Текст книги "Юный техник, 2012 № 10"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 5 (всего у книги 5 страниц)
ПОЛИГОН
Бумажная фабрика на дому
Говорят, бумагу изобрели древние китайцы. И было это давным-давно – около 2000 лет тому назад. Историки, впрочем, утверждают, что первую на свете бумагу стали производить… осы; они и поныне делают бумажные гнезда. А китаец Цай Лунь лишь подсмотрел их секрет и сумел его воспроизвести.
Согласно легенде, китайский император поручил Цай Луню найти материал для письма, который был бы не хуже шелка, который тогда использовали для написания самых важных документов, но гораздо дешевле. Поиски и привели Цай Луня к осам. Тонкий, но прочный материал, из которого были сделаны осиные гнезда, больше всего походил на то, что он искал. Проведя сотни опытов, ученый пришел к выводу, что получить нечто подобное можно из коры тутового дерева, конопляного лыка, изорванных рыболовных сетей и ветхих тканей.
Все это надо перетереть и проварить, смешав с клейкой жидкостью. Полученную массу затем нужно зачерпнуть ситом из шелковых нитей, закрепленных на бамбуковой рамке. Когда вся вода стечет, оставшийся влажный листок следует пропитать желатином. Остается высушить лист и разгладить его между каменными плитами. И все – на нем можно писать и рисовать.
Старинная гравюра, показывающая процесс изготовления бумаги в Средние века.
В принципе, подобным образом делают бумагу и поныне. В этом вы можете убедиться, воспроизведя дома основные этапы производства. С двумя лишь исключениями. На современных фабриках все операции по изготовлению бумаги делают машины, мы же все сделаем вручную. А кроме того, чтобы не варить дома целлюлозу из древесины, измельчить и проварить которую довольно затруднительно, пойдем на упрощение – используем уже готовую целлюлозу из старых газет.
Оборудование, необходимое для изготовления бумаги дома.
Для работы вам понадобятся: пестик со ступкой, миска, тазик с водой, деревянная рамка с сеткой (для нее можно использовать двойной слой марли, а еще лучше нейлон от старых колготок или чулок) и, возможно, фен или утюг.
Кстати, рамку можно делать и из дерева, а использовать готовую – из тех, например, куда некогда вставляли фотографии, чтобы повесить на стену. А если вы согнете из толстой проволоки прямоугольник и натянете сетку на него, такое приспособление тоже пойдет в дело.
Начнем же мы с того, что порвем старые газеты на мелкие кусочки и замочим их в тазу с водой. Чтобы бумага как следует размокла, оставьте ее в воде на день или два.
Возьмите из тазика немного бумажной массы, отожмите ее, чтобы стекла лишняя вода, положите в ступку и начинайте растирать пестиком. Некоторые отчаянные головы даже пытаются приспособить для этой цели мамин блендер, но мы бы вам этого не советовали – все-таки техника дорогая и вовсе не для этого предназначена.
Растирайте бумагу пестиком до тех пор, пока в ступке не окажется однородная масса, состоящая из отдельных волокон. Переложите массу в миску. Повторите операцию по растиранию несколько раз, пока не наберется примерно половина миски. Налейте в миску воды, еще раз тщательно все перемешайте и подождите, пока на дно миски не начнет оседать гуща. Осторожно слейте на наше сито-рамку верхнюю часть смеси из миски (она состоит из наиболее тонко растертых волокон). Причем сливать надо так, чтобы масса распределилась по сетке возможно равномернее.
Можно поступить и иначе. Взять миску побольше, чтобы в нее можно было погрузить нашу рамку и зачерпнуть ею верхний слой взвеси.
Так или иначе, в рамке на сетке должен остаться тонкий слой бумажной кашицы. Дайте воде стечь сквозь сетку. Можно также слегка потрясти рамку, чтобы вода сливалась быстрее.
У вас на сетке должен остаться влажный и рыхлый бумажный лист. Положите сетку на ровную поверхность и оставьте сушиться. Когда лист высохнет настолько, что не будет разваливаться, переверните рамку и вывалите лист на ровную подложку. Некоторые умельцы советуют прокатать его фотографическим валиком, чтобы быстрее отжать влагу и сделать листок ровнее. Другие советуют ускорить сушку феном, а еще лучше – прогладить лист утюгом.
Вот она и готова, ваша самодельная бумага.
На снимках показаны последовательные этапы изготовления бумажного листа.
В заключение пара советов. Некоторые самодельщики кладут на сетку рамки проволоку, изогнутую особым образом (например, в виде буквы «С» или «Р», чтобы получить так называемый водяной узор на бумаге. Можно для этих целей положить на сетку кленовый лист. Он тоже даст на бумажном листе красивый узор.
Поскольку изготовленная таким образом бумага довольно рыхлая, как промокашка, писать на ней лучше шариковой ручкой. Для того чтобы на такой бумаге не расплывались чернила, ее дополнительно обрабатывают раствором воды и желатина. Затем высушивают вторично.
…Вот она и готова, ваша самодельная бумага.
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Детекторный приемник с ферритовой антенной
А возможно ли это? Давайте разберемся.
Магнитные ферритовые антенны хороши своими небольшими размерами и хорошо выраженной направленностью. Стержень антенны должен располагаться горизонтально и перпендикулярно направлению на радиостанцию.
Другими словами, антенна не принимает сигналов со стороны торцов стержня. Кроме того, они малочувствительны к электрическим помехам, что особенно ценно в условиях больших городов, где уровень таких помех велик.
Основными элементами магнитной антенны, обозначаемой на схемах буквами МА или WA, являются (рис. 1): катушка индуктивности 1, намотанная на каркасе 2 из изоляционного материала, и сердечник 3 из высокочастотного ферромагнитного материала (феррита) с большой магнитной проницаемостью.
Простейшая магнитная антенна – рамочная – состоит из одного или нескольких витков провода, имеющих форму круглой или прямоугольной рамки. Магнитное поле, пронизывающее плоскость такой антенны, наводит в ней электрические колебания – переменную электродвижущую силу (ЭДС).
Таким образом, в магнитной антенне происходит преобразование энергии поля волны в электрическую энергию тока, текущего в приемник.
Ферритовая магнитная антенна – та же рамочная, но весьма малых размеров. Зато она содержит много витков (их ЭДС складываются) и ферритовый сердечник, концентрирующий (как бы втягивающий в себя) силовые линии магнитного поля Н приходящей волны. Коэффициент усиления (концентрации) поля сердечником называется эффективной магнитной проницаемостью Мэфф. Она меньше исходной магнитной проницаемости феррита М и зависит от отношения диаметра сердечника к его длине.
Так, например, для одного из лучших ферритовых стержней для МА, выпускаемых отечественной промышленностью из феррита 400НН диаметром 10 и длиной 200 мм Мэфф = 150, тогда как М = 400! К сожалению, равенство М и Мэфф достигается только для замкнутых магнитопроводов, таких как кольцо или Ш-образный сердечник, или для бесконечно длинного стержня. Первые (ввиду замкнутости) не работают как антенны, а очень длинный стержень неудобен конструктивно, хрупок, да и довольно тяжел.
Приемные качества любой антенны принято характеризовать ее действующей высотой hд. ЭДС, наводимая приходящей волной в антенне, равна:
ЭДС = Е ∙ hд, где Е – напряженность поля радиоволны, измеряемая в В/м.
Если для вертикального провода длиной h действующая высота hд = h/2, для Г-образной проволочной антенны hд примерно равна высоте подвеса горизонтальной части, то есть измеряется метрами, то для типовой магнитной антенны hд составляет от силы единицы сантиметров.
Напряженность поля мощных ДВ– и СВ-радиостанций при не слишком большом удалении от них составляет десятки, а то и сотни милливольт на метр. Так, например, станция мощностью 75 кВт на расстоянии 30 км дает напряженность поля 100 мВ/м, или 0,1 В/м. Наружная проволочная антенна разовьет в этих условиях ЭДС близкую к 1 В, а ферритовая – вряд ли более 10 мВ. Малую эффективность ферритовых антенн компенсируют большим усилением современных транзисторов и микросхем в радиоприемниках.
В детекторном приемнике компенсировать недостаток сигнала, казалось бы, нечем, поскольку никаких усилителей в нем нет. Но одна возможность все-таки имеется. Схема приемника показана на рисунке 2.
Она самая обычная и наверняка вам знакома. Но заметьте, что катушка магнитной антенны L1 настраивается в резонанс на частоту принимаемой радиостанции с помощью конденсатора переменной емкости (КПЕ) С1.
Если бы его не было, то те несколько милливольт радиочастотного (РЧ) сигнала, приложенные к детектору, вряд ли могли быть продетектированы, ведь порог открывания даже чувствительного германиевого диода (Д18, Д20, ГД507 и т. д.) лежит где-то около 0,1…0,15 В. У кремниевых диодов (КД503, КД520…522) порог еще выше – 0,5…0,6 В.
Настройка контура L1C1 в резонанс повышает РЧ-напряжение на нем в Q раз.
Коэффициент Q называется добротностью контура, и он тем выше, чем меньше потери энергии в контуре. Потери же, в свою очередь, зависят от активных сопротивлений, входящих в контур или подключенных к нему.
Одно из таких сопротивлений составляет сопротивление провода катушки r. Оно включено в контур последовательно и должно быть как можно меньше. При этом добротность Q = Х/r – равна отношению реактивного (индуктивного) сопротивления катушки к ее активному сопротивлению. Потери в феррите также снижают добротность, и их можно учесть соответствующим увеличением r.
Описанные потери невосполнимы и бесполезны, поэтому надо стараться использовать провод с низким сопротивлением РЧ току (литцендрат) и феррит по возможности лучшего качества. Собственная (конструктивная) добротность контура может достигать 250…350, и чем она выше, тем в конечном итоге громче будет работать приемник.
Есть и полезные потери – это входное сопротивление детектора, нагружающее контур. Оно зависит от типа диода (при самых слабых сигналах) и от его нагрузки (при более сильных). Нагруженная добротность контура значительно меньше, порядка 20…50.
Здесь важно найти оптимум – слишком сильная нагрузка контура детектором приводит к уменьшению сигнала и слишком слабая – тоже. Общее правило – чем выше сопротивление нагрузки, тем лучше работает детектор.
Поэтому важно использовать высокоомные телефоны с сопротивлением 3,2…4,4 кОм. Лучше бы еще выше, но таких телефонов не выпускают. Замена же телефонов цифровым вольтметром со входным сопротивлением 1 Мом позволяет обнаруживать радиостанции, которые в телефонах вообще не слышно.
Испытания макета приемника в описанных выше условиях (радиостанция «Маяк», 549 кГц, 75 кВт, 30 км) с ферритовой антенной на стержне 400НН диаметром 10 и длиной 200 мм, 60 витков ЛЭШО 21x0,07 показали уверенный прием с вольтметром (20…25 мВ продетектированного сигнала) и еле слышный прием на телефоны. Напряжение на них при этом не достигало и 1 мВ.
Дальнейшие соображения по повышению эффективности ферритовых антенн удалось найти в старинной (60-х годов) книжке для радиолюбителей.
Автору понравилась конструкция антенны из четырех стержней, нарисованная на обложке, хотя кажется, что стержни расположены слишком близко (рис. 3).
Рис. 3
Осуществить идею помогла квадратная пластмассовая коробочка, по углам которой были просверлены 4 отверстия диаметром 10 мм. В них с трением вставлялись концы стержней.
На крышке были размещены КПЕ и разъем для вольтметра или телефонов. КПЕ взят от сломанного транзисторного радиоприемника, обе его секции соединены параллельно.
Все четыре катушки намотаны на бумажных пропарафинированных гильзах литцендратом ЛЭШО 10x0,07 и содержат по 50 витков. Намотка ведется в одну сторону, а катушки соединяются последовательно, то есть конец одной – с началом другой.
Чтобы уменьшить число паек литцендрата всего до двух, автор надел все гильзы на один стержень и намотал все катушки подряд, не обрывая провода, но оставляя петли провода между катушками, чтобы потом свободно разместить их по другим стержням (не переворачивая!).
Разумеется, сначала был измерен уровень сигнала с антенной на одном стержне – 3,4 мВ при приеме станции РТВ «Подмосковье» на частоте 846 кГц, и уж затем с четырьмя стержнями – 14,2 мВ. Эффект, как говорят, налицо. Впрочем, замечу, что рост продетектированного напряжения примерно вчетверо означает рост входной мощности на детекторе в 4 раза, а РЧ-напряжение при этом возросло только вдвое.
Объясняется это квадратичностью характеристики детектора при слабых сигналах: его выходное напряжение пропорционально квадрату входного, то есть входной мощности РЧ-сигнала.
В заключение несколько практических советов. Изготовление каркаса для катушки магнитной антенны (МА) может вылиться в проблему, особенно для начинающего радиолюбителя. В то же время, разбирая блок развертки старого телевизора, легко найти в нем катушки, изготовленные так: на стандартный цилиндрический каркас с подстроечником надет еще один, двухсекционный, со щечками и продольной прорезью.
Его надо снять, и он как нельзя лучше подойдет для МА с тонкими, 8-миллиметровыми стержнями. Автор использовал каркас катушки СК-90ЛЦ-2. Имеющийся на нем провод надо удалить.
На ферритовый стержень диаметром 8 мм каркас надевается с трудом, поэтому его надо разогреть над пламенем газовой горелки кухонной плиты или над электроплиткой, следя, чтобы края щечек каркаса не оплавились, надеть на стержень и дать остыть. В дальнейшем каркас будет перемещаться по стержню с небольшим трением, что позволит дополнительно не фиксировать катушку после настройки МА.
Витки катушки МА укладывают внавал, поровну в каждую секцию каркаса. Наматывают провод безо всякого натяжения, со вставленным в каркас ферритовым стержнем.
Для средневолновой катушки достаточно намотать 2x40 витков, для длинноволновой – 2x150 витков. Лучше использовать провод ПЭЛШО диаметром 0,15… 0,3 мм, у него толще изоляция и намотка получается «рыхлее», что уменьшает междувитковую емкость и повышает добротность. Еще лучше литцендрат, например, ЛЭШО 21x0,07. После намотки катушку заливают парафином (можно от свечки) с помощью слегка разогретого паяльника, закрепляя, таким образом, витки и защищая провод от сырости.
Зачистка выводов литцендрата требует некоторого навыка. Рекомендую следующую технологию: вывод катушки обжигают в пламени спички или зажигалки на длине 1…2 см. Обжигать следует так, чтобы шелковая наружная изоляция сгорела, а тонкие проводники не раскалились добела и тем более не расплавились. Затем отрезают полоску наждачной бумаги шириной 5…7 мм, складывают ее пополам наждачным покрытием внутрь и берут пальцами правой руки.
Держа вывод левой рукой, закладывают обожженный участок провода в наждачную полоску и, слегка сжав ее, протягивают вывод. Обгоревшая эмаль снимается с проводников гораздо легче. Зачистив вывод, распушившиеся жилки скручивают вместе и облуживают.
Обрыв одного-двух проводников уменьшает добротность катушки на 5…7 % и практически не изменяет ее индуктивности.
В. ПОЛЯКОВ, профессор
ДАВНЫМ-ДАВНО
Многие еще хорошо помнят, как в России полвека назад появились плащи из итальянской ткани болонья. И каждый уважающий себя советский инженер или представитель творческой интеллигенции готов был отдать половину месячной зарплаты, чтобы стать обладателем синтетического дождевика.
Видя такой ажиотаж, правительство СССР приняло решение о производстве отечественных плащей-«болоний».
И вскоре ими обзавелось большинство населения страны. Во многих советских журналах стали даже печатать советы, как ремонтировать довольно легко рвущиеся синтетические плащи. Например, чтобы пришить потерявшуюся пуговицу, рекомендовалось подложить с другой стороны маленькую пуговичку-двойник, чтобы пришитая пуговица не оторвалась вместе с непрочным материалом.
Самое удивительное: если спросить самих жителей итальянского города Болонья, то окажется, что они гордятся своим соусом к макаронным изделиям – «болоньезе», но многие даже и не подозревают о том, что их город – это родина советских плащей-«болоний».
И все-таки почему эту ткань и плащи из нее назвали по имени родины мясного соуса к макаронам и декоративной породы собак болонок? Оказывается, изобретение ткани связано с именем итальянского ученого Джулио Натта, который, кстати, родился вовсе не в Болонье. Но при поддержке итальянского концерна, владеющего заводом в городе Феррара недалеко от Болоньи, он разработал метод изготовления полипропиленовых волокон, а затем и недорогого водонепроницаемого материала, не уступающего популярному в те годы нейлону. Через несколько лет мировые рынки были завалены тканью, впервые произведенной на заводе близ Болоньи.
Сам же итальянский химик-органик получил Нобелевскую премию по химии «За открытия в области химии и технологии высокомолекулярных полимеров». А еще Большую золотую медаль имени М.В. Ломоносова. Наверное, в благодарность за столь полюбившийся советским гражданам плащ– «болонью».
ПРИЗ НОМЕРА
Наши традиционные три вопроса:
1. Ядро кометы, как известно, состоит из твердых частиц и льда. Что это за лед и откуда он взялся?
2. Есть ли предел разрешения печати у струйных принтеров?
3. Почему для апельсинов часто используют ручные соковыжималки, а для яблок или груш, к примеру, они не подходят?
ПРАВИЛЬНЫЕ ОТВЕТЫ НА ВОПРОСЫ
«ЮТ» № 6 – 2012 г.
1. При высоком давлении лед подтаивает и «течет».
2. Фасеточные глаза мухи имеют обзор 360° и способны различать мелькания света с частотой до 300 Гц, что позволяет насекомому реагировать на самые быстрые движения.
3. При трении твердых тел энергия движения превращается в тепловую энергию молекул их поверхностных слоев.
* * *
Поздравляем с победой Михаила БОРОДИНА из поселка Среднесибирский Алтайского края.
* * *
А почему? Где искать уровень моря? Какой автомобиль и когда стал первой в мире массовой моделью? Что представляет собой шапка Мономаха? Почему не состоялись игры VI Олимпиады 1916 года? На эти и многие другие вопросы ответит очередной выпуск «А почему?».
Школьник Тим и всезнайка из компьютера Бит продолжают свое путешествие в мир памятных дат. А читателей журнала приглашаем заглянуть в старинную ратушу Брюсселя, ставшую теперь музеем.
Разумеется, будут в номере вести «Со всего света», «100 тысяч «почему?», встреча с Настенькой и Данилой, «Игротека» и другие наши рубрики.
ЛЕВША. В рубрике «Музей на столе» вы познакомитесь с самолетами-радиолокаторами и сможете выклеить сразу две модели – одну на базе Ан-71, другую – натовский палубный самолет дальнего обнаружения Е-2С.
Самодельщики узнают, как в домашних условиях сделать электрорезак для работы с пенопластом, и освоят искусство вырезания сложных деталей для моделей и изящных фигур прикладного, декоративного назначения.
Электронщики продолжат строить робота, а любители головоломок получат новые задания от Владимира Красноухова.
И, как всегда, вы найдете в «Левше» полезные советы.
* * *