355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2005 № 09 » Текст книги (страница 5)
Юный техник, 2005 № 09
  • Текст добавлен: 17 октября 2016, 01:54

Текст книги "Юный техник, 2005 № 09"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 5 (всего у книги 5 страниц)

СДЕЛАЙ ДЛЯ ШКОЛЫ
Как проверить Архимеда?


Одна из самых распространенных, пусть далеко не самых точных формулировок закона Архимеда гласит: «Тело, опущенное в воду, теряет в своем весе ровно столько, сколько весит вытесненная им вода».

Этой формулировки достаточно, чтобы строить океанские пароходы и даже… дирижабли. Несмотря на это, уроки по теме «Закон Архимеда» считаются самыми сложными. Возможно, это связано с тем, что школа всегда старалась дать ученику не только умение делать расчеты, но и понимание того, откуда сила Архимеда берется.

В прежние времена для наглядного разъяснения закона Архимеда существовало множество остроумных приборов. Но поскольку плаванье тел вызвано существующей в жидкости разностью давлений и «передачей его во всех направлениях без изменения», то разъяснение закона Архимеда начиналось с проверки закона Паскаля. Учитель и здесь имел богатый выбор приборов. Все они настолько просты, что вы сможете изготовить их, глядя на рисунки.

Начиналось с самого простого. В снабженный проволочным каркасом цилиндр из каучука наливали ртуть (тогда к ней относились без опаски). И оказывалось, что внизу его стенки раздуты особенно сильно, что свидетельствовало о росте давления с глубиной. Сегодня о ртути знают больше и потому резиновый воздушный шарик наполняют водой. Результат тот же.

В обоих случаях достигается лишь качественное подтверждение правоты Паскаля. Для точного же нужны измерения.

Приборы немецкого изобретателя Гартля позволяли измерять давление жидкости в сосуде на любой глубине в любом направлении. Вот как они действовали. В «аквариум» (рис. 1) опускалась особая чашка, укрепленная на шарнире, позволявшем ее повернуть или наклонить. На чашку была натянута резиновая пленка, а сама она при помощи шланга соединялась с атмосферным воздухом.


Пленка под действием давления прогибалась, а величина прогиба зависела от давления. Через рычажок пленка соединялась со стрелкой, которая двигалась по шкале. Давление воды прогибало пленку, и стрелка отклонялась, показывая в условных единицах его величину. Устройство и действие прибора было предельно понятным любому.

Но в те времена (начало XX века) все вещи рассчитывались на долгие годы работы и должны были быть просты в ремонте. Однако замена в приборе прорвавшейся пленки и присоединение ее к рычажку стрелки вызывало затруднения.

Гораздо надежней и проще в ремонте был другой прибор Гартля (см. рис. 2).


В нем затянутая пленкой чашка соединялась с водяным манометром. Прогибаясь под действием давления воды, пленка вытесняла из чашки воздух. Он поступал в манометр и поднимал в нем столбик воды. Высота его была пропорциональна давлению воды в жидкости.

Тот же изобретатель создал прибор, измеряющий давление жидкости на дно сосуда (рис. 3).


Для этого служила чашка с пленкой, соединенная со стрелкой, почти как в первом приборе. Только стрелка была значительно длиннее и снабжалась большой, хорошо заметной шкалой. К чашке крепили сменные стеклянные сосуды различной формы. Наливая в них воду до определенного – одного и того же – уровня и измеряя ее давление по отклонению стрелки, удавалось доказать, что давление зависит только от глубины сосуда и не зависит от его формы.

Известный изобретатель Отто фон Герике поставил некогда такой опыт. К крышке герметически закрытой бочки с водой он присоединил тонкую, но очень высокую трубку, а затем налил в нее воду. Давление в бочке повысилось, из всех щелей ее забили струи. Это явление принято называть гидростатическим парадоксом, а объясняется оно законом Паскаля. Дополнительное давление, создаваемое в трубке, пропорционально высоте водяного столба. Оно действует на воду, находящуюся в бочке, передается по всем направлениям и заставляет стенки бочки прогнуться. В них образуются щели, и через них бьет вода.

Гидростатический парадокс показывали и при помощи аппарата Сире (рис. 4).


Он состоял из цилиндрического стаканчика с водой, на который плотно, без зазора, надевался цилиндрический колпачок с тонкой высокой трубкой. Когда эту трубку заливали водой, колпачок начинал подниматься. К пояснению собственно закона Архимеда шли отдельными шагами.

К установленному в сосуде прозрачному цилиндру с ровно отрезанным и отшлифованным торцом (рис. 5) прижимали и удерживали на нитке тяжелую пластинку. Когда сосуд заливали водой, нитку выпускали из рук, но пластина продолжала удерживаться, теперь уже давлением воды. Тем самым ученику показывали, что в жидкости существуют силы, направленные вверх, и они могут поддерживать плавающее тело.


Аппарат Шеллена показывал, что плавающее тело до тех пор погружается в воду, пока не вытеснит столько воды, сколько весит оно само (рис. 6).


Аппарат состоял из прозрачного цилиндра со сливной трубочкой, направленной в мензурку. В цилиндр наливали воду до уровня этой трубочки и аккуратно опускали в него заранее взвешенное тело, способное плавать. Оно до какого-то уровня погружалось в воду, которая выливалась в мензурку. По объему воды определяли ее вес, и оказывалось, что он равен весу тела.

Начало XX века – это время появления подводных лодок. Поэтому некоторые опыты посвящались особенностям плавания под водой.

Случается, что подводная лодка ложится на грунт, а после не может всплыть. Объясняется это тем, что грунт имеет большую вязкость и через него на нижнюю поверхность лодки не передается гидростатическое давление. Таким образом, получалось, что лодка, продув балластные цистерны, стала легче воды, но основной причины всплывания – давления снизу – нет, всплыть невозможно.

Существовало несколько приборов, поясняющих это явление. Вот поплавок Гедике (рис. 7).


Его опускают на дно наполненного жидкостью сосуда и вдувают воздух. После этого поплавок остается на дне, словно бы присосавшись к нему. Опыт хорошо получается, если дно сосуда достаточно плоское, а края поплавка ровно срезаны.

Закону Архимеда подчиняются тела, плавающие не только в воде, но и в воздухе. Именно в эту эпоху моря начинают бороздить гигантские военные корабли, а в небе появляются ничуть не отстающие от них по размерам корабли воздушные – дирижабли.

С ними нередко случаются удивительные коллизии. Ранним прохладным утром подъемная сила дирижабля возрастает на несколько тонн, а в знойный полдень, наоборот, настолько же уменьшается. Когда воздушный корабль проходит под облаком, неведомая сила тянет его вверх…

Логически все это объяснить просто. Прохладным утром или в тени под облаком воздух «съеживается» от понижения температуры и делается плотнее. От этого возрастает сила Архимеда, держащая дирижабль «на плаву». Но показать это в классе при помощи воздушных шариков или мыльных пузырей не удавалось (рис. 8).


Однако была доступна для наблюдения водная модель этого явления. Немецкая и русская промышленность выпускала пустотелые латунные шары. Объем и вес такого шара были подобраны столь точно, что он мог оставаться под водой на любой глубине, напоминая подводную лодку или дирижабль, неподвижно зависшие в толще воды. Стоило в сосуд бросить кусочек льда, вода в нем остывала, плотность ее увеличивалась, и шар начинал подниматься, как дирижабль в утреннюю прохладу.

В ближайшие годы, вероятно, измерения, делавшиеся на приборах Гартля, можно будет выполнять при помощи универсальных измерительных комплектов с электронными датчиками. Но при этом лекция учителя потеряет наглядность. Возможно, для массовой школы этого вполне достаточно. Однако там, где физику изучают углубленно, применение добротных демонстрационных приборов намного эффективнее. Да и сделать их самим совсем не сложно!

А. ВАРГИН

Рисунки из каталога учебных приборов фирмы «Макс Коль Хемниц» за 1911 год

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Электронный регулятор мощности

Этот несложный регулятор позволит плавно менять мощность электроплит, осветительных приборов, скорость вращения электродрели и многое другое. Его рабочее напряжение 220 В, максимальная регулируемая мощность – 2600 Вт.

Умещается регулятор на плате размерами 62x43 мм (рис. 1).


Основой регулятора мощности является полупроводниковый симистор VS2. Он представляет собой два встречно-включенных мощных диода с общим управляющим контактом. При отсутствии на нем управляющего напряжения симистор закрыт, электрический ток через него не проходит.

При поступлении на управляющий контакт положительного управляющего напряжения симистор открывается и пропускает ток. Чем больше величина управляющего напряжения, тем больше ток. Это и позволяет регулировать скорость вращения электродрели или мощность паяльника.

Управляющее напряжение регулируется потенциометром R3 и подается на управляющий электрод через цепочку R4 (резистор) и VS1 (динистор), которые определяют диапазон регулировки управляющего напряжения. Конденсаторы C1, С2 и С3 фильтруют импульсные сетевые помехи и предотвращают «ложное» открывание симистора.

Все компоненты устанавливаются на печатной плате методом пайки. Чтобы не отслаивались токопроводящие дорожки и не перегревались элементы, время пайки одного контакта не должно превышать 2…3 сек. Для работы используйте паяльник мощностью не более 25 Вт. Рекомендуется применять припой марки ПОС61М или аналогичный, а также жидкий неактивный флюс для радиомонтажных работ (например, 30 %-ный раствор канифоли в этиловом спирте).

При мощности нагрузки более 100 Вт симистор VS2 необходимо установить на радиатор площадью не менее 200 см 2. Допускается подключение к устройству нагрузки, имеющей кратковременную пусковую мощность до 3600 Вт.

Внимание!Устройство находится под напряжением, опасным для жизни! Соблюдайте правила безопасности при работе с высоким напряжением. Плату необходимо установить в пластиковый корпус, чтобы исключить возможность соприкосновения с элементами, находящимися под напряжением.



ЧИТАТЕЛЬСКИЙ КЛУБ


Вопрос – ответ


Когда-то в деревне я пробовала настоящую пшенную кашу на топленом молоке. Готовят ее в русской печке. Так у меня вопрос: неужто нельзя придумать какое-то нехитрое устройство для приготовления блюда в обычной газовой духовке?

Тамара Силаева, 17 лет,

г. Балашиха

Для этого духовку надо слегка дооборудовать. Поместите внутрь нее 2–3 кирпича (желательно огнеупорных). Духовку надо хорошенько разогреть, затем выключить и только после этого поставить кастрюлю с молоком. Высокая температура, благодаря кирпичам, будет держаться в духовке несколько часов. Этого вполне достаточно для того, чтобы каша получилась на славу, как у бабушки в деревне. Приятного аппетита!


Мы в доме начали ремонт. Только вот незадача – строительный алебастр настолько быстро схватывается и так прочно пристает к посуде, в которой его замешивают, что ее впору выкидывать. Что посоветуете?

Сергей Хоменко, 13 лет,

г. Калуга

Чтобы избежать неприятностей, поместите внутрь посудины полиэтиленовую пленку. Можно использовать для разведения алебастра и двухлитровую пластиковую бутылку со срезанной верхней частью. А удобнее всего разводить алебастр в половинке старого детского резинового мяча. От резины и пластика засохший алебастр легко отскакивает, стоит слегка помять эластичную посудину.


Мы с братом купили краскопульт и попытались покрасить стены сарая. Но у нас не получается ровное покрытие. Кроме того, пульверизатор часто забивается. Почему?

Сергей Гудов, 14 лет,

г. Химки Московской области

Во-первых, краскопульт плохо разбрызгивает чересчур густую краску. Ее либо нужно развести разбавителем, либо уже использовать кисть или валик.

Во-вторых, даже жидкая краска может содержать комочки, забивающие узкое отверстие. Поэтому краску желательно процедить через марлю.

В-третьих, важно правильно отрегулировать подачу смеси, чтобы получилось равномерное покрытие. Для этого предназначены ручки управления расходом воздуха и подачи краски. Покрутив их, добейтесь, чтобы из пульверизатора шла устойчивая, в меру густая, равномерная струя.

И, наконец, потренируйтесь на каком-нибудь старом заборе, прежде чем приниматься за дело. Стену, а тем более потолок надо равномерно покрывать тонким слоем краски, стараясь избегать наплывов и потеков. Лучше после высыхания поверхности пройтись по стене еще раз, чем увидеть, что она вся в разводах.


Недавно мы с ребятами ходили в поход, но зарядивший дождь испортил все настроение. Мы промокли и долго не могли согреться даже у костра. А как же люди ходят в походы и не мерзнут даже зимой?

Петя Колобов, 12 лет,

г. Сергиев Посад

Чтобы согреться в холодном лесу, натяните с наветренной стороны кусок брезента. Для этого вбейте в землю две жердины, натяните между ними веревку, на которую и повесьте брезент, закрепив его верхний и нижний края. Такой занавес спасет вас от холодного ветра, а теплый воздух от костра позволит быстро согреться.

Кстати, если приходится устраивать костер на снегу или на мокром месте, сначала сделайте настил из сучьев и лапника. А уж на нем разводите огонь.

ДАВНЫМ-ДАВНО

В XIX веке спрос на игрушечные пароходы, паровозы, подъемные краны и станки был огромен. Но любая игрушка – сами, наверное, знаете – быстро приедается. Так почему бы не выпускать игрушки, которые можно переделывать?

Френк Хорнби в 1901 году. Основу его составил набор стальных планок с отверстиями. К нему прилагались оси, шкивы, шестеренки и крепежные детали. Был в комплекте и красочный альбом чертежей, позволявший собрать много различных конструкций.

Схематическая модель автомобиля или трактора получалась такой, что легко узнавался тип и даже фирма-изготовитель. Особенно любили собирать из «Меккано» подъемные краны. Для ребенка лет десяти это трудная, но очень интересная задача. Справившись с ней, он не только узнает принцип работы устройства, но и становится способен изменить его в нужную сторону. Короче, становится изобретателем.

Изобретение Фрэнка Хорнби сразу же получило огромное признание. Сама же идея набора однотипных деталей для самостоятельной сборки различных моделей нашла множество подражателей и постепенно распространилась далеко за рамки мира детских игрушек. Можно заметить, что со временем стали выпускать универсальные наборы для сборки игрушечных домов, а вслед за тем появилось блочное строительство. Универсальные наборы для сборки учебных электрических схем обернулись сегодня набором блоков для сборки компьютеров.



ПРИЗ НОМЕРА!


Наши традиционные три вопроса:

1. Что произойдет с поплавком, уравновешенным в толще воды, при повышении её температуры – всплывет он или утонет?

2. Можно ли усилить эффект отражения света, заменив уголковый отражатель, например, вогнутым зеркалом?

3. Бывают ли исключения из закона Архимеда?

Правильные ответы на вопросы

«ЮТ» № 4 – 2005 г.

1. Использовать парашютные системы можно только на тех спутниках, у которых есть атмосфера. У Ганимеда она есть.

2. Цвет шаровой молнии определяется температурой плазмы внутри огненного шара. Чем она выше, тем цвет ближе к белому.

3. В фотоаппаратах для питания встроенных ламп-вспышек применяют ионистор. Только он способен запасти в столь малом объеме энергию, достаточную для вспышки. Обычный конденсатор для этой цели был бы в этом случае больше самого аппарата.

* * *

Поздравляем Алешу Хроменковаиз г. Щелково Московской области с победой! Правильно и обстоятельно ответив на вопросы нашего конкурса «ЮТ» № 4 – 2005 г… он выигрывает приз – Flash-карту для USB.

* * *

А почему?Какие перемены, по мнению ученых, ожидают нашу планету в случае потепления климата? Были ли пираты во времена Древнего Рима? Где и когда появилась первая промышленная мануфактура? На эти и многие другие вопросы ответит очередной выпуск «А почему?».

Школьник Тим и всезнайка из компьютера Бит продолжают свое путешествие в мир памятных дат. А читателей журнала наш корреспондент пригласит побывать на далекой Кубе, в столице островного государства – Гаване.

Разумеется, будут в номере вести «Со всего света», «100 тысяч «почему?», встреча с Настенькой и Данилой, «Игротека» и другие наши рубрики.

ЛЕВША– Имя этого корабля вписано в героическую летопись времен первой половины Великой Отечественной войны. А судьба судна так же необычна, как и его профессия: свой боевой путь ледокол «Л. Микоян» начал… в южных морях, сражаясь за Севастополь и Одессу. Собрав модель этого военного корабля по нашим эскизам, вы сможете пополнить свою морскую коллекцию «Музея на столе».

– Юные механики смогут оценить преимущества оригинальной конструкция вертолета без мотора, который приходится родственником воздушному змею, а любители электроники получат обещанную схему, заставляющую циферблат электронных часов парить в воздухе.

* * *




    Ваша оценка произведения:

Популярные книги за неделю