в 50-е годы XX века британский инженер-электротехник Аллен Каллен предположил, что можно создать магнетрон с резонансной полостью такой формы, что давление микроволн на одну его часть окажется выше, чем на другую.

Затем еще один британский инженер Роджер Сойер сделал вывод, что, если резонатор магнетрона будет асимметричным, в форме усеченного конуса, то релятивистские эффекты позволят получить на его вершине меньшее давление, чем на основании. «Групповая скорость микроволн, – постулирует он, – зависит от диаметра резонатора – а значит, там, где диаметр меньше, давление микроволн будет выше». При этом у резонатора и микроволн окажутся разные системы отсчета, уверен изобретатель, поэтому система будет открытой. Закон сохранения импульса не нарушается, так как момент, получаемый двигателем, равен моменту, теряемому микроволнами в резонаторе.

Правда, в его интерпретации на бесконечный разгон этот двигатель не способен. По мере роста ускорения в направлении вектора его импульса тяга падает, и при значительной скорости гипотетического космического аппарата дальнейший разгон в том же направлении становится невозможным.

Китайские исследователи пишут, что создали прототип двигателя, который на испытаниях превратил пару киловатт входной мощности в 720 миллиньютонов (72 грамма) тяги. Однако, судя по фотографиям, похоже, что ими просто создана еще одна разновидность ионного двигателя. Тогда все в порядке. Полученная тяга может показаться ничтожной, однако ионный двигатель XIPS компании Boeing при вдвое большей потребляемой мощности создает на четверть меньше тяги. При этом XIPS требует для эксплуатации не только источник электроэнергии, но и большой запас топлива. Так что тут вроде бы есть над чем поработать. Но к «гравицапе», похоже, это уже не имеет никакого отношения.



Китайский вариант «гравицапы» выглядит куда серьезней и вполне похож на ионный двигатель. Такие двигатели используют в космосе уже сегодня.

Тем не менее, Роджер Шайвер утверждает, что сможет вскоре обеспечить почти «антигравитацию» – парение в воздухе без рева реактивных струй и шума винтов.

«Использование сверхпроводников позволит увеличить тягу устройства в разы – вплоть до возможности отрыва космических кораблей от поверхности планеты и выхода на околоземную орбиту», – утверждает он. К 2016 году инженер планирует построить первый прототип на сверхпроводниках, что позволит в перспективе увеличить тягу EmDrive в тысячи раз.

Ну, что же, как говорится, поживем – увидим. Тем более что ждать на сей раз не так уж и долго – всего три года. А пока заметим, что все же законы Ньютона просто так не опровергнуть, хотя сделать это пытались многие.

P.S. Вообще-то китайцы со своими опытами как раз подгадали к выходу на экраны мультипликационного варианта знаменитого фильма Г. Данелия. Так что вспомнить о «гравицапе» у нас с вами есть еще один повод.

P.P.S. Кстати, попробуйте сами объяснить себе, почему «фокус» с качелями или с лодкой может повторить любой человек, а вот с «гравицапой» ничего не вышло даже в невесомости.

В. БЕЛОВ, С. ЗИГУНЕНКО


    Ваша оценка произведения:

Популярные книги за неделю