355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2005 № 09 » Текст книги (страница 2)
Юный техник, 2005 № 09
  • Текст добавлен: 17 октября 2016, 01:54

Текст книги "Юный техник, 2005 № 09"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 2 (всего у книги 5 страниц)

СОЗДАНО В РОССИИ
Электростанция в… кармане

Представьте себе батарейку, способную практически вечно питать плейер, мобильник или даже ноутбук. Когда наконец запас энергии в батарейке подойдет к концу, его легко возобновить, заправив… бензином или газом.

Речь, конечно, не об обычной батарейке или аккумуляторе, а о топливном элементе нового поколения, о котором рассказал мне заместитель директора Института проблем технологии микроэлектроники и особо чистых материалов РАН, профессор, доктор технических наук Анатолий Федорович Вяткин.

– Но ведь топливные элементы известны уже довольно давно, – удивился я. – Их применяют, например, на космических кораблях, поскольку для бытовой техники или автомобилей такие элементы пока дороги…

– Все правильно, – подтвердил Анатолий Федорович. – Научный мир уже давно озабочен созданием дешевых и, главное, безвредных источников энергоносителей. Принцип так называемого «холодного горения», на котором основана работа топливного элемента, известен с 1839 года. И с тех пор изыскания возможности получения электроэнергии химическим путем, конечно, продвинулись далеко вперед… Однако до производства в промышленных масштабах дело пока не доходит…

Такое положение, по мнению А.Ф. Вяткина и его коллеги, старшего научного сотрудника института, кандидата технических наук В.В. Старкова сложилось по нескольким причинам. Пожалуй, главная состоит в том, что производство топливных элементов ныне очень дорого, а сами они по своим габаритам и весу лишь немногим отличаются от обычных аккумуляторов. Конечно, кто же будет ставить топливные элементы, например, в автомобиль, если они в 2–3 раза повысят его стоимость?

Кроме того, обычные топливные элементы используют в качестве топлива чистые водород и кислород; их тоже нужно получить, где-то хранить, а это очень пожароопасные вещества…


Схема, поясняющая, как нашим ученым удалось превратить стандартный набор пластин обычного топливного элемента (внизу) в полупроводниковую структуру из микропленок (вверху). Структура показана при сильном увеличении электронного микроскопа.

Однако вспомним, в свое время и обычные батареи и аккумуляторы были весьма громоздки, дороги и небезопасны. А сейчас не редкость аккумуляторы, которые допускают тысячи циклов перезарядки, а по весу и цене мало отличаются от тех же одноразовых батареек. Такое стало возможным после того, как была разработана простая и дешевая технология их производства.

Нечто подобное предлагают наши ученые создать и для топливных элементов.

– Вспомните, когда-то в наших вычислительных машинах, радиоприемниках и магнитофонах использовались радиолампы и транзисторы, – вступил в разговор Виталий Васильевич Старков. – Они были малоэкономичными, громоздкими и ненадежными. Ныне же, когда в них используют микросхемы, электронные приборы стали совсем другими – компактными, долговечными, недорогими. Так давайте же тогда микроэлектронную технологию применим и к производству топливных элементов…

Конечно, сказать куда легче, чем сделать. Но у моих собеседников слова не разошлись с делом. В течение нескольких лет, используя в общем-то стандартные приемы микроэлектронного производства, им удалось создать технологию получения топливных элементов нового поколения.

Главной «изюминкой» в их разработке является использование структур из макропористого кремния. То есть, говоря попросту, исследователям удалось создать некое молекулярное «сито», имеющее заранее заданный размер и форму пор в нем.

– Это «сито» удобно уже тем, что, используя его вместо обычного, мы увеличиваем площадь поверхности структур, на которых происходит реакция, до 250 кв. м на каждый грамм вещества, что в десятки раз больше, чем у обычных плоских поверхностей, – пояснил Старков. – За счет этого можно существенно уменьшить физические размеры топливного элемента. Скажем, вот перед вами экспериментальный образец пластины для показа студентам. Ее размер 10x10 см. Теперь мы можем уменьшить ее площадь в 40 раз. И это еще не все…

Такое молекулярное «сито», как показали эксперименты, может быть дополнено палладиевой пленкой-мембраной, способной сепарировать водород из углеводородистых смесей. То есть, говоря проще, теперь на том же автомобиле можно оставить обычный бензобак, а топливная установка сама будет добывать необходимый ей водород из бензина и вырабатывать с его помощью электричество для работы электромотора.

Новый топливный элемент будет состоять всего из двух деталей: собственно преобразователя-микрочипа и баллончика с топливом. В итоге получается устройство, которое в зависимости от выходной мощности запросто может быть встроено не только в автомобиль, но и уменьшено до размеров аккумуляторов в том же ноутбуке. Стоить же оно будет дешевле все тех же аккумуляторов, поскольку замена кремниевым чипом графитовых электродов с паладиевым и серебряным покрытием, которые сегодня составляют приблизительно 60 % от стоимости всего топливного элемента, приведет к массовому производству подобных источников энергии.

Пользоваться же топливными элементами будет очень просто. Представьте себе геологов в глухой тайге, туристов в дальнем походе или группу спецназа, выполняющую особое задание. Ныне им приходится брать с собой солидный запас сменных батареек для питания радиостанций, навигационных приборов, компьютеров и т. д. Теперь же появляется возможность вместо всего этого иметь при себе лишь флягу с бензином.

– Почему же столь замечательных устройств мы пока не видим в магазинах? – спросил я своих собеседников.

– Со своей стороны мы сделали все, что нужно, – ответил на мой вопрос Анатолий Федорович Вяткин, – разработана технология, оформлены патенты, созданы экспериментальные и макетные образцы. Сейчас ведем переговоры с партнерами, которые готовы вложить средства в развертывание массового производства новых топливных элементов.

И. АГАФОНОВ

ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ
Как работает топливный элемент

Мы уже не раз рассказывали нашим читателям о работе топливного элемента. Тем не менее, для тех, кто не читал предыдущих публикаций, напоминаем, как он устроен.


Как и прочие источники тока, топливные элементы состоят из анода, катода и электролита между ними. Электрическая энергия выделяется в процессе восстановительно-окислительной реакции, которая поддерживается за счет подачи топлива и окислителя. На практике обычно речь идет о реакции образования из водорода и кислорода обычной воды.

Звучит все очень просто. Однако техническая реализация идеи на деле потребовала преодоления целого ряда трудностей. Прежде всего, как уже было сказано, оказалось непрактичным использование в качестве топлива непосредственно водорода. Поэтому ныне в качестве топлива чаще используют бензин или метиловый спирт – метанол.

Под действием высокой температуры в результате процесса реформинга метанол или иное органическое топливо выделяет водород, который затем и поступает на анод топливного элемента. Функции электролита в современных топливных элементах обычно выполняет тончайшая полимерная мембрана с нанесенным на нее слоем платинового катализатора. Она обладает уникальным свойством: пропускает положительные ионы, то есть ядра атомов водорода, но задерживают электроны.

Ионы, проходя сквозь мембрану, вступают на катоде в реакцию в атомами кислорода, содержащегося в воздухе. В обычных условиях такая реакция приводит к образованию гремучего газа и носит взрывной характер, но в топливном элементе она протекает мирно благодаря тому, что идет не во всем его объеме, а лишь на поверхности мембраны с катализатором. Выделяемое при этом тепло поддерживает процесс реформинга. А электроды, отобранные мембраной у атомов водорода, следуют к катоду по внешней цепи, создавая тот самый электрический ток, который нам необходим для питания тех или иных приборов.


На схеме цифрами обозначены:

1– мембрана; 2– катодная (или анодная) плата; 3– газодиффузионная пластина; 4– графитовый блок; 5– проводящая плата; 6– блоки подведения водорода, кислорода и отвода воды.

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Метан и жизнь

Метан, как известно, образуется на болотах, в угольных и торфяных пластах, где его производят особые метанообразующие микробы, которые живут в бескислородных пространствах, включая такие особые, как, скажем, коровий желудок.

Установлено, что примерно 2,3 млрд. лет назад именно эти необычные микробы вдохнули в молодую планету Земля жизнь. Не появись некогда эти плодовитые организмы, эволюция на нашей планете пошла бы совершенно иным путем. Не потеряли, впрочем, своего особого значения эти микробы и в наши дни…



Грелка планеты

Как считают исследователи, задолго до появления цианобактерий, которых до недавнего времени считали ответственными за выработку кислорода на нашей планете, Земля стала обитаемой благодаря жизнедеятельности другой группы одноклеточных – анаэробных метаногенов. Именно они, судя по последним данным, господствовали на протяжении первых двух миллиардов лет истории новорожденной планеты.

Экспериментальные подтверждения этой гипотезы ученые начали получать совсем недавно.

Солнце в те далекие времена – порядка 4,6 млрд. лет тому назад – не было таким ярким и жарким, как сегодня. Тем не менее, в течение 2,3 млрд. лет каменная летопись планеты не содержит каких-либо убедительных свидетельств о широкомасштабных оледенениях. Это означает, что климат в те времена был теплее, чем, скажем, во время цикла великого оледенения, бывшего около 100 тыс. лет назад.

Дело в том, что благодаря жизнедеятельности метаногенов – микроорганизмов, вырабатывающих метан в качестве побочного продукта обмена веществ, уровень этого газа в атмосфере древней планеты был в 600 раз выше, чем сегодня. А стало быть, несмотря на то, что Солнце в то далекое время светило менее ярко, чем сейчас, парниковый эффект, вызванный высоким уровнем метана, был достаточно сильным, чтобы уберечь Землю от замерзания.


Взрыв метана в лаборатории. Как видите, он – вещество опасное.


Оптимальный кандидат

Однако ученые не сразу дошли до этой истины. В начале 70-х годов прошлого столетия Карл Саган и Джордж Маллен из Корнеллского университета предположили, что Земля обязана своим существованием в первую очередь аммиаку, который вызывает еще более сильный парниковый эффект, чем метан. Но дальнейшие исследования показали, что даже в бескислородной атмосфере ультрафиолетовые лучи Солнца быстро разрушают этот газ.

Тогда в качестве другого возможного кандидата была выбрана двуокись углерода (СО 2) – один из главных газов, который выделялся из извергавшихся в то время вулканов. Но в 1995 году исследователи из Гарвардского университета с помощью расчетов и компьютерного моделирования показали, что молодую Землю не мог согревать и этот газ, так как его содержание в атмосфере было слишком низким.

В конце 80-х годов XX века наконец было установлено, что метан задерживает большее количество тепла, чем СО 2в такой же концентрации. А стало быть, планета обогревалась именно с его помощью.

Чтобы проверить это предположение, профессор Джеймс Кастинг и его коллеги из Научно-исследовательского центра Эймса при NASA создали соответствующую компьютерную модель. И убедились, что для того, чтобы поддерживать температуру поверхности Земли выше точки замерзания, атмосфера молодой планеты должна была всего на 0,1 % состоять из этого газа.


Возможно, именно так выглядела наша планета в те времена, когда в атмосфере царствовали метаногены.


Нашли, где поселиться…

По оценкам геохимиков, метаногены господствовали в атмосфере Земли до тех пор, пока не превратили большую часть водорода в метан. После этого для них настали голодные времена и они должны были исчезнуть. Но они не исчезли, а приспособились к иным условиям жизни, поселились в болотах и даже, как уже говорилось, в желудках коров и иных жвачных животных. Однако для бывших «царей атмосферы» такая экологическая ниша, согласитесь, тесновата.

И тут исследователи обратили внимание, что большинство метаногенов лучше всего развивается в условиях, прямо сказать, адских – при температуре выше 400 °C, а некоторые – даже при 850 °C.

Но где на нашей планете ныне имеются такие условия? Конечно же, в земных недрах. И содержание метана в залежах угля и нефти, которым для образования тоже нужны высокие температуры и давления, подтвердили это предположение.

И это еще что! В конце XX века геологи обратили внимание на залежи так называемых метангидратов, огромные запасы которых обнаружены на морском дне и в ближайших слоях осадочных пород под ним. Образование же гидратов метана, то есть его соединений с водой, происходит под воздействием высокого давления и низких температур. Эти условия вполне типичны для океанских глубин.

Там, где океаническая плита, сдвигаясь, уходит под континентальную, возникают зоны мощнейшего сжатия. Они-то и выдавливают наружу метан, образующийся в толще органических отложений, наряду с нефтью и углем.


Кусок метангидрата «дышит» в руках.


В море опускают контейнер с исследовательской аппаратурой.

Одна из таких тектонических зон находится, например, у западного побережья Северной Америки. Экспедиция, отправившаяся туда на поиски гидратов, обнаружила там богатейшие залежи. Впрочем, такие залежи, как сейчас установили геологи, существуют практически повсеместно, во всем Мировом океане. Как их найти?


Моллюски нам помогут

Сегодня разведку запасов метангидратов ведут в различных районах Мирового океана с привлечением самой современной техники. Примечательно, что при этом исследователи не жалеют усилий и на изучение придонной флоры и фауны. Оказывается, обитатели морского дна могут служить своего рода индикаторами, указывающими на наличие в недрах месторождений газогидратов.

Биолог Петер Линке утверждает, что между известковыми глыбами, возникшими на дне в результате геохимического и тектонических процессов, происходит истечение метаносодержащих жидкостей. Они, в свою очередь, являются основой для существования определенного вида моллюсков. Наличие этих моллюсков и является индикатором, верным признаком выделения метана.

Правда, сами моллюски не питаются метаном в чистом виде – он для них так же ядовит, как и для людей. Но у них есть особые бактерии, которые умеют перерабатывать метан в другие соединения. И моллюски питаются уже плодами этого производства.

Естественно, что моллюски стремятся поселиться поближе к источнику продовольствия, то есть к тем трещинам и щелям в известковых отложениях, из которых и происходит выделение метаносодержащих жидкостей. В свою очередь, сами моллюски служат пищей для других представителей морской фауны. В итоге «метановые ключи» являются своего рода оазисами в пустынях морских глубин, где и селится большая часть представителей придонной фауны.

С помощью этих моллюсков, а также другими способами ныне удалось выяснить, что суммарные запасы газогидратов обладают вдвое большим потенциалом, чем все уже разведанные запасы газов, нефти, угля и прочих видов топлива. А это ведь ни много ни мало, а 10 000 млрд. тонн сырья! Этого хватит всей земной промышленности лет на 50–70…


Донным моллюскам помогают питаться особые бактерии.


Жизнь на дне буквально кишит.


Требуется осторожность

Надежной технологии добычи сырья со дна моря пока нет. Исследователи пробуют различные варианты. Причем некоторые специалисты, скажем, Хейко Юрген Шульц из Дортмундского университета, советуют пока не торопиться.

Дело в том, что большая часть обнаруженных ныне газогидратов находится на склонах подводных гор. И если начать бесконтрольную их выработку, это может привести к потере стабильности в этих геологически активных регионах, к бесконтрольным выбросам метана и подвижкам морского дна, способным породить цунами.

Самым перспективным ныне считается такой способ. Твердые гидраты предполагается постепенно нагревать с помощью трубопроводов, связанных с расположенной на поверхности добывающей платформой. Трубопровод этот должен состоять из труб с двойными стенками. По внутренней трубе на дно будут подавать морскую воду, нагретую до 30–40 градусов, а по зазору между внутренней и внешней трубами на поверхность станут подниматься пузырьки газа вместе с охлажденной водой. На поверхности газ отделят от жидкости. Воду снова нагреют и пустят в оборот, а газ соберут для дальнейшей переработки.

Расчеты показывают, что при использовании такой технологии количество энергии, которую можно выработать из полученного сырья, может примерно в 40 раз превысить затраты на добычу метана. Ведь из одного кубометра гидрата, извлеченного с морского дня, выделяется 164 кубометра метана.



Не забудем и об экологии

Экономичность таким образом очевидна. А как обстоит дело с экологичностью? Ведь при разрушении газогидратов часть метана неизбежно будет вырываться на поверхность, минуя трубопроводы. А метан – один из самых вредоносных для атмосферы газов. Если воздействие углекислого газа на парниковый эффект принять за единицу, то метан обладает в 23 раза более сильным воздействием.

Поэтому повышенный интерес к работам геофизиков проявляют и климатологи. По их мнению, метан – один из главных виновников нынешнего глобального потепления. В частности, в Охотском море, по мнению профессора Эрвина Зюса, исследователям наилучшим образом удалось проследить за климатологическим влиянием выделяемого метана. Здесь гидраты выделяют огромное количество метана. Причем поскольку около 9 месяцев в году море это покрыто льдом, то метан накапливается под ледовым покровом, а в короткое лето массово выделяется в атмосферу. Теперь исследователи хотят количественно определить влияние этих сезонных выбросов на состав атмосферы и глобальный климат, понять, только ли выделяет море метан в атмосферу или еще и связывает атмосферный метан, образуя гидрат.

Когда и как это происходит? В каких количествах?

В общем, вопросов, связанных с метаном, еще много. И на них нужно искать ответы.

С. СЛАВИН

У СОРОКИ НА ХВОСТЕ


ЦВЕТ ПОБЕДЫ – КРАСНЫЙ.Проанализировав результаты состязаний во время последних Олимпийских игр в Афинах, английские исследователи Рассел Хилл и Роберт Бартон из Университета Дарема, Великобритания, пришли к выводу, что присутствие красного цвета в одежде спортсмена повышает шансы на успех. Прежде всего, внимание ученых привлекли результаты в боксе, борьбе, а также таэквондо. Здесь участникам по жребию доставалась либо красная, либо голубая форма. Выяснилось, что «красные» взяли верх в 55 % сражений. Еще более существенным оказался цвет спортивной обуви: в 60 % случаев выигрыш выпадал «красноногим».

По словам Хилла и Бартона, красный цвет хорош и для победы в командных видах спорта. На чемпионате Европы по футболу 2004 года в Португалии победу в матчах чаще одерживали те, в чьей форме он присутствовал.

«Конечно, цвет – это далеко не все, – пишут ученые. – Традиционный цвет маек сборной Бразилии – желтый. Тем не менее, она одерживает победы чаще других команд. Однако две самые успешные английские команды – «Ливерпуль» и «Манчестер Юнайтед» – носят форму, в которой есть красный цвет».

СНАЧАЛА БЫЛА ЦИФРА.Долгое время считалось, что чем лучше человек формулирует свои мысли во время речи, тем выше его интеллект, в частности, математические способности. Но вот недавно по этой теории нанесли сокрушительный удар нейробиологи из Университета Шеффилда, Великобритания, сообщает журнал NewScientist. Ученые обследовали троих мужчин с серьезными поражениями в левом полушарии головного мозга, которые затрагивают область, ответственную за речь.

Оказалось, что эти, практически не говорящие, пациенты тем не менее сохранили математические способности. А ведь согласно идее авторитетного американского психолингвиста Ноама Чомски, овладение языком есть фундаментальная способность, которая затем используется мозгом для решения других сложных задач, в том числе и математических. Теперь психолог из Университетского колледжа Лондона Брайан Баттерворт выдвинул новую теорию, согласно которой дети начинают считать в уме раньше, чем говорить. И именно математические способности помогают развить красноречие.

КТО ШУМИТ СИЛЬНЕЕ?С февраля 2006 года максимально допустимый уровень шума на рабочих местах не должен превышать 87 децибел. К такому решению пришли чиновники стран Евросоюза, отвечающие за комфорт и безопасность жизни. Исследования показали, что повышенный уровень шума на работе провоцирует не только развитие глухоты, но и заметно повышает уровень стрессов и травматизма. Причем, как выяснилось, к группе риска относятся не только работники судостроительных верфей, стройплощадок, аэродромов и прочих традиционно шумных предприятий. В условиях повышенной опасности работают, например, учителя в школах. К особо опасным относятся также профессии барменов, автогонщиков, диск-жокеев и… музыкантов.


    Ваша оценка произведения:

Популярные книги за неделю