Текст книги "Юный техник, 2013 № 08"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 2 (всего у книги 5 страниц)
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Скафандр-невидимка
Современный космический скафандр хорошо защищает людей, но каждое движение в нем дается с трудом, поскольку скафандр – это массивная многослойная конструкция, которая в вакууме еще и сильно раздувается напором воздуха изнутри. Но ситуация может измениться. Надеяться на это позволяет случайное открытие японских ученых, исследовавших… плодовых мушек.
В самом конце XX века российские исследователи обнаружили, что неприхотливые микроскопические существа – тихоходки – без особого вреда для здоровья переносят условия открытого космического пространства, прикрываясь защитной биопленкой и впадая в спячку до лучших времен. Вернувшись в привычные земные условия, тихоходки довольно быстро восстанавливают свою жизнедеятельность (подробности см. в «ЮТ» № 2 за 2010 г.).
Известно также, что облучение микробов высокоэнергетическими электронами покрывает их поверхность защитным слоем. Эта корка позволяет им выживать в вакууме.
Очередной шаг в изучении приспособления беспозвоночных и насекомых к облучению и вакууму сделали недавно японские биологи под руководством профессора Такахико Хариямы из медицинской школы при Университете города Хамамацу.
По роду своей деятельности им довольно часто приходится пользоваться электронным микроскопом. При этом известно, что для сканирования того или иного объекта его необходимо поместить в вакуумную камеру и облучить потоками электронов, которые и «рисуют» изображение на экране дисплея.
Фото крупным планом. Личинка дрозофилы – обладатель скафандра-невидимки.
Так можно изучать образцы металлов, пластиков или камней. Но живые организмы в вакууме гибнут практически мгновенно, так что электронная микроскопия для их исследования подходит плохо. Каково же было удивление японских экспериментаторов, в опытах которых личинки мушек-дрозофил без всякого вреда для себя выдержали часовое пребывание в вакуумной камере.
Ученые, конечно, стали выяснять, почему уцелели личинки. И вскоре обнаружили, что их тельца под потоком электронов моментально покрываются тонким (50 – 100 нанометров) слоем защитной пленки, которая не дает жидкости из организма испаряться.
Этот слой возникает в результате полимеризации тканей внешних покровов под воздействием электронов высоких энергий. Причем пленка так тонка, что позволяет личинке сохранить подвижность, и в то же время достаточно прочна, чтобы защитить организм от обезвоживания. «Она, эта пленка, оказалась похожа на миниатюрный космический скафандр. Она не поломалась, даже когда мы ее потрогали», – удивился профессор Харияма, руководивший работами.
Японцы назвали оболочку «нанокостюмом» и стали смотреть, какие микроорганизмы его имеют, а какие нет. К сожалению, выяснилось, что подобную защиту природа предусмотрела далеко не для всех.
Тогда сам собой возник следующий вопрос. Если природа такой оболочки не обеспечивает, нельзя ли ее создать искусственно? Японцы перепробовали множество веществ и соединений, пока не наткнулись на полиоксиэтиленсорбитан монолаурат. Несмотря на столь сложное название, это довольно распространенный препарат. Он свободно продается и входит в состав многих бытовых моющих и косметических средств.
Далее выяснилось, что личинки комаров, «принявшие ванну», после такой процедуры живут в вакууме полчаса, в то время как обычно гибнут почти мгновенно.
Плоские черви, личинки муравьев и бокоплавов тоже стали неплохо чувствовать себя в условиях вакуума.
Переходить к опытам над более сложными организмами биологи не торопятся. Они хорошо понимают, как велика разница в строении микроорганизмов и животных. И намерены двигаться небольшими шажками, используя накопленные методики в опытах, скажем, со взрослыми муравьями, а также тараканами, известными своей неприхотливостью. Тараканы привлекают внимание ученых еще и тем, что способны без вреда для здоровья переносить дозы радиации, смертельные для человека. Не будем забывать, в условиях открытого космоса присутствует жесткое солнечное излучение. Нас, живущих на Земле, от него защищают ионосфера с атмосферой.
Работать в открытом космосе в современном скафандре – довольно тяжелый труд.
Так что наноскафандры для космоса появятся еще не завтра. Однако не будем забывать, что в первой половине XX века никто не знал толком, сможет ли человек вообще существовать в космосе. Лишь прошедшие десятилетия показали: люди не только существуют, но живут и работают в космосе месяцами, стойко перенося невесомость, радиацию и пониженное давление.
Формирование полимерной защиты от вакуума: вверху – на личинке мухи, внизу – на личинке комара. Посередине – то, что вакуум делает с личинкой комара без защитной пленки.
Вполне возможно, со временем будет отработана и технология создания наноскафандров для людей. Тогда для выхода в открытый космос, возможно, будет достаточно опрыскать космонавта специальным спреем из баллончика. И, взяв баллон с дыхательной смесью и надев кислородную маску, он отправится в шлюзовую камеру, чтобы через несколько минут приступить снаружи к ремонту каких-то агрегатов орбитальной станции.
С. НИКОЛАЕВ
СЕКРЕТЫ МОЛНИЙ
То, что молния – электрический разряд, еще в середине XVII века доказал американский ученый и изобретатель Бенджамин Франклин. Ему мы обязаны появлением громоотводов.
Однако довольно скоро выяснилось, что разряд молнии в атмосфере возникает при электрических полях, интенсивность которых на порядок меньше, чем следует из лабораторных экспериментов. Объяснил этот парадокс академик Александр Викторович Гуревич, сотрудник Физического института им. П.Н. Лебедева РАН, при помощи открытого им эффекта пробоя на убегающих электронах.
По словам Александра Викторовича, суть теории заключается в том, что электроны высоких энергий (от 1 кэВ) под действием электрического поля могут значительно ускоряться в атмосфере. При этом быстрые электроны движутся не как обычные, а лавинообразно.
Причем первопричиной этой своеобразной лавины являются гамма-лучи, приходящие из космоса.
Академик Гуревич и его ученики создали теорию явления, а сам он стал руководителем целого экспериментального направления, в рамках которого проводились опыты, подтвердившие теорию. Для этого на Тянь-Шаньской высокогорной научной станции под Алма-Атой, в горах был создан целый научный комплекс, в том числе и установка «Гроза».
Приборы в течение нескольких грозовых сезонов регистрировали инициированные космическими лучами широкие атмосферные ливни, а также вспышки гамма– и радиоизлучения, возникающие во время разряда молнии. Таким образом выяснилось, что электрические поля в грозовых облаках разгоняют электроны до околосветовых скоростей. Дальнейшие столкновения электронов с атомами воздуха рождают дополнительные свободные электроны, а также рентгеновское и гамма-излучение. В итоге образуются не только обычные, но и так называемые «темные молнии» (см. «Подробности для любознательных»).
В теории все выглядит достаточно логично. Однако вплоть до самого последнего времени не было конкретных свидетельств того, что именно космические лучи ответственны за начало пробоя на убегающих электронах. Дело в том, что воспроизвести такие процессы в лаборатории оказалось довольно трудно. И не только потому, что для этого нужно напряжение в 10 млн. В. Космические лучи, входя в земную атмосферу, генерируют радиоимпульсы, причем во время грозы радиоимпульсов с необходимыми параметрами больше, чем когда грозы нет. Почему?
Пытаясь ответить на этот вопрос, Александр Гуревич и Анатолий Караштин из Научно-исследовательского радиофизического института (Нижний Новгород) проанализировали данные от радиоинтерферометров, снятые при 3800 ударах молний над Россией и Казахстаном. И в конце концов выяснили, что своеобразными усилителями радиоимпульсов являются дождевые капли и градины в грозовых облаках.
Однако окончательному принятию этой теории на вооружение препятствуют замечания оппонентов. Один из них – профессор Клив Саундерс из Манчестерского университета (Великобритания), горячий сторонник альтернативной теории формирования молний, – полагает, что надо еще доказать «корреляцию между молниевой активностью и частотой прибытия космических лучей»…
Говоря проще, когда Солнце находится на пике своей активности, оно должно отражать значительную часть космических лучей от Земли в пределах гелиосферы.
Если теория Гуревича верна, то в годы солнечной активности молний должно быть намного меньше, чем в периоды солнечных минимумов.
А поскольку максимумы и минимумы солнечной активности чередуются в среднем с периодом в 11 лет, могут понадобиться еще десятилетия для накопления статистики. Словом, секреты молний раскрыты еще далеко не полностью.
Подробности для любознательных
УГРОЗА ГРОЗЫ
Пока же суд да дело, ученые предупредили экипажи авиалайнеров и их пассажиров о необходимости держаться подальше от так называемых «темных молний», которые опасны для людей и электроники самолетов.
«Они почти незаметны глазу и характерны для тех высот, где летают пассажирские самолеты (9 – 12 тысяч метров). При этом на высоте 12 тысяч метров при каждой «темной молнии» пассажир или член экипажа самолета может почти мгновенно получить дозу радиации, равную обследованию в магнитно-резонансном томографе, – сказал Джозеф Дуайер из Технологического института Флориды, представивший результаты своего исследования на конференции Европейского геофизического союза в Вене. – А для электроники самолетов наибольшую опасность несет не само гамма-излучение, а поток нейтронов, которые оно попутно вышибает из атомов конструкции самолета. Электронное оборудование может отказать, а это уже предпосылка к аварии, а то и к катастрофе»…
На схемах показана частота попаданий космических лучей в атмосферу Земли (вверху) и частота ударов молний на единицу площади (внизу). Заметно, что одних космических лучей для генерации большого количества молний мало – им еще нужно взаимодействие с каплями воды.
С ПОЛКИ АРХИВАРИУСА
Хотя Жюль Верн и не был инженером…
В нынешнем году исполнилось 185 лет со дня рождения основателя жанра научной фантастики. Литературоведы как-то подсчитали, что из 108 фантастических идей Жюля Верна ошибочными или принципиально неосуществимыми оказалось только 10.
«В 98 случаях предвидение состоялось», – говорят они. Но так ли это на самом деле?
Чем более всего интересен писатель своим многочисленным читателям?
Давайте для примера проследим, насколько велика была точность попадания в «яблочко» прославленного литератора в одном из его лучших произведений – романе «20 000 лье под водой».
Начать нам придется со скандала, который разразился еще до того, как роман Жюля Верна увидел свет.
В сентябре 1867 года карандашный набросок повествования о невиданном подводном корабле был наполовину обведен чернилами. Это значило, что Жюль Верн приступил к завершающей фазе своей работы – сначала он писал черновик текста карандашом, потом исправлял написанное, прибегая к помощи резинки, и, наконец, обводил чернилами.
Издатель Пьер Жюль Этцель оповестил читателей, что в ближайшие месяцы Жюль Верн обещает закончить «Путешествие под водой».
Однако вскоре выяснилось, что подводный корабль «Молния», движимый электрической энергией, уже описан пером другого автора. Встревоженный Этцель сообщает Жюлю Верну, что в газете «Пти журналь» начата публикация романа о кругосветном подводном путешествии под названием «Необыкновенные приключения ученого Тринитуса». Автором сего произведения значился некий Аристид Роже. Позднее выяснилось, что под этим псевдонимом скрывался известный ученый того времени, профессор Жюль Рангад.
Получилось, что наука опередила литературу. Да и вообще к тому времени было уже известно несколько проектов подводных кораблей, один из которых предлагался императору Наполеону Бонапарту за полвека до описываемых событий.
Тогда Жюль Верн по совету своего издателя обратился с письмом к редактору в ту же газету. «Еще задолго до публикации «Необыкновенных приключений ученого Тринитуса» г-на Роже я приступил к работе над романом «Путешествие под водой», о чем сообщалось в «Журнале воспитания и развлечения». Убедительно прошу Вас поместить в «Пти журналь» это письмо, чтобы предотвратить возможность нарекания читателей, если они обнаружат в сюжете моего нового романа некоторое сходство с «Необыкновенными приключениями ученого Тринитуса»…
Таков был первый, но отнюдь не последний просчет знаменитого литератора.
Конечно, профессиональный мастер пера смог отделать сюжет лучше, чем ученый. Он лучше выписал характеры главных героев, зримо представил интерьеры корабля, придумал более захватывающий сюжет, но все это уже было своеобразным повторением пройденного.
Кроме того, он допустил и ряд фактических ошибок, вошел в противоречие с наукой. Вспомните, например, какие просторные помещения, огромные обзорные экраны описывает Жюль Верн. На настоящем же «Наутилусе», который вышел в море почти 100 лет спустя, было тесновато, а иллюминаторов не было вообще.
Жюль Верн смог оценить силу электричества, уже известного в его время, но и намека не сделал на возможность укрощения энергии атома – ведь в его время и ученые не знали о ней практически ничего.
Даже само название подводного корабля – «Наутилус» – не принадлежит писателю. Так уже называлась подводная лодка, построенная изобретателем первого парохода Робертом Фултоном в 1801 году и предназначенная для действий против англичан.
Правда, с легкой руки известного литератора это название прижилось на подводном флоте и использовалось еще не раз. Также «Наутилусом» была названа одна из первых подлодок, построенных в США накануне Первой мировой войны.
Еще одним «Наутилусом» стала подводная лодка исследователя Арктики Хьюберта Вилкинса, участвовавшая в его полярной экспедиции 1931 года. Чуть позднее появился в американском флоте и пятый «Наутилус», известный также под названием N-2. И, наконец, в шестой раз это имя получил первый атомный ракетоносец, построенный в США в середине XX века.
С одной стороны, «Наутилус» XX века полностью оправдывал девиз своего фантастического прототипа – «Подвижное в подвижном». При водоизмещении порядка 3000 тонн он развивал под водой скорость более 20 узлов (37 км/ч). Но, с другой стороны, настоящий «Наутилус» вовсе не собирался таранить корабли своих противников. Для борьбы с ними на борту имелось куда более действенное оружие – торпеды и ракеты. До их использования Жюль Верн не додумался, хотя они были уже известны ко времени создания романа.
Теперь давайте вспомним хотя бы некоторые из других наиболее известных романов Жюля Верна и посмотрим, насколько хороши описанные в них новинки.
В романе «Пять недель на воздушном шаре» он описывает аэростат «Виктория». Однако подобный аэростат, но еще больших размеров, собирался строить в то время и приятель Жюля Верна – фотограф и путешественник Надар. Его «Гигант» в качестве гондолы имел настоящий домик-шале. Жюль Верн закончил писать роман, а Надар – строить «Гигант» практически одновременно, в 1863 году. Вот только судьба у придуманного и реального шаров оказалась разной. «Виктория» Жюля Верна благополучно совершила путешествие над Африкой, а «Гигант» Надара, пройдя первые испытания, 18 октября 1863 года неожиданно был унесен порывом ветра из Франции в Германию и разбился возле Ганновера, едва не унеся на тот свет самого Надара, его жену и нескольких их друзей. Вслед за тем воздухоплавание ждало еще немало аварий и катастроф, от которых оно не может оправиться и по сию пору.
А вот тот загадочный генератор, с помощью которого доктор Фергюссон заправлял оболочку шара водородом, добывая его из воды, только-только начинает использоваться в наши дни. Имя ему – топливная батарея. Но при этом Жюль Верн не угадал другое – водород из-за его пожароопасности в воздухоплавании уже давно не используется. Его заменил негорючий гелий.
Далее, в романе «Робур-Завоеватель» упоминается «Альбатрос» – фантастический летательный аппарат с 76 винтами. Такой летательный аппарат так никогда и не был построен. Правда, некоторые исследователи творчества писателя видят в «Альбатросе» намек на будущие геликоптеры. Но даже в наши дни в самых сложных конструкциях число пропеллеров не превышает 20. А большинство вертолетов обходится одним-двумя роторами.
В следующем романе «Властелин мира» Жюль Верн снова вспомнил о Робуре. На сей раз гениальный изобретатель строит универсальную машину-вездеход, которая способна мчаться по земле, как гоночный автомобиль, плавать по воде и под водой, летать по воздуху… Причем машина «взлетала, словно птица, быстро взмахивая своими широкими и могучими крыльями». С той поры прошло уже полтора века, а такого универсального средства транспорта нет и, скорее всего, никогда не будет. Да, были попытки создания летающих авто, автомобилей-подлодок, самолетов-субмарин, махолетов… Но ни одна из конструкций не оказалась настолько удачной, чтобы стать массовым средством транспорта. Гибриды одинаково плохо и ездят, и летают, и плавают, и ныряют…
Слишком уж различные требования предъявляются, скажем, к летающим и ныряющим конструкциям.
Однако Жюль Верн над такими «мелочами» не задумывался. Ему надо было удивить читателя любой ценой, и он его удивлял. О чем, кстати, писали его современники и собратья по перу.
Но подобные промахи, похоже, Жюля Верна уже нисколько не волновали. «Фабрика романов» – как иногда называют писателя – регулярно выдавала том за томом, заставляя некоторых критиков даже заподозрить, что под псевдонимом «Жюль Верн» скрывается целая артель литераторов.
Герои Жюля Верна строят гигантскую пушку. Снаряд, вылетевший из нее с путешественниками внутри, отправляется в полет к Луне. А с перегрузками они запросто справляются с помощью пружин и мягких матрасов. Между тем подобных стартовых перегрузок, как показывают расчеты, не выдержат даже многие электронные устройства, не говоря уж о живых существах, от которых бы, наверное, только мокрое место и осталось…
Более соответствует действительности гигантское орудие, описанное в романе «Пятьсот миллионов бегумы».
Тут можно сказать, что конструкция несколько напоминает «Большую Берту» – суперпушку, построенную немецкими инженерами в начале XX века, а также проекты сверхдальних орудий – «Фау-3» профессора Буля и некоторые другие. Но проекты эти по разным причинам так и не были доведены до стадии реализации.
Посмеиваются, читая Жюля Верна, не только инженеры, но и географы с геологами. Писатель ухитрился обнаружить материк на Северном полюсе и столь глубокие подземелья-пещеры, что по ним, если верить ему, можно добраться аж до центра Земли…
Смеются, но читают. И правильно делают. Потому что фантазия Жюля Верна передается по наследству, словно эстафетная палочка. Разбуженная однажды, еще в детстве, она потом позволяет человеку фонтанировать нетривиальными идеями всю сознательную жизнь.
Академик В.А. Обручев, к примеру, писал, что чтение романов Жюля Верна пробудило в нем интерес к естествознанию, изучению природы далеких, малоизвестных стран. Ученый даже сам отметился как писатель-фантаст, написав «Землю Санникова».
Американский конструктор подводных лодок Саймон Лейк в автобиографии упоминает, что интерес к субмаринам в нем пробудил опять-таки Жюль Верн. И когда подлодка «Протектор» в 1903 году совершила переход из Бриджпорта в Нью-Йорк, довольный изобретатель даже послал автору «20 000 лье под водой» срочную телеграмму, разделяя свой успех с ним.
О вдохновляющем влиянии Жюля Верна писали еще многие путешественники, изобретатели, ученые… Среди них полярный исследователь Фритьоф Нансен, итальянский изобретатель радио Гульельмо Маркони, создатель автожира испанец Хуан де ла Сиерва, французский исследователь глубин Огюст Пикар… Они не считали писателя пророком; он был «всего лишь» талантливым впередсмотрящим, как его назвал однажды литературовед Евгений Брандис. Но и это, как выяснилось за те полтора века, что мы читаем его книги, тоже немало.
Тем более что многие из нас еще далеко не все прочли. За свою жизнь Жюль Верн написал около 70 романов, а также более 20 повестей и рассказов, три десятка пьес. Кроме того, его перу принадлежат несколько документальных, исторических и научных работ.
А читали ли вы, кроме «Пятнадцатилетнего капитана» и «Детей капитана Гранта», скажем, «Треволнения одного китайца в Китае», «Паровой дом», «Зеленый луч», «Архипелаг в огне», «Золотой вулкан», «Великолепное Ориноко», «Тайну Вильгельма Шторица», «Южную звезду»?.. Если нет, то вам еще есть что почитать. Жюль Верн продолжает оставаться «властелином мира» и умов сотен миллионов читателей. Его книги переведены почти на 150 языков мира, а их суммарный тираж составляет многие десятки миллионов экземпляров. Произведения Жюля Верна не раз экранизировались, ставились на сцене и неизменно пользовались любовью публики.
Так вспомним же о замечательном таланте еще раз и поклонимся его памяти.