355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2006 № 07 » Текст книги (страница 1)
Юный техник, 2006 № 07
  • Текст добавлен: 15 октября 2016, 00:30

Текст книги "Юный техник, 2006 № 07"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 1 (всего у книги 5 страниц)

ЖУРНАЛ «ЮНЫЙ ТЕХНИК»
НАУКА ТЕХНИКА ФАНТАСТИКА САМОДЕЛКИ
№ 7 июль 2006

Популярный детский и юношеский журнал.

Выходит один раз в месяц.

Издается с сентября 1956 года.


ВЫСТАВКИ
И снова на салоне…



Недавно завершил свою работу VI Московский международный салон инноваций и инвестиций, в работе которого приняли участие около 500 участников из 6 стран мира. Среди посетителей салона был и наш специальный корреспондент Виктор ЧЕТВЕРГОВ. Вот его заметки.



Думай компьютер, нейроусилитель куплю!..

Еще недавно персональный компьютер казался многим верхом совершенства – умнейшая машина, все может. А сейчас все чаще многие пользователи считают, что компьютеры не поспевают за ростом их потребностей. Например, компьютеры за многие годы так и не научили разбирать рукописные тексты, людям приходится вводить их с помощью клавиш. И устную речь они не понимают. А как бы было хорошо: ты сказал, компьютер – сделал! Да и считают они, оказывается, довольно бестолково. Сначала каждое число переводят из привычной нам десятичной системы в двоичную, потом проводят ряд последовательных операций, зачастую заменяя умножение сложением, а затем переводят готовый ответ из двоичного кода в десятичный. На все это, естественно, расходуется время…

– Основным направлением увеличения производительности компьютеров в наши дни является распараллеливание вычислительных операций, а то и создание ЭВМ с параллельной архитектурой, – рассказал мне начальник Центра инновационных разработок Ставропольского государственного университета Александр Александрович Смирнов. – Когда же операции ведутся параллельно, а не последовательно, это намного ускоряет вычисления…

А его коллега, доцент кафедры алгебры Павел Анатольевич Сахнюк попытался растолковать мне, как это делается. Сознаюсь сразу: многого я так и не понял, но кое-что все-таки уловил. Оказывается, мы с вами считаем в общем-то неправильно, пользуясь позиционной десятичной системой, опираясь на собственные 10 пальцев. Намного рациональнее было бы, если бы пользовались для расчетов непозиционной системой, базирующейся на простых числах.

Разницу Сахнюк продемонстрировал мне на бумажке на примере сложения и умножения двух чисел. Обычно мы складываем два числа последовательно, начиная с младших разрядов и перенося постепенно те единички, что остаются «в уме», в старшие. Складывать параллельно старшие и младшие разряды не получится, поскольку неизвестно, сколько единиц и в каких разрядах придется переносить.


Авторы разработки – сотрудники СГУ – А. Смирнов(слева) и П. Сахнюк.

А вот если бы мы пользовались непозиционной системой, то все операции можно делать сразу. Этой системой, похоже, интуитивно пользуются люди-счетчики, способные мгновенно умножать, складывать, возводить в степень и делить огромные числа. Но как они делают это, многие из них рассказать не могут. Секундное озарение – и в голове возникает готовый ответ.

Однако теперь математики с физиологами кое в чем разобрались, и, используя в качестве аналога биологические нейроны человеческого мозга, смогли создать нейросетевой базис. А уже на его основе – микрочип, который но размерам схож с большой почтовой маркой. «Начинка» же чипа, как уже говорилось, напоминает нейронную структуру человеческого мозга.

В результате получился модулярный нейроускоритель, который, будучи поставлен в электронную плату обычного компьютера, позволяет увеличить его производительность при решении некоторых задач более чем на порядок.

Такая новинка вполне может пригодиться и тем, кто в жизни не собирается заниматься математическими расчетами. Но в компьютерные игры ведь играют не только любители точных наук. И наверняка каждый хочет, чтобы изображение было почетче, реалистичней, а сам компьютер не «зависал» при переходе от одной операции к другой.

Все это, а также способность компьютера понимать человеческую речь, скоропись, узнавание своего хозяина по внешнему облику и еще многие другие качества может придать вашей «персоналке» модулярный нейроускоритель.


Нейроусилитель на плате выглядит как большая почтовая марка.


Крыша по мере надобности

Хорошо летом прокатиться в открытом кабриолете, когда тело и голову приятно обдувает теплый ветерок, а лицо ласкают солнечные лучи! Однако мы с вами живем вовсе не в такой стране, где лето – круглый год, а дожди идут строго по расписанию. Так что владельцам кабриолетов то и дело приходится натягивать брезентовую крышу. От дождя она еще худо-бедно спасает, а вот как быть с зимней стужей и метелью? Нет, тут нужна крыша понадежнее. И не случайно подавляющее большинство легковых автомобилей на наших дорогах имеют жесткую металлическую крышу.

Однако попробуйте-ка сесть летом в автомобиль, после того как он часок простоял на солнцепеке. Ощущение, словно в бане.

В общем, прикинув так и этак, петербургские изобретатели, отец с сыном Александр Викторович и Дмитрий Александрович Рябовы, придумали два варианта трансформируемых кузовов. Или говоря проще, ухитрились создать авто с жесткой крышей, которая тем не менее нажатием кнопки за несколько секунд может или убираться, превращая автомобиль в кабриолет, или надвигаться снова при первых же признаках непогоды.

В обоих случаях складная крыша не влияет на вместимость багажника. В одном случае она убирается в промежуток между спинками кресел и дугой безопасности, а в другой размещается под откидывающимся багажником.

Остроумно и довольно просто. Во всяком случае, конструкции Рябовых намного проще зарубежных аналогов.


Рябовыдемонстрируют свои изобретения.


Сито из… ускорителя

Само по себе сито – изобретение древнейшее. Но его все продолжают совершенствовать. И дошли уже до наноуровня. А нанометр – это, между прочим, миллиардная доля метра. Для чего ситу дырочки такого размера?

Как пояснил мне главный специалист Института кристаллографии имени А.В.Шубникова РАН Николай Александрович Ларин, наносита, а точнее, трековые наномембраны представляют собой тонкие полимерные пленки или кристаллы, в которых есть система строго калиброванных пор. Или, говоря иначе, мельчайших дырочек строго определенного диаметра. Диапазон диаметров этих пор колеблется в пределах 50 – 5000 нанометров. Это примерно в 100 раз тоньше человеческого волоса. И сверла такой «тонины», конечно, не сыскать. Так чем же делают подобные отверстия?

Оказывается, для этих целей специалисты привлекают ускорители, из недр которых в строго определенном направлении вылетают высокоэнергетичные частицы. Летят они со скоростью, в несколько раз превышающей скорость пули и сравнимой разве что с быстротой движения космического корабля по орбите – 7 – 10 км/с. Так что энергии им хватит, чтобы мгновенно «прошить» самый твердый кристалл.

Диаметр же отверстий определяется величиной тех частиц, которые в данном случае вылетают из ускорителя. Это могут быть то ли тяжелые и большие (по меркам микромира, конечно) многозарядные ионы, или коллоидные частицы, или синхротронные излучения…

Ну а теперь самое время сказать, наверное, для чего трековые мембраны предназначены. Оказывается, они служат основой разного рода фильтров, которые используются для очень многих целей. С их помощью, например, можно получать плазму из донорской крови, очищать лекарственные растворы от примесей, задерживать в воздухе, который поступает, скажем, в операционную, не только мельчайшие частицы пыли, но и болезнетворные микробы с вирусами.

Работают подобные фильтры и в так называемых «чистых комнатах», которые существуют в микроэлектронном производстве. Там пылинка, осевшая в процессе изготовления на поверхность микрочипа, может сразу и навсегда вывести его из строя. Причем по качеству отечественные мембраны не хуже многих зарубежных, зато цена их намного меньше.


Не стричь, не косить, а… вычесывать

Именно такой оригинальной насадкой – очесывающим адаптером – предлагают оснащать зерноуборочную технику в коллективных, фермерских и индивидуальных хозяйствах специалисты кафедры «Агропромышленная инженерия» Калужского филиала МГТУ имени Н.Э. Баумана.

Как рассказал мне доцент этой кафедры, кандидат технических наук Виктор Михайлович Алакин, такой адаптер, устанавливаемый, например, на комбайн «Енисей-1200», обладает многими преимуществами.

Во-первых, в комбайн уже не попадает солома и не надо сортировать зерна и стебли. Во-вторых, адаптер позволяет убирать даже полегшие зерновые в условиях высокой влажности. То есть, говоря проще, механизаторам уже не надо ждать у поля погоды. В-третьих, устройство может быть очень точно настроено на зерна определенного размера и таким образом до минимума сокращает потери.

Сам же процесс очесывания на редкость прост и надежен. На барабане располагают своеобразные расчески, которые при его вращении аккуратно вычесывают зерно из стеблей и отправляют его по конвейеру прямо в накопительный бункер. При этом сроки уборки удается сократить на 12–15 дней, снизить расход топлива на 20–30 процентов и одновременно увеличить производительность комбайна аж на 30–50 процентов!


Велосипед продолжают изобретать…

Уж сколько раз твердили миру: «Не изобретайте велосипед!» А изобретатели все не слушаются. И кстати, правильно делают. Очередную новинку на салоне продемонстрировал московский изобретатель Андрей Евгеньевич Миронов.

– Нет, я вовсе не технарь, – рассказал он. – Бывший военный, юрист. Изобретателем стать заставила жизнь…

Дело в том, что несколько лет назад Андрей Миронович повредил спину, и на обычном велосипеде ездить уже не мог. Автомобиля у него не было, а сидеть дома все время ведь тоже надоедает. И тогда из частей и узлов обычных велосипедов он стал делать веломашину с удобным креслом. Получилась весьма устойчивая, неприхотливая трехколесная конструкция, на которой Андрей Евгеньевич смог ездить. А потом выяснилось, что такую веломашину неплохо было бы сделать двухместной, чтобы и жена могла прокатиться. Да и багажник тоже нужен, мало ли что с дачи или из магазина нужно привезти… И переключатель скоростей не повредит, тогда можно будет меньше ноги нагружать, развить большую скорость…

В общем, год от года А.Е.Миронов совершенствует свою конструкцию. И надеется, что когда-нибудь ею заинтересуется какой-нибудь велозавод. Ведь многие у него уже спрашивали, где можно купить такую удобную технику.


Пояснения дает А. Миронов.

ИНФОРМАЦИЯ

ДЛЯ УДОБСТВА ПАССАЖИРОВ. В Московской области намечено провести комплексную реконструкцию аэропортов Домодедово и Шереметьево. Так, в Домодедове в ближайшие 15 лет предусмотрено строительство двух дополнительных взлетно-посадочных полос, сооружение пассажирского перрона, аэровокзального, грузового и гостиничного комплексов.

Новый пассажирский терминал должен быть возведен в Шереметьево-2. А в Шереметьево-1 пассажирский терминал должен быть реконструирован и расширен. У аэропорта также появится новая взлетно-посадочная полоса. В ее зоне будет построена первая очередь аэровокзального комплекса с пропускной способностью 6 млн. пассажиров в год.

Наконец, чтобы освободить центральные аэропорты от перевозки почты и других срочных грузов, предусмотрено создание нового грузового терминала на базе аэродрома Луховицы.

«СКИФ» ДЛЯ КАРДИОЛОГОВ. Неожиданные возможности для использования белорусского суперкомпьютера «СКИФ» совместно с российскими специалистами нашли сотрудники республиканского научно-практического центра «Кардиология» Министерства здравоохранения Беларуси. По словам ведущего специалиста центра Елены Константиновой, суть разработки состоит в том, что на суперкомпьютере удалось смоделировать процессы микроциркуляции крови того или иного конкретного пациента.

Теперь достаточно по Интернету получить из какой-либо клиники микроснимки кровеносных сосудов, расположенных на радужной оболочке глазного яблока, как суперкомпьютер через 15–20 минут выдает точную информацию о состоянии сердечно-сосудистых заболеваний пациента, еще до появления клинических симптомов.

ОБОЙДЕМСЯ БЕЗ ВОЛОКОННОЙ ОПТИКИ , утверждает самарский изобретатель К.Д. Колесников, разработавший «устройство для приема и транспортирования солнечной энергии» (патент РФ № 2133926).

Работает эта система так. Солнечные лучи падают на неподвижный параболический отражатель (их может быть даже несколько), ось которого лучше сразу направить на юг под углом, равным широте местности. Сконцентрированный луч попадает на второй отражатель, который развернут таким образом, что переправляет световые лучи в цилиндрический световод – трубу с зеркальной внутренней поверхностью. Трубу можно изогнуть с таким расчетом, чтобы «солнечные зайчики», последовательно отражаясь от ее внутренних стенок, освещали на выходе темный подвал или оранжерею.

ЗАЧЕМ АВТОБУСУ СПУТНИК?Правительство России решило оснастить все транспортные средства, перевозящие пассажиров, специальные грузы (например, деньги) и особо опасные грузы (едкие кислоты, радиоактивные материалы), аппаратурой спутниковой навигации ГЛОHACC-GPS.

Кроме того, аналогичной аппаратурой будут оборудованы российские авиалайнеры, морские и речные суда, железнодорожные вагоны… И наконец, спутниковые маяки получат все без исключения блоки ракет-носителей, космических аппаратов и спускаемых капсул.

СОЗДАНО В РОССИИ
Шарик на пружинке

Такова упрощенная до предела схема гравиметра – прибора, о котором пойдет речь ниже. Но сколько с ним было работы!


Как же выглядит Земля?

Есть на свете сила, которая действует на каждого из нас, бодрствуем мы или спим, находимся в движении или пребываем в покое. Это – сила тяжести, или сила гравитации.

Как определить ее теоретически, известно каждому школьнику, знакомому с законом всемирного тяготения, сформулированным еще 200 с лишним лет тому назад великим Ньютоном. Сила притяжения прямо пропорциональна величине масс тел и обратно пропорциональна квадрату расстояния между ними. Многие помнят также, что стоит уронить любой предмет, и он будет падать на Землю с ускорением «g», равным в среднем 9,8 м/с 2.

Вот эту самую силу и связанное с ней ускорение свободного падения вот уже около 40 лет изучает главный специалист Института физики Земли имени О.Ю. Шмидта, доктор технических наук Леонид Кириллович Железняк. Он и прочел мне своеобразную лекцию о гравиметрах – приборах для измерения гравитации, о том, зачем они нужны и как устроены.

Когда-то люди думали, что Земля – круглая, начал Железняк. Сейчас никто из специалистов так не считает. Они знают, что планета наша имеет форму геоида – геометрической фигуры, несколько похожей на грушу. Причем выяснили это еще задолго до того, как ученые получили возможность взглянуть на нашу планету с космической высоты. И помогли им в этом измерители гравитации.

Теоретически решение задачи выглядит достаточно просто. Если бы Земля была идеально круглым шаром, то расстояние от ее поверхности до центра было бы всюду одинаково. А значит, и значение «g» было незыблемым, и шарик, брошенный с одной и той же высоты, пролетал бы расстояние за одно и то же время.



Кстати, один из первых гравиметров именно так и выглядел – вертикальная трубка, в которую бросали шарик и засекали время, которое ему требовалось для того, чтобы пролететь от верхнего конца к нижнему.

Уже этот простейший прибор позволил заметить, что Земля наша сплюснута у полюсов, причем довольна сильно – диаметр ее по экватору примерно на 1/300 больше, чем диаметр от полюса до полюса.

Чтобы повысить точность измерений такого гравиметра, за последние сто лет исследователи придумали немало усовершенствований. Из трубки выкачали воздух. Штатив с этой трубкой ставят обычно на амортизирующее основание, чтобы исключить посторонние колебания, а время и длину пути измеряют с помощью лазера и сверхточных часов.

Тем не менее, такое устройство напомнило мне своим весом и габаритами фотоаппараты с треножниками конца XIX века. Носить их под силу лишь атлету. Иное дело сейчас – не всякий фотоаппарат даже разглядишь, настолько эта техника стала легкой и компактной. Примерно такой же путь совершенствования прошли и гравиметры – некоторые из них имеют сегодня размеры с пачку сигарет.


Демонстрационные гравиметры специально сделаны довольно большими, чтобы можно было в деталях рассмотреть их устройство.


Противоборствуя помехам

Однако мы забежали вперед. С помощью первых гравиметров исследователям удалось лишь уточнить форму Земли. Да и то не очень точно. Чтобы провести дальнейшие исследования, ученым необходимо было резко повысить точность измерений. К слову, сейчас они ведутся с точностью 10 -8—10 -9, по крайней мере, не хуже, чем 10 -6.

Понять сложность задачи можно на примере. Идет по морю корабль. Глубина под ним примерно километр. Но капитан хочет знать глубину с точностью до миллиметра. И прибегает, скажем, к помощи эхолота. Но прибор сам имеет какую-то погрешность, да еще корабль бросают то вверх, то вниз гигантские волны. В общем, помехи в работе Железняка и его коллег исключительно велики.

Во-первых, Земля, как сказано, не круглая, да к тому же неровная – там горы, здесь – низменности. При этом две трети земного шара залиты водой, а рельеф океанского дна долгое время был тайной за семью печатями.

Во-вторых, та же Луна гоняет по поверхности нашей планеты волны приливов. Причем не только по воде, но и по суше. Мало кто знает, что земная кора под влиянием притяжения естественного спутника нашей планеты ежесуточно поднимается и опускается с амплитудой примерно в полметра.


Примерно так выглядит лаборатория гравиметрии.

В-третьих, сама по себе земная твердь только так называется. На самом деле она все время «дышит» – в ее недрах постоянно происходят разного рода сейсмические процессы, влияющие среди прочего и на геометрию планеты.

В-четвертых, приборы, работающие с миллионной точностью, могут сбиваться, что называется, даже от пристального взгляда. А уж колебания температуры, атмосферного давления и прочих параметров они чувствуют куда острее любого ревматика или гипертоника.

И это еще далеко не полный перечень помех. Не будем его продолжать, а лучше поговорим о том, как специалисты смогли их одолеть.


Упрощенная схема современного гравиметра.

Здесь уместна аналогия с историей часов. Помните, когда человечество перешло от солнечных, водяных и песочных часов к механическим, первые «ходики» размещались в городских башнях – настолько громоздки они были. Со временем часы с маятником мастера смогли уменьшить до таких размеров, что они стали помещаться в обычном доме; бабушкины часы с кукушкой – наглядный тому пример. Но сейчас ими редко кто пользуется; в ходу больше даже не карманные, а наручные часы – механические, кварцевые или электронные.

Примерно такой же путь совершенствования прошли и магнитометры. Трубу со свободно падающим шариком в конструкции гравиметра заменил сначала качающийся маятник, период колебаний которого зависит от силы земного тяготения, а затем и шарик, подвешенный на пружинке тоже своего рода балансир.


Один из первых гравиметров именно так и выглядел – вертикальная трубка, в которую бросали шарик, и засекали время, которое ему требовалось для того, чтобы пролететь от верхнего конца к нижнему.

Однако если просто подвесить шарик весом в 1 грамм на тоненькой пружинке, он будет колебаться в первую очередь отнюдь не от изменения силы тяжести, а от одной (или совокупности) тех помех, о которых шла речь выше. Так что пришлось нашим ученым и конструкторам придумывать всевозможные ухищрения, чтобы от них «отстроиться».

Для того чтобы шарик не чувствовал: вибраций, его закрепляют на растяжках из кварцевых нитей, помешают в специальную жидкость, от одного названия которой у вас может закружиться голова, но которая обладает множеством достоинств – она не меняет своего состава на протяжении многих лет, практически не меняет свою плотность при изменении температуры, является идеально прозрачной, так что не мешает наблюдениям и т. д.

Кроме того, всю эту систему помещают в герметичный корпус, термостатируют, размещают на специальной гироплатформе, призванной сохранять стабильность при возможных сотрясениях. Добавьте сюда еще приспособления для снятия информации, преобразования ее в форму, удобную для компьютера, устройства для юстировки – настройки системы – и вы поймете, почему работы по созданию и усовершенствованию гравиметров велись не год и не два…


В целях практической необходимости

Теперь давайте поговорим о том, для чего все это надо. В конце концов, уточнение формы Земли – не такая уж насущная проблема, чтобы заниматься ею многие десятилетия…

В лаборатории, где мы разговаривали с Л.K. Железняком, висит на стене огромная карта земного шара. На ней показаны не только возвышенности и низменности, имеющиеся на суше, но и все подробности рельефа морского дна. Имеется тут и еще одна карта, густо испещренная сетью загадочных точек.

Причем одну из этих точек мне довелось увидеть собственными глазами – прямо на полу лаборатории красовался медный кружок с выбитыми на нем цифрами. Оказалось, что таким образом обозначено место, где местная величина гравитации измерена с особой тщательностью.

К этим точкам, подобно геодезистам, гравиметристы и «привязывают» свои текущие измерения. А для того чтобы их сделать, по всему миру отправляются специальные экспедиции с установленными на самолетах, кораблях, автомобилях и прочих средствах транспорта гравиметрами.

Не один десяток лет отдал таким экспедициям и Леонид Кириллович. Причем ему довелось в основном плавать, потому что его узкая специализация – морские гравиметры. Те самые, что работают в наиболее сложных условиях – ведь штиль на море бывает не так уж часто.

«Поначалу и я сам, и наши приборы страдали морской болезнью?», – вспоминает ученый. Однако со временем обрел устойчивость не только вестибулярный аппарат самого исследователя; созданные им и его коллегами приборы стали давать правильные показания даже в штормовую погоду.

Нужно же это вот для чего. Задумывались ли вы когда-нибудь, как подводные лодки находят дорогу в океане? Ведь движутся они на большой глубине, в кромешной тьме, где даже морских звезд, не говоря уж небесных, не видно. Причем зачастую пути их проходят подо льдами, вынырнуть из-под которых – большая проблема. Да и по военным соображениям делать этого не стоит – спутник-шпион или иной охотник за подводными лодками тут же засечет ее появление… В высоких же широтах магнитный компас попросту бесполезен. Куда, по-вашему, должна указывать его стрелка в районе полюса?

Вот и ориентируются подводные штурманы по изменениям гравитационного поля Земли. Но чтобы они смогли это делать, гравиметристы должны были составить подробнейшие карты гравитационного поля планеты, «проутюжив» все моря-океаны со своими приборами. Так что пришлось Железняку с коллегами совершить не один десяток морских путешествий, добираясь далее до Австралии и Антарктиды.

Еще точные данные о земном тяготении в данной точке и в данный момент нужны при запуске баллистических ракет. А их, как известно, запускают как с подводных лодок, так и с надводных кораблей, причем в любую погоду – коль на то есть необходимость. И здесь свою службу несут гравиметры, созданные нашими специалистами.

Используют данные гравиметрии и в мирных целях. Например, гравиметр, поставленный на самолет, позволяет точно оконтурить границы нефтегазового месторождения. Ведь пустоты в земле, где хранятся подземные клады, имеют меньшую плотность, чем окружающая порода, а значит, и гравиметр покажет меньшую величину. Так же могут быть обнаружены и рудные залежи.

Не забыты и чисто научные задачи. Гравиметры, как уже говорилось, не только помогли ученым выявить истинную форму Земли, но и позволяют понять, где именно пролегают границы литосферных плит. А это весьма важно, в частности, для прогнозирования сейсмичности того или иного района. Так что «шарик на пружинке» еще не сказал своего последнего слова в науке.

Станислав ЗИГУНЕНКО


    Ваша оценка произведения:

Популярные книги за неделю