Текст книги "Юный техник, 2006 № 07"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 2 (всего у книги 5 страниц)
ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Проекты профессора Полякова
О том, что ракета не лучший транспорт для доставки людей и грузов в космос, говорят уже многие. Но чем ее заменить?
Оказывается, вариантов не так уж мало. Мы уже писали, например, о «вселенском поезде» А. Юницкого, о том, как идея космического лифта, некогда выдвинутая ленинградским инженером-изобретателем Ю. Арцутановым, постепенно начинает претворяться в жизнь.
Сегодня же расскажем о проектах профессора Астраханского государственного университета, академика Российской Академии космонавтики имени К.Э. Циолковского Георгия ПОЛЯКОВА.
Построим мы трубопровод
Вы когда-нибудь обращали внимание, что в составе грузов, доставляемых на МКС очередным «Прогрессом», обязательно числится вода? А как же иначе! Без воды, как без воздуха и пищи, человек обойтись не может. Более того, вода необходима для многих производственных процессов, которые со временем будут вестись на орбите как около пашей планеты, так и возле Луны, Венеры, Марса…
Воды понадобится много, и пересылать ее на орбиту контейнерами окажется слишком накладно. Есть, правда, еще одна идея: поймать ледяной астероид или комету, подогнать их на околоземную орбиту и получать воду изо льда. Однако это тоже не очень просто и дешево.
Профессор Г.Г. Поляков предлагает создать систему промышленных водоводов, которые будут поставлять жидкость на орбиту с поверхности Земли. Причем, полагает ученый, такая доставка может стать по существу бесплатной.
Самое сложное и дорогое – построить сам трубопровод. Но здесь, как полагает Поляков, специалистам вполне может пригодиться опыт создания космического лифта. Протянув его ленту от Земли до орбиты, специалисты смогут затем параллельно протянуть и трубу из наноуглеродного материала, созданного недавно в Японии. Материал этот очень легок и прочен, так что, по расчетам ученого, при внутреннем диаметре трубы 35,68 мм и внешнем – не менее 46,88 мм, мы получим трубу достаточной прочности, масса которой составит «всего» 150–200 т.
Конечно, это немало. Но в том-то и вся «изюминка» проекта, что на трубу будут действовать не силы тяжести, сдавливающие ее, а центробежные силы растяжения, и это позволит сделать конструкцию намного легче.
В общих чертах устройство космического водовода профессор Поляков видит таким. Основание этой «водонапорной башни» устанавливается на якоре, расположенном на дне водоема – скажем, большого озера или водохранилища.
В простейшем случае, труба из точки Атянется до точки В, где располагается накопительный резервуар. Причем, как полагает профессор, имеет смысл располагать этот резервуар уже за пределами атмосферы, на высоте более 100 км. Воду туда закачивают по обогреваемому трубопроводу. А затем дают ей возможность замерзнуть в специальных эластичных контейнерах, которые нетрудно будет затем транспортировать в любую точку околоземных орбит с помощью космических буксиров.
Ну, а выше точки В, к точке П, где располагается противовес, тянется прочный трос, удерживающий всю конструкцию в растянутом состоянии. Силой же растяжения будет, повторим, центробежная сила – ведь не будем забывать, что планета наша вращается с немалой скоростью.
На рисунке показаны также различные модификации водовода, которые могут оказаться оптимальным не только для Земли, но и для Марса, спутников планет-гигантов, где тоже могут быть источники воды.
Схема функционировании водопровода «планета-орбита».
Цифрами обозначены: 1– труба; 2– баки с морозильными установками; 3– центробежные электронасосы; 4– турбоэлектрогенераторы.
Транспортер для конвейеров
Примерно таким же способом, как воду, на орбиту можно поднимать и контейнеры с грузами. Именно для этого профессор Г.Г. Поляков разработал проект самоуравновешенного вертикального космического контейнера – ЛСВК, который будет транспортировать грузы с экватора планеты на гиперболические траектории, ведущие на околосолнечные орбиты.
Такая система будет состоять из двух колес-шкивов Аи В(см. схему) с желобами на ободах, связывающего их силового троса с проложенным вдоль него кабелем, двух электрических машин, находящихся на осях колес и вращающих замкнутую ленту транспортера, кольцом обегающего шкивы, а также управляющего блока.
Этот блок помещается в точке Строса, движущегося по круговой орбите, показанной на рисунке пунктиром. Причем, согласно законам небесной механики, он будет двигаться со скоростью экваториального спутника, не производя, вследствие невесомости, никакого воздействия на трос.
Контейнеры с грузами нужно будет располагать на специальных подставках по трассе вдоль экватора. Транспортер будет двигаться по трассе, подхватывать упаковки с грузами и, поднимая их до высшей точки, выбрасывать затем в космическое пространство. Здесь контейнеры соберут опять-таки космические буксиры, которые доставят их по назначению.
Схема самоуравновешенного летящего контейнера.
Поезда для Красной планеты
И наконец, чтобы связать между собой будущие марсианские поселения, профессор Г.Г. Поляков предлагает уникальную транспортную систему. Вдоль марсианского экватора по наиболее удобным параллелям будут проложены кольцевые железные дороги. Только составы по ним будут двигать не локомотивы, а… спутники Марса Фобос и Деймос. С каждого из них до марсианской поверхности спустят прочные тросы с прицепными устройствами. Стоит прицепить к такому тросу состав – и, скажем, Фобос, движущийся вдоль марсианского экватора в своем суточном движении, потянет за собой состав. А неподалеку от станции назначения достаточно будет отцепить трос и включить систему торможения.
Схема транспортной системы с участием спутника.
После того как состав будет разгружен, останется подождать, пока над станцией не проследует в обратном направлении Деймос. Состав снова прицепят к тросу, и он двинется в обратный путь, отвозя встречный груз.
Конечно, это пока всего лишь эскизное решение транспортной проблемы, но его ценность опять-таки в том, что для движения транспорта используются исключительно природные силы.
В. ГРИГОРЬЕВ
СУМАСШЕДШИЕ МЫСЛИ
Кто живет на Утренней звезде?
В апреле 2000 года на орбиту вокруг Венеры вышел межпланетный исследовательский зонд Европейского космического агентства. Задача этого зонда, названного Venus Express («Венерианский Экспресс»), – детальнее обследовать атмосферу и поверхность планеты, а также поискать на ней следы жизни. Но стоит ли искать жизнь на планете, атмосфера которой при давлении в 90 атмосфер наполнена едкой серой, выдыхаемой вулканами, а на поверхности царит жара в 480°C? Давайте попробуем разобраться.
«Венера должна быть безжизненной», – категорически утверждает профессор Кевин Занль, работающий в научно-исследовательском центре НАСА имени Эймса в Калифорнии. Но у него есть оппоненты. И в самом деле: почему мы привыкли считать, что огонь несовместим с жизнью? Вспомним хотя бы сказки и легенды разных народов мира. В них обязательно присутствуют драконы, саламандры, птица феникс, возрождающаяся из огня… И вот что интересно. Если в сказке фигурирует волшебная палочка или огниво, исполняющее все желания обладателя, понятно: люди издавна мечтали сделать жизнь легче, хотели, чтобы все делалось «по щучьему велению»… Но какой смысл придумывать, скажем, трехглавого, дышащего огнем Змея Горыныча?..
Так представляют себе инженеры один из вариантов устройства для сбора проб в атмосфере Венеры. Эту операцию исследователи надеются осуществить во время следующей венерианской экспедиции.
Под микроскопом микроб экстремофил– один из кандидатов в «венерианцы».
Некоторые исследователи народного творчества полагают, что в былинах, сказках и сказах упоминаются «огнедышащие» существа, реально существовавшие на нашей планете. Тем более планетологи утверждают, что на Земле, как и на Венере, некогда бушевали вулканы, изрядно ее подогревавшие и выбрасывавшие в атмосферу огромные количества серы и пепла. И существовать при таких условиях могли лишь существа, процессы метаболизма (то есть процессы обмена веществ) в организмах которых были весьма отличны от наших. Да и сами эти организмы могли быть построены не на основе углерода, как у ныне живущих земных существ, а, допустим, на основе кремния, очень распространенного элемента, из окисла которого – песка – каждый человек лепил когда-то куличики. И тогда они были в состоянии переносить куда более высокие темпера туры, а жара в 400–500 градусов для них была столь же комфортна, как для нас температура в 20–25 °C. Когда же температура на Земле стала понижаться, эти формы жизни, если они существовали, вынуждены были искать себе места, где им было бы комфортно.
Где есть такие условия? Правильно, в недрах планеты, в вулканах, на дне Мирового океана, где функционируют белые и черные «курильщики» – гейзеры с температурой в сотни градусов. Скажем, в районе самой глубокой на свете Марианской впадины без света, без кислорода, в воде, температура которой достигает 550 °C, прекрасно себя чувствуют гигантские черви и крупные моллюски, а также губки, кораллы, крабы и морские ежи.
По словам старшего научного сотрудника Института вулканологии РАН Евгения Николаевича Мархинина, вулканы могут быть своего рода источниками жизни. Ведь вулкан, по существу, является природным химическим реактором, внутри которого непрерывно идут разного рода химические процессы. В том числе и такие, которые, по мнению Мархинина, могли некогда привести к образованию первых сложных органических молекул. Более того, как говорят иногда камчадалы, в вулканах и доныне живут некие «огненные существа», похожие на медуз, ящериц и даже… людей!
Первым на них обратил внимание живший здесь в начале прошлого века профессор геологии Вениамин Егорович Синицын.
Старший сын профессора, Алексей, работая учителем, в свободное от работы время, по примеру отца, занимался изучением вулканов. Алексей не раз видел: в потоках лавы плыли, как живые, некие сгустки магмы. Отец называл их «магматическими медузами». «Некоторые мои коллеги полагают, что камням тоже свойственна своя жизнь», – сказал отец сыну, пытаясь хоть как-то объяснить виденное.
После смерти отца, 28 октября 1949 года во время очередного извержения вулкана Ключевская сопка, Алексей Синицын встретился с одним таким обитателем преисподней лицом к лицу. Из озера раскаленной лавы вышло двуногое прямоходящее существо. Поверхность его была зеркальной, искаженные очертания окружающего пространства отражались в ней.
Существо двинулось прямо к Синицыну. «Я хотел бежать, – писал он той же осенью в Академию паук. – Но устыдился собственного малодушия»…
Существо осторожно подошло к человеку на расстояние примерно пяти шагов и тоже остановилось. «Странно, но от зеркального гостя исходил не жар, а даже некая прохлада», – отметил Синицын.
«Внезапно целая серия четких и ярких воспоминаний промелькнула передо мной, – описывал он потом свои впечатления. – Дом, поселок, река, другие люди все то, что я видел прежде. А затем пришелец раскрыл передо мной свое сознание. Я увидел мысленным взором моря раскаленной магмы, поселения человекообразных существ, их строения, напоминавшие ульи, их стада, их мастерские и многое другое»…
«Там, в глубинах, о нас знают очень и очень мало, считают этот мир царством смерти, местом, куда уходят души умерших», – подвел итог своему рассказу Синицын-младший. Он отправил свой отчет в Академию наук, но ответа не получил.
Весной 1953 года Синицын снова отправился исследовать пробудившийся вулкан Толбачик. Но к назначенному им самим сроку не вернулся. Что с ним стало, никто не знает до сих пор.
Петербуржский историк Соломон Нафферт предполагает, что подобные существа могут обитать не только на Земле, но и на других планетах. И в подтверждение своей гипотезы рассказывает такую историю. Четверть века тому напал один из секретных воронежских заводов получил специальный заказ – изготовить камеру для высокотемпературных испытаний различных образцов покрытий для «Бурана» – многоразового транспортного космического корабля.
Соответствующая печь была сконструирована и построена. Чтобы проверить ее в рабочих условиях, внутри требовалось разместить некий объект. Но что именно? Кто-то вспомнил, что видел неподалеку странные камни. Говорят, их некогда собирал старичок-энтузиаст, утверждая, что они могут иметь инопланетное происхождение.
Один из этих камней и положили в печь. Следить за дальнейшим ходом испытаний поручили молодому инженеру Андрею М., который готовился в то время к защите кандидатской диссертации, а потому не возражал против дежурства у автоматически работающей печи.
Рабочие, закончив смену, ушли домой, Андрей время от времени подходил к печи и смотрел в специальное окошко – все ли нормально в рабочей камере?
После полуночи базальтовая глыба в печи раскалилась настолько, что начала плавиться, оседать, превращаясь в лужу. Причем – странное дело! – лужа все больше напоминала медузу. Инженер подумал, что это ему мерещится. Но когда форма медузы проявилась явственнее, решил, что из каменной глыбы выплавилось окаменевшее в древности существо. Ведь находим же мы в каменной породе фрагменты останков динозавров и прочих обитателей древних миров…
Андрей пожалел, что увиденное нечем сфотографировать: сейчас окаменелость растает и навсегда пропадет для науки. Однако «медуза», напротив, начала шевелиться, затем медленно всплыла в вакууме печи. Андрей прекратил подачу энергии, но «медуза» устремилась вверх и пронизала сверхпрочную оболочку!
Молодой специалист невольно сжался, ожидая взрыва, но почувствовал лишь волну горячего воздуха. В полумраке цеха «медуза» светилась пульсирующим светом. Она покружила под сводами цеха – и исчезла.
Наутро Андрей доложил все начальству. Специальная комиссия осмотрела печь, забрала оставшиеся камни и велела всем, кто узнал об этой истории, о ней молчать.
Сейчас Андрей полагает, что камни могли быть метеоритами, выброшенными некогда, скажем, с Венеры сверхмощными вулканическими извержениями. И были на самом деле не просто камнями, а некими яйцами, из которых при соответствующих условиях могли вылупиться новые «медузы» – существа, для которых 500-градусная венерианская жара не более, чем для нас вечерняя прохлада. Ведь обнаружили же астробиологи следы жизни на метеоритах, прилетевших на нашу планету с Марса.
Аппарат для «плавания» в облаках Венеры может быть, например, таким.
Подобным свидетельствам можно верить, можно не верить. Мы же хотим сказать, что жизнь, наверное, имеет куда большее богатство форм, чем считалось еще недавно. Исследователи полагают, что даже некоторые жители нашей планеты, в реальности которых никто не сомневается, в принципе, могли бы существовать в венерианских условиях.
Прежде всего, в список кандидатов в венериане можно занести экстремофила – одного из наиболее экстремальных микроорганизмов, выдерживающих тепло, холод, кислотность, щелочность и высокие давления окружающей среды, в которой существование других живых организмов невозможно. Вид Deinococcus radio-duransспособен выдержать даже весьма высокую радиацию! Следует обратить внимание и на толстую внешнюю оболочку, которая может защищать «микроб как от сильного ультрафиолетового света в атмосфере Венеры, так и от серной кислоты.
Вполне могут выжить на Венере и некоторые обитатели черных и белых «курильщиков». Наконец, как полагают исследователи, в облаках Венеры далее могут обитать некие существа, напоминающие земных морских медуз. Они могут плавать там, питаясь соединениями серы.
«Иногда я думаю, что облака – это и есть океаны Венеры», – признается Дэвид Гринспун, специалист по эволюции планет из Саутвестского института в Боулдере. Образно сказано.
Максим ЯБЛОКОВ
СЕКРЕТЫ НАШИХ УДОБСТВ
Новое видение телевидения
Недавно в Ганновере закончила свою работу ежегодная международная специализированная ярмарка коммуникационных и информационных технологий CeBIT-06. По сообщениям информационных агентств, особых откровений и открытий на сей раз не было. Тем не менее, сотрудники 6300 ведущих фирм со всего мира, среди которых ведущие позиции занимают представители Японии, Тайваня, Китая и Южной Кореи, нашли, чем удивить журналистов. Прежде всего новинки касаются телевидения.
ТВ высокой четкости
Современные панельные телевизоры поражают не только размерами экрана, но и высокой четкостью изображения. И это понятно: если согласно, например, стандарту PAL раньше изображение на экране формировалось из 415 тыс. элементов, то сейчас их число возросло до 2 млн. Кстати, само это изображение ныне формируется не с помощью электронной пушки традиционного кинескопа, а на плазменном или жидкокристаллическом экране.
«Плазменные телевизоры, – пояснил эксперт Райнхард Оттер, – как говорит уже само их название, имеют в своей основе плазменные панели, в микроячейках которых заключен тот или иной газ, молекулы которого под воздействием электрического поля ионизируются и светятся различными цветами, создавая изображение».
Телевизионные панели являются основой современных домашних кинотеатров. А в будущем они обещают дать качество изображения, не уступающее киношному…
Плазменные панели удобны тем, что позволяют создавать экраны небольшой толщины, но значительных размеров – до 2,5 м по диагонали. Однако четкость изображения из-за относительно большой величины ячеек не очень хорошая. Кроме того, плазменным панелям свойственно мерцание изображения, искаженная цветопередача. И наконец, они потребляют много энергии и требуют интенсивного охлаждения.
Поэтому многие отдают предпочтение жидкокристаллическим телевизорам, которые во многом схожи с подобными же компьютерными мониторами. Их основа – слой жидких кристаллов, ориентацией которых в пространстве можно управлять, подавая электрические потенциалы на управляющие электроды. Под воздействием электрического напряжения кристаллы разворачивают свои молекулы в определенное положение, открывая или, напротив, закрывая доступ свету от источников с тыльной стороны панели в ее определенных участках, формируя таким образом изображение.
Жидкокристаллические панели более экономичны, однако их размеры пока меньше, чем плазменных (1,5 м по диагонали), и имеют один крупный недостаток. При быстром перемещении изображаемого объекта по экрану за ним довольно часто тянется цветной шлейф. Кроме того, на экране редко удается добиться глубокого черного цвета; обычно дело ограничивается темно-серым.
Какой из двух видов телевизоров предпочесть – это, конечно, дело вкуса. Но если у вас уже есть телевизор, то знатоки советуют не торопиться с покупкой нового. И дело не только в том, что аналоговое телевидение, в том числе и в России, переходит на цифровые стандарты. Сейчас появляются новые телевизоры, которые объединяют в себе достоинства предыдущих конструкций.
Речь прежде всего идет о новой разработке японской фирмы «Тошиба», представившей на всеобщее обозрение первый «дисплей с электронными элементами на основе поверхностной проводимости». Ну, а говоря проще, конструкторам в данном случае удалось вдохнуть вторую жизнь в традиционный люминофорный экран с электронной пушкой. Только пушка используется не одна, как в черно-белом телевизоре, и даже не три, как в цветном, а… десятки тысяч. Современные технологии позволили уменьшить эти «пушки» до размеров рисового зерна. И теперь каждая формирует изображение лишь на определенном, весьма небольшом, участке экрана.
Такая мозаичная конструкция позволила создать экран с размером диагонали около 1 м и толщиной всего в несколько сантиметров. Качество же изображения даже выше, чем в обычном телевизоре.
Новая разработка японской фирмы « Тошиба».
Сотовое телевидение?
Еще одна новинка современного телевидения – создание так называемой сотовой сети телевещания во многих крупных городах Европы и Америки. Зачем?
Ведь у нас уже есть множество каналов обычного телевидения. Есть телевидение спутниковое, кабельное. К чему еще сотовое?
Оказывается, и спутниковое, и кабельное, и обычное телевидение экономически целесообразны, если вещание ведется сразу на большое количество абонентов. Причем в подобных системах потребителю, по сути, навязываются те или иные программы. Однако времена, когда зрители считали чудом крошечный экран телевизора КВН, что бы на нем ни показывали, давно ушли. Сегодня пользователи хотели бы получать только ту информацию, которая им нужна.
Иными словами, в идеале зритель хотел бы сам выбирать программу, а не смотреть навязанную каналом. Предоставить каждому отдельный видеоканал практически невозможно. Но сотовое телевидение в какой-то мере может решить проблему индивидуальных запросов абонента.
В основе сотового телевидения лежит принцип вещания маломощными передатчиками в малых зонах. Обслуживаемую территорию разбивают на отдельные сегменты (соты) с размерами, равными радиусу действия передатчика (5–6 км). Выходная мощность передатчиков не превышает нескольких десятков ватт, что вполне достаточно для приема на малогабаритные антенны. Диапазон частот – десятки гигагерц. Это намного выше, чем у эфирного телевидения. На таких частотах устойчивая работа приемника возможна и при настройке на многократно отраженный сигнал. Поэтому отпадает необходимость в прямой видимости базовой станции.
«Изюминка» же сотовых систем в том, что они, в принципе, позволяют организовать и обратный информационный канал – от абонента к головной станции. В результате на основе сетей сотового ТВ можно развернуть различные интерактивные системы, прямой доступ к которым возможен с терминала каждого абонента. Например, вы можете получить персональную телепрограмму, включающую лишь интересующие вас передачи, отсекая при этом все ненужное в них (в том числе и рекламу), получать информацию по запросу и решать массу других задач.
Важно и то, что к абонентскому оборудованию может быть подключен компьютер, факсимильный аппарат, цифровой телефон…
В России сотовым ТВ активно занимается группа компаний «MTV-Информ», которая имеет лицензии на предоставление услуг местной, междугородной и внутризоновой телефонной связи, передачи кабельного и сотового ТВ.
Два года назад фирма заключила договор с бывшим оборонным предприятием «Импульс» на разработку и выпуск соответствующего оборудования. В Москве уже проводились первые опытные передачи сотового телевидения.
«Тройная игра»
И наконец, еще одна разновидность телевидения скорого будущего – мобильное ТВ. Оно основывается на использовании сотовых телефонов или мобильников нового поколения, снабженных дисплеями увеличенного размера.
Новая система предусматривает одновременную передачу телевизионных, радио– и звуковых каналов в цифровом виде, включая «скачивание» данных из Интернета. Таким образом, мобильный телефон превращается в многофункциональное устройство.
Мобильные телефоны будут транслировать не только звук, но к телеизображение. В то же время возрастут и их возможности по передаче информации. Если сегодня лишь часть мобильников оснащается цифровыми фотоаппаратами, со временем все они получат встроенные видеокамеры.
Насколько это будет удобно пользователям и выгодно продавцам информационных услуг, и те и другие пытаются понять в ходе эксперимента, который идет сейчас в Австралии. По словам исполнительного директора фирмы «Телстра» Холли Крамера, в проекте примут участие более тысячи жителей Сиднея, которых компания бесплатно снабдит мобильными трубками стандарта DVB-H.
В ходе эксперимента длительностью в год специалисты надеются досконально изучить технические аспекты передачи нового типа электромагнитных импульсов в городских условиях, а маркетологи – оценить, насколько быстро новое чудо инженерной мысли сумеет завоевать сердца жителей Зеленого континента, а затем и всего мира.
В. ЧЕТВЕРГОВ