Текст книги "Юный техник, 2009 № 08"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 5 (всего у книги 5 страниц)
ПОЛИГОН
Термомагнитный двигатель
Вполне возможно, что уже скоро появятся двигатели, которые в корне изменят наш мир. Автомобили станут расходовать в 5–7 раз меньше топлива, чем сегодня, да к тому же будут бесшумными и не давать выхлопа. Эти двигатели смогут обходиться и вообще без топлива, работая, например, от солнечного тепла. Речь идет о термомагнитных двигателях.
Вот как устроен один из них, предложенный в 1964 г. Э. Реслером и Р. Розенцвейгом. Вход и выход гидравлической турбины соединены трубой, получается замкнутый контур. Наполнен контур жидкостью, но не простой, а магнитной. Она представляет собой смесь частиц железа или его окислов с какой-нибудь жидкостью. На трубе контура последовательно установлены нагреватель, электромагнитная катушка (соленоид) и холодильник.
Если подать в катушку ток, то жидкость втянется в нее с обеих сторон и ее давление внутри катушки станет намного выше, чем в контуре, но, если подогреть жидкость с одной стороны магнита, в контуре возникнет поток. Дело в том, что у железа и его окислов есть любопытное свойство: при нагревании способность притягиваться к магниту уменьшается, а при определенной температуре (в так называемой точке Кюри) притяжение пропадает вовсе. Так что, если нагревать жидкость вблизи катушки, нагретая часть магнитной жидкости станет притягиваться слабее, чем горячая, и поток двинется по трубе к месту нагрева. Турбина заработает.
Далее магнитная жидкость попадет в радиатор, охладится, и ее магнитные свойства восстановятся.
Турбина обладает способностью автоматически увеличивать свой крутящий момент при росте сопротивления и, наоборот, вращаться быстрее, когда сопротивление уменьшается. Потому автомобилю с термомагнитным двигателем даже не нужна будет коробка передач. На всех мощностях двигатель будет работать предельно экономично. Этим, кстати, и объясняется низкий расход топлива, который ожидают от автомобилей с термомагнитным двигателем.
Добавим к этому, что, поскольку на лопатки турбины будет попадать уже холодная жидкость, для их изготовления подойдут недорогие материалы, например, алюминий.
Термомагнитные двигатели пока не вышли из стен лабораторий, поскольку для получения высокого КПД нужна высокая температура, а магнитных жидкостей, способных долго работать в таких условиях, пока нет.
В 1990-х годах аргентинский изобретатель М. Инвар предложил применить в термомагнитном двигателе смесь тонкого железного порошка с гелием. При определенных условиях частицы порошка оказываются отделены друг от друга газовой пленкой и приобретают такую же свободу перемещения, как молекулы жидкости.
Такая смесь порошка и газа может течь, словно жидкость. Ее называют «псевдожидкостью». Предложенная М. Инваром псевдожидкость может неограниченно долго выдерживать температуру точки Кюри железа (738 °C), а термомагнитный двигатель на ее основе может иметь КПД более высокий, чем дизель.
Термомагнитный двигатель Э. Реслераи Р. Розенцвейга.
Модель термомагнитного двигателя можно сделать своими руками. Мощность ее ничтожно мала, но, тем не менее, она доказывает возможность получения механической энергии за счет нагревания и охлаждения железа в магнитном поле.
Укрепите с помощью скотча на краю деревянной подставки сильный магнит из китайской защелки для мебели. На самодельном штативе подвесьте на тонкой медной проволочке кусочек жести от консервной банки размером 2x3 см. Затем подвиньте магнит так, чтобы он притянул жестянку, но до самого магнита она не доставала.
Если теперь поставите около магнита школьную газовую горелку или просто свечу так, чтобы она нагрела жесть до точки Кюри, то в какой-то момент она перестанет притягиваться к магниту. Через некоторое время кусочек жести остынет, и процесс повторится. У вас получится своеобразный термомагнитный маятник.
В литературе описан простой магнитный двигатель, дающий вращательное движение. Для его изготовления нужен жестяной диск (аккуратно вырезанная крышка консервной банки), два сильных подковообразных магнита и деревянная подставка 20x40 см. В середине подставки установите остро заточенный гвоздь. В центре диска при помощи керна или острого дюбеля сделайте углубление и поместите его на острие гвоздя. После этого поставьте магниты на подставку и расположите их так, чтобы диск устойчиво держался на острие. Если поставить свечу невдалеке от диска, участок диска, нагревшись, начнет терять свои магнитные свойства, а сам диск станет медленно вращаться.
Во всех этих опытах железо можно заменить никелем. Он так же обладает способностью притягиваться к магниту. Но потеря магнитных свойств у никеля (точка Кюри) имеет температуру 370 °C, а потому опыты получаются гораздо четче и быстрее.
Разбив старую радиолампу, вы найдете в ней крохотный кусочек никеля. Для термомагнитного маятника в самый раз!
Ну, а вообще-то на железе и никеле свет клином не сошелся. В 1999 г. в институте Физики АН Грузии сделали термомагнитный двигатель с диском из гадолиния. У него температура точки Кюри всего 19 °C. Двигатель начинает работать, стоит попасть на диск лучику солнца!
В принципе и никель, и гадолиний можно купить. Стоят эти материалы недешево, но для опытов нужны буквально граммы.
А. ИЛЬИН
Рисунки автора
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Электростатические громкоговорители и телефоны
(Окончание. Начало см. в предыдущем номере.)
Головные электростатические телефоны изготавливаются точно так же, но пластины выбираются поменьше, порядка 5… 10 см. Они могут быть круглыми или овальными. После сборки излучателей к ним остается приделать лишь поролоновые валики, прилегающие к ушам, и изголовье.
Телефоны получаются тонкими и очень легкими. Выводы двух излучателей соединяются параллельно. Отсутствие короткого замыкания в излучателях надо проверить любым омметром.
Для испытаний излучателя использовался детекторный приемник, схема которого показана на рисунке 3.
Его колебательный контур образован емкостью антенны (примерно 6 пФ на метр длины провода) и индуктивностью катушки L1. Детектор собран по схеме удвоения напряжения на диодах VD1, VD2. Резистор R1 нужен, чтобы излучатель разряжался при отрицательных полуволнах звукового сигнала.
Поляризующее напряжение возникает при детектировании несущей принимаемого амплитудно-модулированного сигнала, на него наложены звуковые колебания, т. е. получается как раз то, что и нужно для правильной работы излучателя (см. рис. 1б).
Антенной служил провод длиной вместе со снижением около 25 м, высота провода над крышей дома не превосходила 6 м.
В качестве катушки L1 использовалась длинноволновая магнитная антенна портативного транзисторного приемника, настройка велась передвижением ферритового стержня. При приеме на восточной окраине Москвы радиостанций «Маяк» (198 кГц) и «Радио России» (261 кГц) амплитуда высокочастотного напряжения на катушке достигала нескольких десятков вольт и описанный излучатель с отражательной доской «озвучивал» небольшую тихую комнату. Таким образом, получился, вероятно, впервые в мире, громкоговорящий детекторный приемник с электростатическим громкоговорителем. Электростатические же телефоны, сделанные по описанному способу и подключенные к приемнику, во время музыкальных программ создавали незабываемое впечатление присутствия в концертном зале.
Резистор R1 лучше подобрать по наилучшему звучанию – увеличение его сопротивления приводит к завалу верхних частот, во-первых, из-за емкости самого излучателя (а она может составлять многие сотни пикофарад), и во-вторых, из-за возрастания добротности контура, который меньше шунтируется входным сопротивлением детектора, зато общая громкость звука возрастает. Полезно установить подстроечный резистор сопротивлением 4,7 МОм последовательно с постоянным 1…1,5 МОм.
Лучшие результаты дают дифференциальные конструкции электростатических громкоговорителей, в которых пленка не испытывает постоянной силы притяжения, вызванной поляризующим напряжением, и колеблется легче, встречая только сопротивление воздуха.
Пример такой конструкции дан на рисунке 4.
Однако здесь нужны два противофазных звуковых напряжения одинаковой амплитуды, получаемые от трансформатора с симметричной вторичной обмоткой (обычно она повышающая). Нужна и двухслойная пленка с металлизацией в середине.
Другой вариант – использовать однослойную пленку, но пластину со стороны металлизации покрыть изолирующим лаком.
Ненадолго вернемся к теории. Здесь у нас как бы два электростатических громкоговорителя, сложенных вместе. Один создает звуковое давление р 1при приложенном напряжении U 1 = U п+ U зв, другой – р 2при напряжении U 2 = U п– U зв, причем р 2 направлено в другую сторону. Общее звуковое давление будет равно разности р = р 1 – р 2. Пользуясь формулами из первой части нашей теории, выразим через приложенное напряжение:
р = р 1– р 2= ε 0∙Е 1 2– ε 0∙Е 2 2= (ε 0/d 2)∙[(U п+ U зв) 2– [(U п– U зв) 2].
Возведя в квадрат сумму и разность напряжений, увидим, что квадраты напряжений сокращаются.
Это означает компенсацию «квадратичных» искажений. Получаем: р = 4ε 0∙U п∙U зв/d 2
Как видим, дифференциальный громкоговоритель линеен и его отдача прямо пропорциональна поляризующему напряжению и обратно пропорциональна зазору между пленкой и пластинами. Поляризующее поле не обязательно создавать внешним источником. Есть диэлектрики (полиэтилен, например), способные сохранять поверхностный заряд годами. Их называют электретами. Из обыкновенной полиэтиленовой пленки можно изготовить электретную, нагрев ее почти до температуры плавления и медленно остудив в сильном электрическом поле. Поверхностный заряд электретной пленки сам и создаст поляризующее поле, нам останется приложить к неподвижным перфорированным пластинам звуковое напряжение.
Заинтересовавшимся читателям предлагаем самим разобраться в работе дифференциального излучателя и подумать, как подключить его к детекторному приемнику. Будет замечательно, если удастся обойтись без трансформатора.
Подсказка: ничто не мешает подключить к катушке (рис. 3) и второй детектор, но с обратной полярностью диодов, тогда получим выпрямленное напряжение другой полярности. Сообщайте нам о результатах: лучшие предложения, а тем более, описания испытанных конструкций мы постараемся опубликовать.
Детекторный прием в полевых условиях
Может ли приемник работать без батареи? Конечно, если это детекторный приемник. Ему вполне достаточно энергии, принятой антенной от местных радиостанций. В нем и транзисторов-то нет, только два диода.
Самое важное – приемник. Тот, который сегодня вам рекомендуем, сделан лет уж десять тому назад специально для полевых экспериментов. Для испытаний в любых условиях элементов настройки в нем даже с запасом (рис. 1).
Схема несколько отличается от стандартной для детекторных приемников, прежде всего, детектором на двух диодах и конденсатором связи С3, позволяющим подобрать оптимальную нагрузку контура детектором и тем самым получить максимальную чувствительность при достаточно хорошей отстройке от соседних по частоте, мешающих станций. При дальнейшем уменьшении емкости С3 резонансная кривая контура становится еще острее, то есть селективность растет, но чувствительность несколько уменьшается.
Сам колебательный контур состоит из катушки L1 и конденсатора переменной емкости (КПЕ) С2. Индуктивность катушки тоже можно изменять в широких пределах, вдвигая и выдвигая ферритовый стержень (сердечник). Наличие феррита в катушке увеличивает ее индуктивность. Совместное действие этих двух элементов настройки обеспечивает перекрытие диапазонов длинных и средних волн (ДВ и СВ). Еще в контур входит емкость антенны. Для коротких антенн она невелика, и их подключают прямо к контуру (правое по схеме гнездо). Длинные антенны могут внести столь большую емкость, что настройка на СВ-станции окажется невозможной даже при выдвинутом стержне и минимальной емкости С2. Такие антенны надо подключать через конденсатор связи С1 и уже им вести настройку. Включенный последовательно с антенной, он позволяет уменьшить вносимую емкость до минимума.
Для приемника годятся только высокоомные телефоны (3,6…4,4 кОм) с большой чувствительностью, например ТОН-2, ТА-4. Параллельно телефонам включен блокировочный конденсатор С4, замыкающий токи высокой частоты, оставшиеся после детектирования, и тем самым улучшающий работу детектора. Конструкция показана на фото (рис. 2).
Сам приемник лежит справа внизу. Над ним – усилитель, использующий энергию продетектированной несущей для усиления колебаний звуковой частоты, а слева – головка на 300 мкА (индикатор от старого магнитофона), показывающая ток, отдаваемый приемником в усилитель.
С чувствительной антенной длиной более 15 м эта система уже несколько лет обеспечивает автора громкоговорящим приемом без источников питания.
Но вернемся к приемнику. На фото видны ручки двух КПЕ С1 и С2 (5… 180 пФ) из наборов для радиолюбительского творчества, выпускавшихся ранее. Годятся КПЕ и от старых транзисторных приемников. Катушка намотана на секционированном каркасе от магнитной антенны приемника «Альпинист» и содержит 230 витков провода ЛЭШО 21x0,07. Это литцендрат, содержащий 21 жилку диаметром по 0,07 мм. Годится и любой другой литцендрат, и другие каркасы от магнитных антенн. В крайнем случае можно использовать провод ПЭЛШО (с эмалевой, а поверх нее шелковой изоляцией) диаметром 0,15…0,25 мм. И уж в самом крайнем случае – провод ПЭЛ, потери в катушке при этом будут больше, а громкость приема уменьшится. Настраивается катушка обломком ферритового стержня (а можно и целым) от той же магнитной антенны.
Диоды приемника должны быть высокочастотными, маломощными, германиевыми. Подойдут, например, Д18…Д20, ГД507, Д311. Чем меньше собственная емкость диода (см. справочники), тем лучше. Подстроечный С3 и блокировочный С4 конденсаторы – керамические любого типа. Собран приемник в пластмассовой коробочке размерами примерно 40x120 мм.
Отсоединив штекер усилителя, вставляемый в гнездо телефонов, приемник можно брать с собой на прогулки, в походы и «радиоэкспедиции».
В. ПОЛЯКОВ, профессор
(Окончание следует)
ЧИТАТЕЛЬСКИЙ КЛУБ
Вопрос – ответ
Говорят, если спящему человеку сунуть под нос дурно пахнущую тряпку, то ему будут сниться кошмары. Неужто это правда?
Валентина Звонарева,
г. Клин
Совершенно верно, такая закономерность наблюдается. Не случайно поэтому санитарные врачи настоятельно рекомендуют проветривать перед сном солдатские казармы и больничные палаты.
А недавно немецкие медики из Университетской клиники Мангейма специально поставили серию экспериментов над 15 женщинам и добровольцами, которым во время сна подносили к носу вещества, имевшие определенный запах. При этом оказалось, что запах тухлятины вызвал у всех испытуемых без исключения дурные сновидения. А вот запах цветов, напротив, – приятные.
Более подробно о том, как можно влиять на сновидения, кому снятся сны «на заказ», мы постараемся рассказать в одном из будущих номеров журнала.
Говорят, еще в начале прошлого века чешский писатель Карел Чапек написал пьесу, в которой играли роботы. Неужто в то время уже существовали столь смышленые кибернетические существа?
Оксана Поливанова,
г. Петропавловск-Камчатский
В 20-е годы XX века роботов-актеров, конечно, не было. Их роли играли артисты в соответствующих костюмах. Первый в мире экспериментальный спектакль, в котором роботы участвуют наравне с людьми, был поставлен в начале 2009 года в университетском театре японского города Осака.
Пьеса называется «Я – работник» и заглядывает в будущее – вероятно, не в столь уж и далекое.
Сюжет незамысловат: пара молодоженов обзавелась двумя кибернетическими помощниками по хозяйству. Но вот беда: один из них оказывается лентяем, жалуется хозяевам на однообразную работу и вступает с людьми в пространные дискуссии о смысле жизни.
Роботы играют по программе, которую в течение двух месяцев для них писали университетские компьютерщики. Пока спектакль длится всего 20 минут, но его авторы собираются к 2010 году дописать пьесу, а также программу для роботов таким образом, чтобы постановка из экспериментальных перешла в разряд стандартно репертуарных.
Интересно, можно ли в футболе пробить пенальти по воротам так, что у вратаря не будет никаких шансов парировать этот мяч? Что говорит по этому поводу физика и физиология?
Алексей Смирнов,
г. Пенза
Спор между форвардом и голкипером длится столько же, сколько люди на нашей планете играют в футбол – то есть более ста лет. И чаще всего в этой дуэли победителем выходит форвард. Так гласит практика. А что могут сказать по этому поводу теоретики?
Эта задача решена исследователями с Британских островов. Именно там, если помните, и родился футбол. Ученые Ливерпульского университета выяснили, какую скорость развивает мяч после удара по нему футболиста, и посчитали, за какое время он преодолевает расстояние в 11 м. Кроме того, они выяснили время реакции, необходимое на прыжок вратаря.
Получилось, что, если футболист пошлет мяч в ворота со скоростью более 100,36 км/ч (а в экспериментах зафиксирована и скорость в 150 км/ч) на расстояние не более полуметра от штанги, то у голкипера, в момент удара неподвижно стоявшего на месте, теоретически нет шансов отразить удар.
Практически парировать пенальти голкипер может лишь в двух случаях. Во-первых, если форвард пробьет прямо во вратаря. И, во-вторых, если голкипер заранее угадает, куда именно направит мяч форвард, и с опережением бросится именно в тот угол.
ДАВНЫМ-ДАВНО
Во все времена авиаконструкторы старались создать самолеты, способные взлетать и садиться на «пятачке» – в горах или на лесной поляне, на улице города или на палубе корабля. Но даже небольшому самолету начала прошлого века для этого была нужна полоса длиною 100–200 м.
Уменьшить пробег можно было, построив самолет, способный летать медленно. Но уже при скорости 60–70 км/ч подъемная сила крыла снижается, самолет теряет управление и может упасть. Поэтому крыло стали снабжать закрылками и щитками, которые выпускали при взлете и посадке, увеличивая тем самым площадь крыла и подъемную силу на малых скоростях. Но необходимые для этого механизмы оказались тяжелы и часто отказывали.
В конце 1920-х годов американский профессор Эдвард Ланиер из университета в Майами создал крыло без каких-либо механических устройств, способное создавать подъемную силу в диапазоне скоростей от 25 до 266 км/ч.
Если обычно крылу стараются придать плавные очертания и как бы сделать продолжением фюзеляжа, чтобы не возникали лишние вихри, то крыло первого самолета Ланиера (1928 г.) у фюзеляжа имело огромную впадину, где сверху, как полагал профессор, возникает зона разрежения, а атмосферное давление, действуя на нижнюю поверхность крыла, создает подъемную силу. При максимальной скорости 150 км/ч скорость взлета и посадки самолета достигала 45 км/ч, а взлетно-посадочный пробег всего 30–40 м при мощности мотора около 45 л.с.
Самолет, который Ланиер построил и испытал вместе с сыном позже, в 1961 г., был более солидным – он имел вес 635 кг, мотор в 150 л.с., размах крыльев в 6,3 м и максимальную скорость 266 км/ч. Но взлетал и садился он на скорости 45 км/ч. Для этого было достаточно полосы длиной… в 18 м. Устойчиво летать самолет Ланиера мог даже при скорости 25 км/ч. В этот момент необходимая для полета мощность уменьшалась почти в 100 раз! Однако крыло Ланиера плохо работало на больших скоростях, да и надежной теории его создать не удалось.
ПРИЗ НОМЕРА!
Наши традиционные три вопроса:
1. Можно ли увеличить дальность оптической лазерной связи в тумане?
2. Молниеотвод и дерево одинаковой высоты расположены рядом. Куда чаще будут попадать молнии в грозу? Почему?
3. Какой способ передачи электроэнергии на Луне может быть самым экономичным?
ПРАВИЛЬНЫЕ ОТВЕТЫ НА ВОПРОСЫ
«ЮТ» № 3 – 2009 г.
1. Вода в поверхностных слоях океана прогревается солнечными лучами, которые не проникают на большую глубину. Поэтому вода там холодная. Исключение составляют воды в районе так называемых «черных курильщиков», где воду нагревает вулканическое тепло.
2. Нет, нельзя, поскольку согласно уравнениям Эйнштейна, при достижении скорости света масса снаряда возрастает до бесконечности.
3. Да, можно. Такие экспериментальные автомобили уже ездят. Только управлять ими очень уж непривычно.
* * *
Поздравляем с победой Алексея СМИРНОВАиз г. Твери. Он получает приз – Энциклопедию легковых автомобилей.
Близки были к победе призеры прошлых номеров – Антон СМОРКАЛОВиз г. Томска и Алексей КИРИЛЛОВиз г. Сергиева Посада.
* * *
А почему?Что можно найти в полной пустоте? Кто и когда изобрел якорь? Существуют ли белые слоны? Давно ли появился промышленный шпионаж? На эти и многие другие вопросы ответит очередной выпуск «А почему?».
Школьник Тим и всезнайка из компьютера Бит продолжают свое путешествие в мир памятных дат. А читателей журнала приглашаем заглянуть в знаменитый загородный дворец российских императоров Петергоф, вошедший в число семи чудес России.
Разумеется, будут в номере вести «Со всего света», «100 тысяч «почему?», встреча с-Настенькой и Данилой, «Игротека» и другие наши рубрики.
ЛЕВШАОдной из секретных разработок немецких авиаконструкторов периода Второй мировой войны было создание бомбардировщика Р. 170, способного летать быстрее и выше любого истребителя того времени. Каким самолетом хотели удивить весь мир фашисты, вы узнаете в «Левше» и сможете выклеить его модель по представленным в журнале разверткам для своего «Музея на столе».
Для электронщиков и радиолюбителей «Левша» публикует схему электронной приставки, которая позволит на время превратить персональный компьютер в полноценный осциллограф.
Владимир Красноухов подготовил для вашего досуга новую головоломку. И как всегда, «Левша» даст несколько практических советов.
* * *