355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2005 № 07 » Текст книги (страница 5)
Юный техник, 2005 № 07
  • Текст добавлен: 3 октября 2016, 23:36

Текст книги "Юный техник, 2005 № 07"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 5 (всего у книги 5 страниц)

Почти без электроники

Как мы уже рассказывали (см. «ЮТ» № 6 за 2005 г.), телевизионный приемник появился в начале 20-х годов прошлого века и был в основном механическим, а вся его электроника состояла из двух обычных радиовещательных приемников. Один из них принимал телевизионный сигнал, другой – звуковое сопровождение. Высшая частота модуляции телесигнала достигала 7500 Гц, поэтому телепередачи велись на средних и коротких волнах и их можно было принимать даже на другом берегу Атлантического океана.

Принятый телевизионный сигнал подавался на неоновую лампу. Ее свет реагировал на модуляцию телевизионного сигнала, нес всю информацию о передаваемом изображении. Но ее еще нужно было превратить в изображение.

Делали это чаще всего двумя способами. Самый простой из них – это установка перед лампой диска Нипкова (рис. 1) и ограничительной рамки. В соответствии с принятым тогда стандартом, диск имел тридцать отверстий, расположенных по спирали, и вращался со скоростью 12,5 оборота в секунду.


При неподвижном диске через ограничительную рамку было видно одно из отверстий. Освещенное лампой, оно казалось светящейся точкой. Но когда же диск вращался, глаз воспринимал светящуюся строку. (Так превращается в круг свет от быстро вращаемого в темноте фонарика.) Поскольку яркость лампы постоянно изменялась, то и яркость отдельных участков строки получалась различной. Так возникала строка телевизионного изображения.

В каждой строке укладывалось сорок точек. Таким образом, один кадр состоял из 1200 элементов. За один оборот диска в пределах ограничительной рамки возникал один телевизионный кадр, а за секунду – 12,5 кадра.

Несмотря на то что зритель за секунду получал в 600 раз меньше информации, чем получает сегодня на экране ТВ нормальной четкости, механическое телевидение имело успех. Можно было легко опознать любимых актеров, а если изображение давалось во весь экран, то и полюбоваться их красотой.


Телевизоры с диском Нипкова были крайне просты. В промышленных образцах диск вращался при помощи крохотного синхронного электромоторчика. Это была самая сложная его часть. Однако любители делали такие моторы самостоятельно, а иногда и обходились без них. Диск вращали при помощи рукоятки через ременную передачу и получали вполне удовлетворительное изображение. Принципиальным недостатком диска Нипкова была низкая яркость изображения. Сквозь отверстие диска проходила лишь малая часть света тускловатой лампы. Практически наблюдать изображение мог лишь один человек, и то через лупу.

Значительно лучше использовался свет в простейших телевизорах с разверткой зеркальным винтом (рис. 2).


Он состоял из тридцати металлических пластин, спирально насаженных на вертикальную ось. Одна из их граней была отполирована как зеркало. Рядом с зеркальным винтом ставилась неоновая лампа с ярким свечением в щели между электродами. Пока винт был неподвижен, в одной из его граней было видно отражение кусочка щели лампы. Как только зеркальный винт начинал вращаться, отражение пробегало от одного конца грани до другого, прочерчивало строку и уходило из поля зрения. А вслед за ним появлялось изображение в другой грани. Как утверждал журнал «Радиофронт», возле небольшого, размером с коробку от торта, телевизора с зеркальным винтом могло располагаться до 30 человек. В это можно поверить лишь с учетом крайней неприхотливости первых телезрителей (рис. 3).


Четкость в 30 строк оставляла желать лучшего. В Англии ее повысили до 60 строк. Качество изображения получилось сравнительно высоким, полоса частот увеличилась до 30 кГц, но сигнал еще можно было передавать на коротких волнах в свободном радиоэфире того времени.

В нашей стране в 1938 году был сделан механический телевизор с четкостью изображения 440 строк. Он имел сложную оптико-механическую систему отклонения светового луча, а источником света служила проекционная лампа со специальным модулятором света.

Появившиеся в это время электронно-лучевые трубки (ЭЛТ) давали более качественное изображение и были гораздо проще в изготовлении, чем оптико-механические системы. По пути применения ЭЛТ и пошло телевидение.

Но механическое ТВ не закончилось. Один из последних механических телевизоров работал в 80-е годы прошлого века на одной из международных выставок в Японии. Он давал превосходное цветное изображение на экране с диагональю двадцать метров. В печать просочились лишь довольно скудные сведения о его устройстве.

В основе его был обычный телевизионный приемник. Изображение на экране создавалось путем отклонения трех разноцветных лазерных лучей. Оно производилось при помощи двух многогранных зеркальных барабанов. Один из них осуществлял строчную развертку с частотой 625x25 строк в секунду. Этот барабан имел 25 граней и вращался со скоростью 37 500 оборотов в минуту. Другой – осуществлял кадровую развертку, сдвигая строку поперек кадра.

Оптико-механическая система имела незначительные потери света, и применили ее, несмотря на старомодность, для получения изображения, размеры и качество которого для электронных средств недостижимы.

Тогда, в 80-е годы прошлого века, техника телевидения вполне могла пойти по пути создания компактных механических телевизоров для домашнего применения. Аппарат размером с коробку от торта давал бы изображение высочайшего качества размером с целую стену. При кассовом производстве он стоил бы не дороже видеоплейера. Но был выбран иной путь, который лишь через двадцать лет привел к появлению в наших домах дорогих плоских экранов.

Эксперименты с простейшими механическими телевизорами не лишены интереса и в наши дни. Сегодня всем нам доступны применяемые в карманных фонариках светодиоды белого свечения, яркость которых в сотни раз превышает яркость неоновых ламп. У некоторых из них она под действием приложенного напряжения может меняться с частотой в сотни и тысячи кГц.

Сделать телевизор с зеркальным винтом или диском Нипкова и применить в нем светодиод совсем нетрудно.

Но где взять для него сигнал? Сохранились рассказы очевидцев о радиолюбителе В. Китченкове, который в 60-е годы прошлого века на механический телевизор принимал московское телевидение. Он увеличил частоту вращения зеркального винта до 50 об/сек., а на неоновую лампу подавал сигнал от каждой десятой строки. К сожалению более подробных сведений не сохранилось.

Но для чисто демонстрационных целей, а также для управления моделями можно собрать замкнутую систему механического телевидения. В ней, как это иногда бывало в старину, в качестве телекамеры используется доработанный телевизионный приемник, в котором за диском Нипкова или рядом с зеркальным винтом вместо лампы ставился фотоэлемент, а на плоскости кадра посредством объектива от фотоаппарата создавалось действительное изображение снимаемого объекта. Снятый с фотоэлемента сигнал поступал на вход обычного радиопередатчика и передавался в эфир.

Однако, если механический ТВ-приемник при правильном конструировании может стать полноценным конкурентом приемника электронного, то с механической телекамерой (МТК) этого не происходит. Ее чувствительность к свету всегда в тысячи раз ниже, чем у телекамеры электронной. На рисунке 4 вы видите схему простейшей МТК с зеркальным винтом. Объектив желательно взять с максимальной светосилой, например, Гелиос-44 от фотоаппарата «Зенит». Справа от зеркального винта расположена накрытая кожухом группа фотодиодов и усилитель. На первых порах ограничимся связью МТК с приемником при помощи провода.


На рисунке 5 – схема механического телевизионного приемника (МТП) с зеркальным винтом.


Справа от винта расположен источник света. Он состоит из яркого светодиода белого свечения, заключенного в отражающий кожух из белой жести. Равномерно освещенная щель в нем играет роль протяженного источника света. Если один достаточно яркий светодиод достать не удастся, то можно выстроить в одну линию несколько маломощных. Но и в этом случае их следует закрыть кожухом со щелью, ширина которого примерно в два раза уже ширины элемента изображения.

Во всех случаях кожух делается из чистой белой жести, хорошо отражающей свет. Для защиты изображения от постороннего света МТП помещен в корпус, окрашенный изнутри в черный цвет.

Несколько слов о телевизионном стандарте. В данном случае для вращения винта лучше всего использовать двигатель от старого электропроигрывателя. Он отличается высокой точностью исполнения и вращается бесшумно со скоростью 3000 об/мин. Если на него насадить винт, то тем самым будет определена частота кадров – 50 за одну секунду. При этом возрастает занимаемая сигналом полоса частот, но это не важно, если передача производится по проводу.

Количество строк на стороне МТП определяется яркостью источника света и нашим умением точно сделать два зеркальных винта. Вот как их делали в старину.

Для стандарта в 30 строк нарезали из нержавеющей стали или дюраля 34–36 ровных плоских пластин, насаживали их на ось и стягивали гайками. Одну из плоскостей полученного пакета сначала опиливали напильником с мелкими зубьями, а затем шлифовали с мелким наждаком и маслом на ровной чугунной плите. Если это делать плавными движениями и так, чтобы края детали не выходили за границы плиты, то за 2–3 часа работы можно получить ровную и очень плоскую поверхность (рис. 6).


Далее ее нужно отполировать до зеркального блеска. Конечно, лучше бы это сделать на той же плите, заменив наждак зеленой полировочной пастой ГОИ. Но на такую работу уйдет много времени. Поэтому пользовались смазанным пастой полировальным кругом из сукна. Но при такой работе неизбежно будут «завалены», скруглены края плоскости. Из-за этого отражение света в первых и последних строках не будет видно. Чтобы этого избежать, в стопу добавляли несколько лишних пластин, которые повреждались при полировке, но удалялись при окончательной сборке винта. При окончательной сборке важно все пластины развернуть относительно друг друга на постоянный угол. Это делалось при помощи шаблона. Так можно получить два одинаковых зеркальных винта. На первых порах лучше ограничиться небольшим числом строк. Это позволит приобрести опыт в совершенно забытой области механического телевидения.

В заключение отметим, что яркости современных светодиодов, как показывает расчет, вполне достаточно для получения хорошего изображения с четкостью 600–800 строк. Сделать зеркальный винт с соответствующим числом пластин умели еще 70 лет назад. Намек, думаю, понятен. Только сигнал для такого телевизора получить от механической телекамеры невозможно, следует применять только электронную.

Г. МАЛЬЦЕВ

Рисунки автора


Подробности для любознательных

Низкая чувствительность механической телекамеры объясняется самим принципом работы. Система развертки как бы «ощупывает» изображение точка за точкой и, задерживаясь на каждой из них очень короткое время (тысячные доли от времени, отведенного всему кадру), успевает послать на фотоэлемент ничтожную порцию света, вызывающую в нем очень небольшой импульс тока.

У телекамеры электронной каждый элемент изображения находится под действием света на протяжении всего кадра и успевает за это время накопить солидный заряд, который снимается электронным лучом и вызывает в его цепи в тысячи раз более мощный импульс.

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Кыш, подземные вредители!


Те, кто занимаются садом и огородом, хорошо знают, какой ущерб посадкам могут нанести кроты, полевые мыши и прочая подземная живность. Скрытые от глаз в разветвленных ходах и норах, они поедают корни деревьев, и ничем их не возьмешь. Одним из немногих эффективных и притом гуманных средств против непрошеных нахлебников могут стать «сейсмические» колебания почвы, создаваемые электронным генератором. Такие колебания должны иметь характер коротких пачек импульсов с частотой порядка 150…200 Гц, следующих с интервалами в несколько секунд. Такие звуки создают подземным обитателям дискомфорт, и им приходится мигрировать подальше от защищаемого участка, площадь которого может достигать тысячи квадратных метров.

На рисунке 1 изображена электрическая принципиальная схема устройства.


Генератором импульсов служит несимметричный мультивибратор, собранный на транзисторах VT1, VT3 с разным типом проводимости.

Нагрузкой генератора служит электродинамическая головка ВА1 с невысоким сопротивлением звуковой катушки, благодаря чему в ней циркулируют относительно мощные импульсы тока, создающие значительное акустическое давление. Изменяя номиналы деталей C1, R5, можно регулировать частоту звуковой генерации.

Работой генератора управляет мультивибратор на транзисторах VT2, VT4, собранный по симметричной схеме, но создающий колебания с различной длительностью полупериодов, соотношение которых задается соответствующим выбором емкостей конденсаторов С2, СЗ. Чередующиеся с паузами «подскоки» напряжения на коллекторе транзистора VT2 попеременно то запускают, то останавливают работу звукового генератора.

Для возбуждения в почве акустических колебаний, динамическую головку нужно зарыть в землю на глубину до полуметра, не забывая, что работать ей придется в необычных условиях. Влагонепроницаемость динамика обеспечит оболочка из полиэтилена, швы которой нужно герметично заварить. Диффузор и звуковую катушку динамической головки нужно закрыть от механических деформаций защитной решеткой. Ее можно изготовить с помощью пайки из нескольких отрезков медного провода, закрепив ее на металлическом диффузородержателя головки. Для связи звукоизлучателя с генератором подойдет двухпроводный электрошнур в общей литой изоляции длиной порядка одного метра. После припайки концов к контактной колодке головки шнур приклеивают эпоксидным клеем к середине задника постоянного магнита, после чего надевают и окончательно герметизируют пленочную оболочку.

Примерная компоновка устройства, установленного на земельном участке, показана на рисунке 2.


Рядом с местом заглубления излучающей головки в землю забивается прочный штырь, у вершины которого крепится футляр с водонепроницаемой съемной крышкой, внутри которого помещаются монтажная плата генератора, выключатель питания и батарея из двух гальванических элементов.

Для контроля работоспособности батареи можно предусмотреть изображенные на рисунке 1 контакты XI; присоединяя к ним микронаушник с сопротивлением 20…30 Ом, вы услышите периодическую работу генератора. Высоту штыря над уровнем земли следует взять порядка 0,4 м, чтобы устройство было достаточно заметно со стороны. Опускающийся воздушный участок шнура плотно привяжите к штырю, а подземную часть проложите змейкой – это убережет электролинию от обрывов в случае деформации грунта.

В конструкции можно использовать резисторы МЯТ мощностью 0,125…0,5 Вт, конденсаторы КЛС (С1), К50 – 16 А (С2, С3); вместо С2 включите два конденсатора в параллель. Динамическую головку можно взять типа 1ГДШ-9. Батарея питания – два 1,5-вольтовых гальванических элемента типа LR20.

Ю. ПРОКОПЦЕВ

ДАВНЫМ-ДАВНО

В 1935 году французский парикмахер Анри Менье сделал своими руками крохотный самолет с размахом крыльев всего 5,6 м. Это был одноместный моноплан с двумя крыльями, одно за другим. Переднее крыло могло менять угол атаки, и это позволяло опускаться или набирать высоту. Мотор мощностью 18 л.с. обеспечивал «небесной блохе» – так прозвали самолет – скорость 130 км/ч.

Авиационный мир был изумлен простотой самолета и тем, что его придумал и сделал парикмахер. Нашлось множество подражателей, и через год в небе Европы летали десятки таких же точно «блох», а еще через год… начались катастрофы.

Оказалось, что самолетик может войти в крутое пике, но не всегда удается из него выйти, как ни задирал летчик переднюю кромку крыла. Правда, после продувки самолета в аэродинамической трубе ЦАГИ были выяснены причины явления и даны способы его устранения. Но любительский интерес к «блохе» резко упал. И ею продолжали заниматься лишь профессионалы.

Во Франции по схеме «небесная блоха» был создан истребитель. Из-за поражения в войне испытать его, правда, не успели.

У нас тоже увлекались «блохой». Советский авиаконструктор П.Д. Грушин переосмыслил идею самолета. Его переднее крыло располагалось выше заднего, и, как выяснил Грушин, из-за этого возрастало аэродинамическое сопротивление. Грушин построил штурмовик-бомбардировщик ББ-МАИ, переднее крыло которого поставил ниже заднего. Это заметно уменьшило сопротивление и позволило почти вдвое уменьшить площадь крыльев.

ББ-МАИ был лишь вдвое крупнее «блохи», но весил 3,5 т, нес пять пулеметов и, 200 кг бомб на скорости до 488 км/ч.


ПРИЗ НОМЕРА!


Наши традиционные три вопроса:

1. Что может помешать планеру облететь вокруг света?

2. Информацию в наши дни пишут даже на скотче. А можно ли записать ее лазерным лучом, скажем, на шоколаде или на сахаре? Почему это не делают на практике?

3. Можно ли в механическом телевизоре применять лампу накаливания?

Правильные ответы на вопросы

«ЮТ» № 2 – 2005 г.

1. Из колб электроламп обязательно выкачивают воздух, потому что в кислородной атмосфере спираль мгновенно перегорает.

2. На показания биологических часов человека температура его тела влияет обязательно: когда она начинает повышаться, процессы в человеческом организме ускоряются, и время начинает для человека замедляться. При понижении температуры тела – процессы в нем замедляются, а время, напротив, ускоряется.

3. Сифон не будет работать в кабине спутника при нормальном атмосферном давлении, так как для работы ему необходима сила тяжести.

* * *

Поздравляем с победой Максима Шепеневаиз Краснодарского края, ст. Старощербинская. Правильно и обстоятельно ответив на вопросы конкурса «ЮТ» N2 2 – 2005 г., он получает приз – «Энциклопедию легковых автомобилей» издательства «За рулем».

* * *

А почему?Давно ли в России стали играть в футбол? С какой скоростью растет африканская пустыня Сахара? Чен знаменит английский путешественник Давид Ливингстон? На эти и многие другие вопросы ответит очередной выпуск «А почему?».

Школьник Тим и всезнайка из компьютера Бит продолжат свое путешествие в мир памятных дат. А читателей журнала наш корреспондент пригласит на греческий остров Корфу в Средиземном море.

Разумеется, будут в номере вести «Со всего света», «100 тысяч «почему?», встреча с Настенькой и Данилой, «Игротека» и другие наши рубрики.

  ЛЕВША– Что означает слово «джип»? Как был создан первый американский внедорожник? Поставки машин марки «Виллис» нашими союзниками в годы Великой Отечественной войны стали немалым подспорьем фронту, а какова история этого автомобиля? Собрав модель первого джипа «Виллис» по нашим эскизам, вы найдете ответы на эти и другие вопросы.

«Серфы» и «кайты», «фанбординг» и «вейксерфинг» – разобраться в сложной терминологии водных спортивных досок поможет «Справочная Левши».

– Бегать по воде? Нет ничего проще: оригинальная игрушка справится с этой задачей ничуть не хуже водомерки.

– Электронщики смогут собрать радиозвонок.

* * *




    Ваша оценка произведения:

Популярные книги за неделю